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Abstract

In this paper, we define the operations “x” and “-” on the set [0, 1]
and show that [0, 1] is a KS-semigroup. Also, we define the operations
“®” and “©7” on F{f , where Y is any KS-semigroup and show that
and F;f is also KS-semigroup. We also investigate the structure of these
KS-semigroups including the KS-semigroup F; [é{ 1
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1 Introduction

A class of algebra known as the BCK-algebra was introduced by Y. Imai
and K. Iseki in [2]. Since then, a great deal of studies on BCK-algebra has
been produced and one of it was that of K.H. Kim in [3] where KS-semigroup
was introduced. In this paper, we introduce operations on the sets [0, 1] and
F¥, where Y is any KS-semigroup, and with these operations, the sets [0, 1]
and F3¥ are made into KS-semigroups. We also investigate some structure of
these KS-semigroups.
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2 Preliminary

We now review some definitions and results that will be used in this paper.

Definition 2.1 [2] Let X be a nonempty set, “*” a binary operation in X
and 0 € X. An algebraic system (X, *,0) is called a BCK-algebra if “ x”
satisfies the following conditions: For all x,y, 2z € X,

Definition 2.2 [3] A BCK-algebra X is said to be commutative if for all
r,y € X, xx (x*xy)=yx*(y=*1x).

Definition 2.3 [3] Let X be a nonempty set. The system (X, -) is called a
semigroup if “-7 is an associative binary operation.

Definition 2.4 [3] An algebraic system (X, %, -,0) is called a KS-semigroup
if it satisfies the following conditions:

(1) (X,%,0) is a BCK algebra,
(2) (X,-) is a semigroup,

(3) The operation - is distributive (on both sides) over *, that is, for all
r,y,z € X

(a) z-(yx2)=(x-y)*(z-2)
(b) (zxy)-2=(x-2)*(y-2)

For convenience, we write x -y by xy.

Definition 2.5 [3] A nonempty subset Y of a KS-semigroup X with binary
operations “*” and “-” is called a sub KS-semigroup if Y is closed under
“x”7 and “-7, that is,

(1) xxy €Y forall z,y € Y, and

(2) zy e Y forall z,y € Y.
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Definition 2.6 [3] A nonempty subset Y of a KS-semigroup X is said to be
a left(respectively right) ideal of X if

1. zy € Y (respectively yz € V) whenever z € X and y € Y'; and
2. zxy €Y and y € Y imply that z € Y for all x,y € X.

If Y is both a left and a right ideal, then Y is called a two-sided ideal or simply
an ideal.

Remark 2.7 An ideal is a sub KS-semigroup and if Y is an ideal, then 0 € Y.

Definition 2.8 Anideal Y # X of a KS-semigroup X is said to be a mazimal
ideal if for every ideal Z of X with Y C Z C X, then either Y = Z or Z = X.

Definition 2.9 [3] Let X and Y be KS-semigroups and f : X — Y be a func-
tion. Then f is a K S-semigroup homomorphism or simply a homomorphism

if f(zy) = f(2)f(y) and f(zxy) = f(2)  f(y) for all 2,y € X.

Definition 2.10 [3] Let X and Y be KS-semigroups and f : X — Y be a
homomorphism. Then f is an epimorphism if f is onto. If, in addition, f is
one-to-one, f is called an isomorphism.

Definition 2.11 [3] Let f : X — Y be a KS-semigroup homomorphism.
The kernel of f is the set ker f={z € X : f(x) =0}.

Theorem 2.12 [3] Let f : X — Y be a KS-semigroup homomorphism. If B
is an ideal of Y, then f~Y(B) = {x € X : f(z) € B} is an ideal of X containing
Ker f.

Theorem 2.13 [3] Let f : X — Y be a KS-semigroup homomorphism. If X
is commutative, then f(X) is commutative.

Definition 2.14 [3] A KS-semigroup X is said to have a unit element 1 if for
allz e X, 2zl =1z ==.

Definition 2.15 [3] A KS-semigroup X is said to be strong if Va,y € X,
THRTY =T %Y.

Definition 2.16 [3] A nonempty subset A of a KS-semigroup X is said to be
stable if xa,ar € A whenever z € X and a € A.

_Let Y be an ideal of a KS-semigroup X and define the relation Y on X by
xYyifandonly if xxy,yxx €Y.

Remark 2.17 [3] The relation Y on X is an equivalence relation.
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Since an equivalence relation partitions a set into equivalence classes, de-
note by Y, = {y e X: ny} as the equivalence class containing = and the

quotient X/Y = {Y, : x € X} as the set of all equivalence classes in X. On
X/Y, define the operations ® and ® by YV, ® Y, = YV, and Y, © Y, = Y,,.
Then the following result holds.

Remark 2.18 [3] The system (X/Y,®,©®) is a KS-semigroup with zero ele-
ment Yy =Y and is called the quotient KS-semigroup.

3 Results and Discussion

On the set [0, 1], define the operations “*” and “-” respectively as follows:

rxxy =x—yifx > yand zxy = 0if z < y, and -y as the usual multiplication.
Then the following hold.

