International Mathematical Forum, Vol. 15, 2020, no. 5, 223 - 233 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2020.91261

On KS-Semigroups [0,1] and F_Y^X

Luzviminda T. Ranara

Department of Mathematics Mindanao State University Marawi City, Philippines

Jocelyn P. Vilela

Department of Mathematics Mindanao State University-Iligan Institute of Technology 9200 Iligan City, Philippines

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

In this paper, we define the operations "*" and "·" on the set [0,1] and show that [0,1] is a KS-semigroup. Also, we define the operations " \otimes " and " \odot " on F_Y^X , where Y is any KS-semigroup and show that and F_Y^X is also KS-semigroup. We also investigate the structure of these KS-semigroups including the KS-semigroup $F_{[0,1]}^X$.

Keywords: BCK-algebra, semigroup, KS-semigroup, ideal of a KS-semigroup, stable KS-semigroup

1 Introduction

A class of algebra known as the BCK-algebra was introduced by Y. Imai and K. Iseki in [2]. Since then, a great deal of studies on BCK-algebra has been produced and one of it was that of K.H. Kim in [3] where KS-semigroup was introduced. In this paper, we introduce operations on the sets [0,1] and F_Y^X , where Y is any KS-semigroup, and with these operations, the sets [0,1] and F_Y^X are made into KS-semigroups. We also investigate some structure of these KS-semigroups.

2 Preliminary

We now review some definitions and results that will be used in this paper.

Definition 2.1 [2] Let X be a nonempty set, "*" a binary operation in X and $0 \in X$. An algebraic system (X, *, 0) is called a BCK-algebra if "*" satisfies the following conditions: For all $x, y, z \in X$,

- (1) ((x*y)*(x*z))*(z*y) = 0,
- (2) (x * (x * y)) * y = 0,
- (3) x * x = 0,
- $(4) \ 0 * x = 0,$
- (5) x * y = 0 and y * x = 0 implies x = y.

Definition 2.2 [3] A BCK-algebra X is said to be *commutative* if for all $x, y \in X$, x * (x * y) = y * (y * x).

Definition 2.3 [3] Let X be a nonempty set. The system (X, \cdot) is called a *semigroup* if " \cdot " is an associative binary operation.

Definition 2.4 [3] An algebraic system $(X, *, \cdot, 0)$ is called a KS-semigroup if it satisfies the following conditions:

- (1) (X, *, 0) is a BCK algebra,
- (2) (X, \cdot) is a semigroup,
- (3) The operation \cdot is distributive (on both sides) over *, that is, for all $x,y,z\in X$
 - (a) $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$
 - (b) $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$

For convenience, we write $x \cdot y$ by xy.

Definition 2.5 [3] A nonempty subset Y of a KS-semigroup X with binary operations "*" and " \cdot " is called a *sub KS-semigroup* if Y is closed under "*" and " \cdot ", that is,

- (1) $x * y \in Y$ for all $x, y \in Y$, and
- (2) $xy \in Y$ for all $x, y \in Y$.

225

Definition 2.6 [3] A nonempty subset Y of a KS-semigroup X is said to be a left (respectively right) ideal of X if

- 1. $xy \in Y$ (respectively $yx \in Y$) whenever $x \in X$ and $y \in Y$; and
- 2. $x * y \in Y$ and $y \in Y$ imply that $x \in Y$ for all $x, y \in X$.

If Y is both a left and a right ideal, then Y is called a two-sided ideal or simply an ideal.

Remark 2.7 An ideal is a sub KS-semigroup and if Y is an ideal, then $0 \in Y$.

Definition 2.8 An ideal $Y \neq X$ of a KS-semigroup X is said to be a maximal ideal if for every ideal Z of X with $Y \subseteq Z \subseteq X$, then either Y = Z or Z = X.

Definition 2.9 [3] Let X and Y be KS-semigroups and $f: X \longrightarrow Y$ be a function. Then f is a KS-semigroup homomorphism or simply a homomorphism if f(xy) = f(x)f(y) and f(x*y) = f(x)*f(y) for all $x, y \in X$.

