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Abstract

We derive certain integrals by Wolfgang Gröbner and David Bierens
de Haan which are reported in Gradshteyn and Ryzhik. We evaluate
several of these definite integrals of the form given by∫ ∞

0
R(α, β, y)

(
(log(a) + iy)k − (log(a)− iy)k

)
dy
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1 Introduction

We will derive integrals as indicated in the abstract in terms of special func-
tions. Some special cases of these integrals have been reported in Gradshteyn
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and Ryzhik [7]. In 1858, Gröbner and Hofreiter [3] and 1867 David Bierens de
Haan derived hyperbolic integrals of the form

∫ ∞
0

cosh(αy)

sinh(βy)

(
(log(a) + iy)k − (log(a)− iy)k

)
dy (1)

In our case the constants in the formulas are general complex numbers subject
to the restrictions given below. The derivations follow the method used by us
in [8]. The generalized Cauchy’s integral formula is given by

yk

k!
=

1

2πi

∫
C

ewy

wk+1
dw. (2)

This method involves using a form of equation (2) then multiplys both sides
by a function, then takes a definite integral of both sides. This yields a definite
integral in terms of a contour integral. Then we multiply both sides of equation
(2) by another function and take the infinite sum of both sides such that the
contour integral of both equations are the same.

2 Definite integral of the contour integral

We use the method in [8]. Here the contour is similar to Figure 2 in [8] except
we replace the vertical lines ±1 by ±<(β). Using a generalization of Cauchy’s
integral formula we first replace y by iy+log(a) for the first equation and then
by y by −iy + log(a) to get the second equation. Then we subtract these two

equations, followed by multiplying both sides by cosh(αy)
2i sinh(βy)

to get

cosh(αy)csch(βy)
(
(log(a) + iy)k − (log(a)− iy)k

)
2ik!

=
1

2πi

∫
C

aww−k−1
sin(wy) cosh(αy)

sinh(βy)
dw (3)
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the logarithmic function is defined in equation (4.1.2) in [2]. We then take the
definite integral over y ∈ [0,∞) of both sides to get∫ ∞

0

cosh(αy)
(
(log(a) + iy)k − (log(a)− iy)k

)
2ik! sinh(βy)

dy

=
1

2πi

∫ ∞
0

∫
C

aww−k−1 sin(wy) cosh(αy)csch(βy)dwdy

=
1

2πi

∫
C

∫ ∞
0

aww−k−1 sin(wy) cosh(αy)csch(βy)dydw

=

∫
C

tanh
(
π(w−iα)

2β

)
+ tanh

(
π(w+iα)

2β

)
8iβa−wwk+1

dw

(4)

from equation (2.7.24) in [1] and the integral is valid for α, a, k and β complex
and =(w)+<(α+β) < 0 and =(w) ≤ <(α+β) and <(β) > 0. The hyperbolic
tangent function can be expressed in terms of trigonometric and hyperbolic
rational function given by:

tanh (x+ iy) =
1

i
tan (i(x+ iy))

=
i

i2
tan(ix− y) = −i sin(ix− y)

cos(ix− y)
= −i sin(ix− y) cos(ix+ y)

cos(ix− y) cos(ix+ y)

= −i sin(2ix)− sin(2y)

cos(2ix) + cos(2y)
=

sinh(2x) + i sin(2y)

cosh(2x) + cos(2y)

=
sinh(2x)

cosh(2x) + cos(2y)
+ i

sin(2y)

cosh(2x) + cos(2y)
(5)

Since (4) involves the sum of tanh and tanh with the complex conjugate of its
argument, the result of adding the two as in (4) is to remove the complex part
in (5). Thus the hyperbolic tangent function can be simplified to the form in
[1] using equation (5).

3 Infinite sum of the contour integral

In this section we will again use the generalized Cauchy’s integral formula to
derive equivalent contour integrals. First we replace y by π(p+ 1)/β + log(a)
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then multiply both sides by π
2β

(−1)peiα(π(p+1)/β) to get

πk+1(−1)p
(

1
β

)k+1

e
iπα
β

+ iπαp
β

(
β log(a)

π
+ p+ 1

)k
2k!