Lemma 3.1 For all x,y,z € [0,1], [(x*xy) * (z % 2)] * (z*xy) =0.
Proof: Consider the following cases:
Case 1. x>y

Ify<z<uxz then x —y > 2 — 2z so that

[(zxy)*(z*2)]*(zxy) =

= 0.
If 2<y <z, then x —y < x — 2z so that

[(wxy)x(@x2)]*(zxy) = [(z—y)*(@—2)]*0
= 0x0
0—-0

Ify<ax<z thenx —y < 2z —yso that

[(wxy)x (x2)]*(zxy) = |
= |
(
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Case 2. r <y
Ifr<z<yoraxz<z<y, then

[(zxy)x(xxz)]*x(z*xy) = [0%0]*0
= [0—-0]%0
= 0x*0
= 0-0
= 0.
If z<x <y, then
[(zxy)*(z*x2)]*(zxy) = [0x(z—2)]*0
= 0x0
= 0-0
If xr <y <z then
[(zxy) = (z*2)]x(zxy) = [0x0]x(z—y)
= [0-0]x(z—y)
0x(z—1y)
0.
Therefore, in all cases, the lemma is proved. [l

Lemma 3.2 For all z,y € [0,1], [x % (x xy)] xy = 0.

Proof: Consider the following cases:
Case 1. If x > y, then x > x — y so that

[x(xxy)*xy = [z*x(x—y)*xy
= [r—(z—y)l*y
= yxy
= y—vy
= 0.

Case 2. If x < y, then

[z (wxy)*xy = [vx0]*y
[z — 0] xy

xxy
= 0.

Therefore, for all z,y € [0,1], [x * (z*xy)] *xy = 0. 0
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Lemma 3.3 For all x,y € |0, 1], we have
1. xxx=0
2. Ifexy=0andy*xxz =0, then x =y,
3. zx0=uxz; and
4. 0xx = 0.
Proof:
l.xxx=x—2=0.
2. fzxy=0and yxx =0, then x <y and y < x and so x = y.
3. x2x0=2—-0=ux.
4. O0xx =0 since z > 0. O
Combining the previous lemmas, we obtain:

Theorem 3.4 The set [0,1], together with the binary operation “ 7, is a
BCK-algebra.

Since usual multiplication is an associative binary operation on [0, 1], the
following theorem follows.

Theorem 3.5 The triple ([0,1],%,-) is a KS-semigroup.
Theorem 3.6 [0, 1] is a commutative BCK-algebra

Proof: Let x,y € [0,1] and consider the following cases:

Case 1. If x > y, then z x (x xy) = zx (x —y) = = — (x — y) = y while
yx(yxaz)=yx0=y—-0=y.

Case 2. If z <y, then xx (x*y) =x %0 =2 — 0=z while
yx(yxz)=yx(y—z)=y—(y—z) =z
Hence, in either case, x,y € X,z * (zxy) =y * (y *x x). O

Corollary 3.7 If f : [0,1] — X is an epimorphism of KS-semigroups, then
X 18 commutative.

Proof: By Theorem 3.6, [0, 1] is commutative and by Theorem 2.13, f([0, 1]) is
commutative. Since f is onto, f([0,1]) = X. Thus, X is commutative. O
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Theorem 3.8 The sets [0,a) and [0,a] are sub KS-semigroups and are stable
subsets of [0, 1] for all a € [0, 1].

Proof: Let z,y € [0,a). Then 0 < zy < x < a implies that zy € [0,a). Also, if
r<y,xxy=0€[0,a). x>y zxy=0—y<x<a Thus, zxy € [0,a).
Similarly, let z,y € [0,a]. Then 0 < zy < z < a implies that zy € [0,a]. Also,
if r <y, thenzxy =0 € [0,a] and if x > y, then xxy =2 —y < = < a.
Thus, x*y € [0,a]. Hence, [0,a) and [0, a] are sub KS-semigroups of [0, 1]. To
show stability, let € [0,1] and y € [0,a). Then zy = yzr < y < a implies
zy € [0,a). Thus, [0,a) is stable. Similarly, let € [0,1] and y € [0,a]. Then
zy = yxr <y < a implies zy € [0, a]. Thus, [0, a] is stable. O

Theorem 3.9 If{0} #Y C [0, 1] is an ideal of [0, 1], then Y = [0, a] for some
a€[0,1].

Proof: Let {0} # Y be an ideal of [0,1]. Then, 0 € Y and thereis 0 # x in Y.
Now, let 0 < z < z. Then by definition of “x”, zxx =0 € Y. Since z € Y and
Y is an ideal, z € Y. This means that Y contains all real numbers between 0
and z. Let a = sup{x:x € Y}. Then a # 0 and for all z € [0, 1] such that
0<z<a,z€eY. Now, a*xz=a— z < a. This means that a x z € Y. Since
z €Y and Y is an ideal, a € Y. Therefore, Y = [0, al. O

The following example provides a closed subset of [0,1] which is not an

ideal.