Definition 2.10 [3] Let X and Y be KS-semigroups and $f: X \longrightarrow Y$ be a homomorphism. Then f is an *epimorphism* if f is onto. If, in addition, f is one-to-one, f is called an *isomorphism*.

Definition 2.11 [3] Let $f: X \longrightarrow Y$ be a KS-semigroup homomorphism. The *kernel* of f is the set $ker\ f = \{x \in X : f(x) = 0\}$.

Theorem 2.12 [3] Let $f: X \longrightarrow Y$ be a KS-semigroup homomorphism. If B is an ideal of Y, then $f^{-1}(B) = \{x \in X : f(x) \in B\}$ is an ideal of X containing Ker f.

Theorem 2.13 [3] Let $f: X \longrightarrow Y$ be a KS-semigroup homomorphism. If X is commutative, then f(X) is commutative.

Definition 2.14 [3] A KS-semigroup X is said to have a *unit element* 1 if for all $x \in X$, x1 = 1x = x.

Definition 2.15 [3] A KS-semigroup X is said to be *strong* if $\forall x, y \in X$, x * xy = x * y.

Definition 2.16 [3] A nonempty subset A of a KS-semigroup X is said to be stable if $xa, ax \in A$ whenever $x \in X$ and $a \in A$.

Let Y be an ideal of a KS-semigroup X and define the relation \widetilde{Y} on X by $x\widetilde{Y}y$ if and only if $x*y,y*x\in Y$.

Remark 2.17 [3] The relation \widetilde{Y} on X is an equivalence relation.

Since an equivalence relation partitions a set into equivalence classes, denote by $Y_x = \left\{ y \in X : x\widetilde{Y}y \right\}$ as the equivalence class containing x and the quotient $X/Y = \left\{ Y_x : x \in X \right\}$ as the set of all equivalence classes in X. On X/Y, define the operations \otimes and \odot by $Y_x \otimes Y_y = Y_{x*y}$ and $Y_x \odot Y_y = Y_{xy}$. Then the following result holds.

Remark 2.18 [3] The system $(X/Y, \otimes, \odot)$ is a KS-semigroup with zero element $Y_0 = Y$ and is called the *quotient KS-semigroup*.

3 Results and Discussion

On the set [0,1], define the operations "*" and " \cdot " respectively as follows: x*y = x-y if $x \ge y$ and x*y = 0 if x < y, and $x \cdot y$ as the usual multiplication. Then the following hold.

Lemma 3.1 For all $x, y, z \in [0, 1]$, [(x * y) * (x * z)] * (z * y) = 0.

Proof: Consider the following cases:

Case 1. $x \geq y$

If $y \le z \le x$, then $x - y \ge x - z$ so that

$$[(x*y)*(x*z)]*(z*y) = [(x-y)*(x-z)]*(z-y)$$

$$= [(x-y)-(x-z)]*(z-y)$$

$$= (z-y)*(z-y)$$

$$= (z-y)-(z-y)$$

$$= 0.$$

If $z \le y \le x$, then $x - y \le x - z$ so that

$$[(x*y)*(x*z)]*(z*y) = [(x-y)*(x-z)]*0$$

$$= 0*0$$

$$= 0-0$$

$$= 0.$$

If $y \le x \le z$, then $x - y \le z - y$ so that

$$[(x*y)*(x*z)]*(z*y) = [(x-y)*0]*(z-y)$$

$$= [(x-y)-0]*(z-y)$$

$$= (x-y)*(z-y)$$

$$= 0.$$

Case 2. x < y

If $x < z \le y$ or $x \le z < y$, then

$$[(x*y)*(x*z)]*(z*y) = [0*0]*0$$

$$= [0-0]*0$$

$$= 0*0$$

$$= 0-0$$

$$= 0.$$

If $z \leq x < y$, then

$$[(x*y)*(x*z)]*(z*y) = [0*(x-z)]*0$$

$$= 0*0$$

$$= 0-0$$

$$= 0.$$

If $x < y \le z$, then

$$[(x*y)*(x*z)]*(z*y) = [0*0]*(z-y)$$

$$= [0-0]*(z-y)$$

$$= 0*(z-y)$$

$$= 0.$$

Therefore, in all cases, the lemma is proved.