=

∫
C

(−1)pw−k−1 exp
(
w
(

log(a) + π(p+1)
β

)
+ iπα(p+1)

β

)
4iβ

dw (6)

then we take the infinite sum over p ∈ [0,∞) to get

(7)

∞∑
p =0

πk+1(−1)p
(

1
β

)k+1

e
iπα
β

+ iπαp
β

(
β log(a)

π
+ p+ 1

)k
2k!

=
∞∑
p=0

∫
C

(−1)pw−k−1 exp
(
w
(

log(a) + π(p+1)
β

)
+ iπα(p+1)

β

)
4iβ

dw

=

∫
C

∞∑
p=0

(−1)pw−k−1 exp
(
w
(

log(a) + π(p+1)
β

)
+ iπα(p+1)

β

)
4iβ

dw

=

∫
C

aww−k−1
8iβ

+
aww−k−1 tanh

(
π(w+iα)

2β

)
8iβ

 dw

from equation (1.232.1) in [7]. Then we simplify the left-hand side to get the
Lerch function equivalent to get

πk+1e
iπα
β

(
1
β

)k+1

Φ
(
−e

iπα
β ,−k, β log(a)

π
+ 1
)

2k!

=

∫
C

aww−k−1
8iβ

+
πaww−k−1 tanh

(
π(w+iα)

2β

)
8iβ

 dw (8)

Then we replace α with −α to get the second equation for the contour integral
given by

πk+1e−
iπα
β

(
1
β

)k+1

Φ
(
−e−

iπα
β ,−k, β log(a)

π
+ 1
)

2k!

=

∫
C

aww−k−1
8iβ

+
aww−k−1 tanh

(
π(w−iα)

2β

)
8iβ

 dw (9)
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Now we will derive the added contour using the generalized Cauchy’s integral
formula. Now we replace y by log(a) and multiply both sides by π

4β
simplify

to get
π logk(a)

4βk!
=

1

8iβ

∫
C

aww−k−1dw (10)

4 Definite integral in terms of the Lerch func-

tion

Since the right-hand sides of equation (4), (8) and (9) are equivalent we can
equate the left-hand sides to get∫ ∞

0

cosh(αy)

sinh(βy)

(
(log(a) + iy)k − (log(a)− iy)k

)
dy

= iπk+1e−
iπα
β

(
1

β

)k+1

Φ

(
−e−

iπα
β ,−k, β log(a)

π
+ 1

)
+ iπk+1e

iπα
β

(
1

β

)k+1

Φ

(
−e

iπα
β ,−k, β log(a)

π
+ 1

)
− iπ logk(a)

β
(11)

from (9.550) in [7] where Φ(r, s, u) is the Lerch function. Note the left-hand
side of equation (11) converges for all finite k. The integral in equation (11)
can be used as an alternative method to evaluating the Lerch function. The
Lerch function has a series representation given by

Φ(z, s, v) =
∞∑
n=0

(v + n)−szn (12)

where |z|< 1, v 6= 0,−1, .. and is continued analytically by its integral repre-
sentation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞
0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞
0

ts−1e−(v−1)t

et − z
dt (13)

where Re(v) > 0, or |z|≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1. A special

case of the Lerch function is polylogarithm Φ(z, s, 1) = Lis(z)
z

given by equation
(6) in [6].

5 Special cases and derivation of some Gröbner

and Bierens de Haan integrals

In this section we will use equation (11) along with L’Hôpital’s rule to derive
some interesting definite integrals.
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5.1 Derivation of entry 3.529.2 in [7]

Using equation (11) and setting a = 1 simplify we get∫ ∞
0

1

2
i
(
(iy)k − (−iy)k

)
cosh(αy)csch(βy)dy

=
1

2
πk+1

(
1

β

)k+1

Li−k

(
−e−

iπα
β

)
+

1

2
πk+1

(
1

β

)k+1

Li−k

(
−e

iπα
β

)
(14)

where Lik(z) is the polylogarithm function defined in equation (13) with v = 1.
Now we will let k = −1 for the first equation to get∫ ∞

0

cosh(αy)csch(βy)

y
dy = −1

2
log
(

1 + e−
iπα
β

)
− 1

2
log
(

1 + e
iπα
β

)
(15)

and setting k = −1 and α = 0 for the second equation to get∫ ∞
0

csch(βy)

y
dy = − log(2) (16)

Now we subtract equation (16) from (15) to get∫ ∞
0

cosh(αy)csch(βy)− csch(βy)

y
dy = −1

2
log
(

1 + e−
iπα
β

)
− 1

2
log
(

1 + e
iπα
β

)
+ log(2)

=
1

2

(
log(2)− log

(
cos

(
πα

β

)
+ 1

))
= − log

(
cos

(
πα

2β

))
(17)

where <(β) > <(α).