Lemma 3.2 For all $x, y \in [0, 1]$, [x * (x * y)] * y = 0.

Proof: Consider the following cases:

Case 1. If $x \ge y$, then $x \ge x - y$ so that

$$[x * (x * y)] * y = [x * (x - y)] * y$$

$$= [x - (x - y)] * y$$

$$= y * y$$

$$= y - y$$

$$= 0.$$

Case 2. If x < y, then

$$[x * (x * y)] * y = [x * 0] * y$$

= $[x - 0] * y$
= $x * y$
= 0.

Therefore, for all $x, y \in [0, 1], [x * (x * y)] * y = 0.$

Lemma 3.3 For all $x, y \in [0, 1]$, we have

- 1. x * x = 0
- 2. If x * y = 0 and y * x = 0, then x = y,
- 3. x * 0 = x; and
- 4. 0 * x = 0.

Proof:

- 1. x * x = x x = 0.
- 2. If x * y = 0 and y * x = 0, then $x \le y$ and $y \le x$ and so x = y.
- 3. x * 0 = x 0 = x.

4.
$$0 * x = 0$$
 since $x \ge 0$.

Combining the previous lemmas, we obtain:

Theorem 3.4 The set [0,1], together with the binary operation "*", is a BCK-algebra.

Since usual multiplication is an associative binary operation on [0,1], the following theorem follows.

Theorem 3.5 The triple $\langle [0,1], *, \cdot \rangle$ is a KS-semigroup.

Theorem 3.6 [0,1] is a commutative BCK-algebra

Proof: Let $x, y \in [0, 1]$ and consider the following cases:

Case 1. If $x \ge y$, then x * (x * y) = x * (x - y) = x - (x - y) = y while y * (y * x) = y * 0 = y - 0 = y.

Case 2. If x < y, then x * (x * y) = x * 0 = x - 0 = x while

$$y * (y * x) = y * (y - x) = y - (y - x) = x.$$

Hence, in either case, $x, y \in X, x*(x*y) = y*(y*x).$

Corollary 3.7 If $f:[0,1] \longrightarrow X$ is an epimorphism of KS-semigroups, then X is commutative.

Proof: By Theorem 3.6, [0,1] is commutative and by Theorem 2.13, f([0,1]) is commutative. Since f is onto, f([0,1]) = X. Thus, X is commutative. \square

Theorem 3.8 The sets [0, a) and [0, a] are sub KS-semigroups and are stable subsets of [0, 1] for all $a \in [0, 1]$.

Proof: Let $x,y \in [0,a)$. Then $0 \le xy < x < a$ implies that $xy \in [0,a)$. Also, if $x < y, \ x * y = 0 \in [0,a)$. If $x \ge y, \ x * y = x - y \le x < a$. Thus, $x * y \in [0,a)$. Similarly, let $x,y \in [0,a]$. Then $0 \le xy \le x \le a$ implies that $xy \in [0,a]$. Also, if x < y, then $x * y = 0 \in [0,a]$ and if $x \ge y$, then $x * y = x - y \le x \le a$. Thus, $x * y \in [0,a]$. Hence, [0,a) and [0,a] are sub KS-semigroups of [0,1]. To show stability, let $x \in [0,1]$ and $y \in [0,a)$. Then $xy = yx \le y < a$ implies $xy \in [0,a)$. Thus, [0,a) is stable. Similarly, let $x \in [0,1]$ and $y \in [0,a]$. Then $xy = yx \le y \le a$ implies $xy \in [0,a]$. Thus, [0,a] is stable.

Theorem 3.9 If $\{0\} \neq Y \subseteq [0,1]$ is an ideal of [0,1], then Y = [0,a] for some $a \in [0,1]$.

Proof: Let $\{0\} \neq Y$ be an ideal of [0,1]. Then, $0 \in Y$ and there is $0 \neq x$ in Y. Now, let $0 \leq z \leq x$. Then by definition of "*", $z*x = 0 \in Y$. Since $x \in Y$ and Y is an ideal, $z \in Y$. This means that Y contains all real numbers between 0 and x. Let $a = \sup\{x : x \in Y\}$. Then $a \neq 0$ and for all $z \in [0,1]$ such that $0 \leq z < a$, $z \in Y$. Now, a*z = a - z < a. This means that $a*z \in Y$. Since $z \in Y$ and Y is an ideal, $a \in Y$. Therefore, Y = [0,a].

The following example provides a closed subset of [0,1] which is not an ideal.

Example 3.10 Consider the subset Y = [0, 1/2] of [0, 1]. Take y = 1/4 in Y and x = 2/3 in [0, 1]. Then x * y = 2/3 - 1/4 = 5/12 < 1/2. Hence, $x * y \in Y$ with $y \in Y$. However, $x \notin Y$. Thus, [0, 1/2] is not an ideal in [0, 1].

Theorem 3.11 The only ideals in [0,1] are $\{0\}$ and [0,1]. Hence, $\{0\}$ is a maximal ideal.

Proof: Let Y be an ideal in [0,1]. Then Y=[0,a] for some $a\in[0,1]$ by Theorem 3.9. If a=0, then $Y=\{0\}$. Consider 0< a<1. Choose a very small r such that $0< r< a, \ a+r/2\le 1$ and $a-r/2\ge 0$ and take x=a+r/2 and y=a-r/2. Then $x\in[0,1], \ x\notin Y, \ y\in Y$. Thus, x*y=x-y=a+r/2-(a-r/2)=r< a. Hence, $x*y\in Y$ with $y\in Y$. Since Y is an ideal, $x\in Y$. This is a contradiction. Thus, a=1, in which case, Y=[0,1].

Theorem 3.12 If Y is a maximal ideal in [0,1], then there is an isomorphism from [0,1] to [0,1]/Y.

Proof: By Theorem 3.11, $Y = \{0\}$ so that if $x \in [0, 1]$, then

$$Y_x = \left\{ y \in [0,1] : x \widetilde{Y} y \right\}$$

$$= \left\{ y \in [0,1] : x * y, y * x \in Y \right\}$$

$$= \left\{ y \in [0,1] : x * y = y * x = 0 \right\}$$

$$= \left\{ y \in [0,1] : x = y \right\}$$

$$= \left\{ x \right\}.$$

Now, consider the mapping $f:[0,1] \longrightarrow [0,1]/Y$ defined by $f(x) = Y_x$. If x = y, then x * y = 0 = y * x, which means that x * y and y * x are in Y. Thus, $x\widetilde{Y}y$ so that $Y_x = Y_y$. Hence, f(x) = f(y) implying that f is well-defined. Also, $f(xy) = Y_{xy} = Y_x \odot Y_y = f(x) \odot f(y)$ and

$$f(x * y) = Y_{x*y} = Y_x \otimes Y_y = f(x) \otimes f(y).$$

Thus, f is a KS-semigroup homomorphism. Let $x \in kerf$. Then

$$\{x\} = Y_x = f(x) = Y_0 = Y = \{0\},\$$

where Y_0 is the zero in [0,1]/Y. Thus, x=0 and $kerf=\{0\}$. That is, f is one-to-one. Next, let $Y_x \in [0,1]/Y$. Then $x \in [0,1]$ and $f(x) = Y_x$. Thus, f is onto. Therefore, f is an isomorphism of [0,1] onto [0,1]/Y.