5.2 Derivation of entry 3.529.1 in [7]

Using equation (14) setting k = −2 and β = 1 and taking the first partial
derivative with respect to α we get∫ ∞

0

csch(y) sinh(αy)

y2
dy =

iLi2 (−e−iπα)

2π
− iLi2 (−eiπα)

2π
(18)

Next we will use (14) setting k = −1 and β = 1 to get∫ ∞
0

csch(y) cosh(αy)

y
dy = −1

2
log
(
1 + e−iπα

)
− 1

2
log
(
1 + eiπα

)
(19)
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Here we subtract equation (18) at α = 1 from (19) at α = 0 to get∫ ∞
0

1

y2
− csch(y)

y
dy = log(2) (20)

which simplifies to ∫ ∞
0

ycsch(y)− 1

y2
dy = − log(2) (21)

5.3 Derivation of entry 3.529.3 in [7]

Using equation (14) and getting two equations by multiply by both sides by β
then by setting k = −1, α = 0 and β = a for the first and multiply by both
sides by β and setting k = −1, α = 0 and β = b for the second and subtracting
we get ∫ ∞

0

acsch(ay)− bcsch(by)

y
dy = (b− a) log(2) (22)

where <(a) > 0 and <(b) > 0.

5.4 Derivation of entry 3.524.5 in [7]

Using equation (14) and simplifying the left-hand side we get∫ ∞
0

yk cosh(αy)csch(βy)dy =
iπk+1

(
1
β

)k+1 (
Li−k

(
−e−

iπα
β

)
+ Li−k

(
−e

iπα
β

))
(−i)k − ik

= −1

2
πk+1

(
1

β

)k+1

csc

(
πk

2

)(
Li−k

(
−e−

iπα
β

)
+ Li−k

(
−e

iπα
β

))
(23)

where <(β) > <(α). The Hurwitz equivalent to the Polylogarithm function is
derived using Joncquière’s relation (1.11.16) in [5].

5.5 Derivation of entry 3.525.3 in [7]

Using equation (11) and setting k = −1, a = e, β = π and simplifying the
left-hand side we get∫ ∞

0

ycsch(πy) cosh(αy)

y2 + 1
dy =

1

2

(
−1 + eiα log

(
1 + e−iα

)
+ e−iα log

(
1 + eiα

))
=

1

2
(α sin(α) + cos(α) log(2(cos(α) + 1))− 1)

(24)
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where −π < <(α) < π.

5.6 Derivation of entry 3.525.4 in [7]

Using equation (11) and setting k = −1, a = e, β = π/2 and simplifying the
left-hand side, expanding the complex exponentials using Euler’s formula and
using the identities for tan−1(x) we get

(25)

∫ ∞
0

ycsch
(
πy
2

)
cosh(αy)

y2 + 1
dy = 1 + eiα tan−1

(
e−iα

)
+ e−iα tan−1

(
eiα
)

=
1

2
π cos(α) + sin(α) tanh−1(sin(α))− 1

where −π/2 < <(α) < π/2. In this evaluation we used the identities

tan−1(x)− tan−1(y) = tan−1
(
x− y
1 + xy

)
and

tan−1(x) =
1

2i
log

(
x− i
x+ i

)
where x > 0.

5.7 Derivation of entry 3.525.8 in [7]

Using equation (11) setting k = −1, and replacing a by ea and simplifying we
get

(26)

∫ ∞
0

y cosh(αy)csch(βy)

a2 + y2
dy =

1

2

(
π

aβ
− e−

iπα
β Φ

(
−e−

iπα
β , 1,

aβ

π
+ 1

)
− e

iπα
β Φ

(
−e

iπα
β , 1,

aβ

π
+ 1

))
where <(β) > <(α). This solution represents the analytic continuation of the
definite integral, whereas the listed solution in [7] is bounded by positive b
values.

6 Conclusion

In this paper, we have presented a novel method for deriving some interesting
definite integrals by Gröber and Bierens de Haan using contour integration.
The results presented were numerically verified for both real and imaginary
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and complex values of the parameters in the integrals using Mathematica by
Wolfram.
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