Theorem 3.13 If $f:[0,1] \longrightarrow X$ is an epimorphism of KS-semigroups, then the only ideals in X are $\{0\}$ and X.

Proof: Let $B \subseteq X$ be an ideal in X. Then by Theorem 2.12, $f^{-1}(B)$ is an ideal in [0,1]. By Theorem 3.11, $f^{-1}(B) = \{0\}$ or $f^{-1}(B) = [0,1]$. If $f^{-1}(B) = \{0\}$, then $B = \{0\}$. If $f^{-1}(B) = [0,1]$, then f onto implies that $X = f([0,1]) \subseteq f(f^{-1}(B)) \subseteq B \subseteq X$. Therefore, B = X.

Let X be any set, Y be a KS-semigroup and F_Y^X be the set of all functions $f: X \longrightarrow Y$. Define the operations " \otimes " and " \odot " on F_Y^X as follows: $(f \otimes g)(x) = f(x) * g(x), (f \odot g)(x) = f(x) \cdot g(x)$ where "*" and " \circ " are operations in Y. The next result shows that F_Y^X , together with " \otimes " and " \circ " is a KS-semigroup.

Theorem 3.14 The system $\langle F_Y^X, \otimes, \odot, f_0 \rangle$ is a KS-semigroup, where f_0 is the zero function.

Proof: First, show that " \otimes " and " \odot " are binary operations on F_Y^X . Let $f,g\in F_Y^X$. Then $\forall x\in X, (f\otimes g)(x)=f(x)*g(x)$ and $(f\odot g)(x)=f(x)\cdot g(x)$. Since Y is a KS-semigroup, "*" and "·" are binary operations in Y, $f\otimes g$ and

 $f \odot g$ are in F_Y^X . Next, let $f, g, h \in F_Y^X$ and $x \in X$. Then $f(x), g(x), h(x) \in Y$ and since Y is a KS-semigroup,

(a)
$$[(f \otimes g) \otimes (f \otimes h)] \otimes (h \otimes g)(x)$$

$$= [(f \otimes g) \otimes (f \otimes h)](x) * (h \otimes g)(x)$$

$$= [(f \otimes g)(x) * (f \otimes h)(x)] * (h \otimes g)(x)$$

$$= [(f(x) * g(x)) * (f(x) * h(x))] * (h(x) * g(x))$$

$$= 0$$

$$= f_0(x).$$

(b)
$$((f \otimes (f \otimes g)) \otimes g)(x) = (f \otimes (f \otimes g))(x) * g(x)$$

$$= (f(x) * (f \otimes g)(x)) * g(x)$$

$$= (f(x) * (f(x) * g(x)) * g(x)$$

$$= 0$$

$$= f_0(x).$$

- (c) $(f \otimes f)(x) = f(x) * f(x) = 0 = f_0(x).$
- (d) $(f_0 \otimes f)(x) = f_0(x) * f(x) = 0 = f_0(x).$
- (e) If $f \otimes g = f_0$ and $g \otimes f = f_0$, then $(f \otimes g)(x) = 0 = (g \otimes f)(x)$ so that f(x) * g(x) = g(x) * f(x). Thus, f(x) = g(x) for each $x \in X$ and so f = g. Therefore, $\langle F_Y^X, \otimes, f_0 \rangle$ is a BCK-algebra. Also, $\langle F_Y^X, \odot \rangle$ is a semigroup since

$$((f \odot g) \odot h)(x) = (f \odot g)(x) \cdot h(x)$$

$$= (f(x) \cdot g(x)) \cdot h(x)$$

$$= f(x) \cdot (g(x) \cdot h(x))$$

$$= f(x) \cdot (g \odot h)(x)$$

$$= (f \odot (g \odot h))(x).$$

Therefore, $\langle F_Y^X, \otimes, \odot, f_0 \rangle$ is a KS-semigroup.

The next corollary follows from Theorems 3.5 and 3.14.

Corollary 3.15 Let X be any set. The system $\langle F_{[0,1]}^X, \otimes, \odot, f_0 \rangle$ is a KS-semigroup.

Theorem 3.16 If Y is a KS-semigroup with unit element 1 and X is any set, then F_Y^X has unit element $f_1(x) = 1, \forall x \in X$.

Proof: By Theorem 3.14, F_Y^X is a KS-semigroup. Let $g \in F_Y^X$ and $x \in X$. Then $(g \odot f_1)(x) = g(x)f_1(x) = g(x)1 = g(x)$ and

$$(f_1 \odot g)(x) = f_1(x)g(x) = 1g(x) = g(x).$$

Thus, $g \odot f_1 = f_1 \odot g = g$. Therefore, f_1 is the unit element of F_Y^X .

Corollary 3.17 $F_{[0,1]}^X$ has unit element $\mu_1(x) = 1, \forall x \in X$.

Proof: Since in [0,1] we have x1 = 1x = x, [0,1] has unit element 1 and so by Theorem 3.16, the result follows.

Theorem 3.18 If Y is a strong KS-semigroup, then so is F_Y^X .

Proof: Let $f, g \in F_Y^X$. Since Y is a strong KS-semigroup, by Definition 2.15,

$$(f\otimes g)(x)=f(x)*g(x)=f(x)*f(x)g(x)=f(x)*(f\odot g)(x)=(f\otimes (f\odot g))(x).$$

Therefore, $f \otimes g = f \otimes (f \odot g)$ and so F_Y^X is strong.

Theorem 3.19 If X is any set and N is an ideal of a KS-semigroup Y, then the set $V = \{ f \in F_Y^X : f(X) \subseteq N \}$ is an ideal of F_Y^X .

Proof: Let $f \in V$, $x \in X$ and $g \in F_Y^X$. Then $(f \odot g)(x) = f(x)g(x) \in N$. Since N is an ideal of Y, $f \odot g \in V$. Similarly, $(g \odot f)(x) = g(x)f(x) \in N$ implies that $g \odot f \in V$. Next, let $f \otimes g \in V$, $g \in V$ and $x \in X$. Then $(f \otimes g)(x) = f(x) * g(x) \in N$ and $g(x) \in N$. This means that $f(x) \in N$ for N is an ideal. Thus, $f \in V$. Therefore, V is an ideal of F_Y^X .

Corollary 3.20 The only ideals of $F_{[0,1]}^X$ are $\{f_0\}$ and $F_{[0,1]}^X$.

Proof: By Theorem 3.11, the only ideals of [0,1] are $\{0\}$ and [0,1]. Thus, by Theorem 3.19, the ideals of $F_{[0,1]}^X$ are $V_1 = \left\{ f \in F_{[0,1]}^X : f(X) \subseteq \{0\}, \right\} = \{f_0\},$ and $V_2 = \left\{ g \in F_{[0,1]}^X : g(X) \subseteq [0,1] \right\} = F_{[0,1]}^X$.

References

- [1] J. F. Fraleigh, A First Course in Abstract Algebra, Fifth Edition, Addison-Wesley Publishing Company, 1994.
- [2] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV, *Proc. Japan Acad.*, **42** (1966), 19-22. https://doi.org/10.3792/pja/1195522169
- [3] K.H. Kim, On Structure of KS-semigroups, *International Mathematical Forum*, 1 (2) (2006), 67-76. http://dx.doi.org/10.12988/imf.2006.06008

- [4] J. Neggers and Kim, H. S., On d-Algebras, Math. Slovaca, 49 (1999), 19-26.
- [5] H. L. Royden, *Real Analysis*, Third Edition, Printice-Hall Inc., A Simon and Schuster Company, 1988.
- [6] A. Walendziak, On BF-algebras, Math. Slovaca, $\bf 57$ (2) (2007), 119-128. https://doi.org/10.2478/s12175-007-0003-x

Received: May 23, 2020; Published: July 22, 2020