Example 3.10 Consider the subset Y = [0,1/2] of [0, 1]. Take y =1/4in Y
and x =2/3in [0,1]. Then x vy =2/3—-1/4=15/12 < 1/2. Hence, xxy € Y
with y € Y. However, x ¢ Y. Thus, [0,1/2] is not an ideal in [0, 1].

Theorem 3.11 The only ideals in [0,1] are {0} and [0,1]. Hence, {0} is a
mazximal ideal.

Proof: Let Y be an ideal in [0,1]. Then Y = [0,q] for some a € [0,1] by
Theorem 3.9. If a = 0, then Y = {0}. Consider 0 < a < 1. Choose a
very small r such that 0 < r < a, a+7r/2 < 1 and a — /2 > 0 and take
r=a+r/2and y = a—r/2. Then z € [0,1], z ¢ Y, y € Y. Thus,
zxy=x—y=a+1r/2—(a—7r/2) =r <a. Hence, xxy € Y withy € Y.
Since Y is an ideal, x € Y. This is a contradiction. Thus, a = 1, in which
case, Y = [0, 1]. O

Theorem 3.12 IfY is a mazimal ideal in [0, 1], then there is an isomorphism
from [0,1] to [0,1]/Y".
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Proof: By Theorem 3.11, Y = {0} so that if x € [0, 1], then

Y, = {ye[o,l]:x?y}
= {yel0,1]:z*xy,yxx €Y}
= {ye0,1]:zxy=y*xx =0}
= {yel01]:z=y}
= {z}.

Now, consider the mapping f : [0,1] — [0,1]/Y defined by f(x) = Y,. If
r =y, then x*y = 0 = y*x, which means that x+y and y*z are in Y. Thus,
Yy so that Y, =Y. Hence, f(z) = f(y) implying that f is well-defined.
Also, f(xy) =Yy =Y, @Y, = f(x) © f(y) and

fxy) =Yy =Y, ®Y, = f(z)® f(y).

Thus, f is a KS-semigroup homomorphism. Let x € ker f. Then

{1} =¥, = fla) = Yo = ¥ = {0},

where Y is the zero in [0,1]/Y. Thus, z = 0 and kerf = {0}. That is, f is
one-to-one. Next, let Y, € [0,1]/Y. Then z € [0,1] and f(z) = Y,. Thus, [ is
onto. Therefore, f is an isomorphism of [0, 1] onto [0, 1]/Y. O

Theorem 3.13 If f : [0,1] — X is an epimorphism of KS-semigroups, then
the only ideals in X are {0} and X.

Proof: Let B C X be an ideal in X. Then by Theorem 2.12, f~1(B) is
an ideal in [0,1]. By Theorem 3.11, f~%(B) = {0} or f~%B) = [0,1]. If
f~YB) = {0}, then B = {0}. If f~'(B) = [0,1], then f onto implies that
X = f([0,1]) € f(f"Y(B)) € B C X. Therefore, B = X. O

Let X be any set, Y be a KS-semigroup and F}¥ be the set of all functions
f : X — Y. Define the operations “ ® ” and “©® 7 on FJ as follows:
(f ®g)(@) = f(z) x g(z), (f ©g)(x) = f(z) - g(x) where “x” and *-7 are
operations in Y. The next result shows that F}¥, together with “®” and “®”
is a KS-semigroup.

Theorem 3.14 The system <F§, ®, O, f0> is a KS-semigroup, where fq is the
zero function.

Proof: First, show that “®” and “ ® 7 are binary operations on F;X. Let

f.g € Iy ThenVa € X, (f®g)(z) = f(x)*g(z) and (f ©g)(z) = f(z)-g(z).
Since Y is a KS-semigroup, “x” and “-” are binary operations in Y, f ® ¢ and
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f®garein F{X. Next, let f,g,h € F5¥ and # € X. Then f(x),g(z),h(z) €Y
and since Y is a KS-semigroup,

a) [(foge(feoh]eheg) ()

9) @ (f@h))(x) * (h© g)(z)
g)(x) * (f @ h)(x)] *

(b)) (Fe(f®g)@g(r) = (fe(feg)()x
= (f(@)* (feg)(x))
= (f(x) (f () * g(x)) * g(x)

() (f@f)x)=fz)*f(z)=0= fo(r)

(d)  (fo® f)(x) = folx) * f(z) = 0= fol).

() If f®g = foand g® f = fo, then (f ®g)(z) =0 = (9® f)(x) so that
f(z) *x g(x) = g(x) * f(x). Thus, f(x) = g(x) for each z € X and so f = g.
Therefore, <F§, ®, f0> is a BCK-algebra. Also, <F§, ®> is a semigroup since

g(z)
g(

(fog)oh)(x) = (fog))- hz)
= (f(x)-g(x)) - h(z)
= f(x)-(g(x) - h(z))
= [f(@)-(g©h)(z)
= (folgoh) ().

Therefore, (F{¥,®,®, fo) is a KS-semigroup. O

The next corollary follows from Theorems 3.5 and 3.14.

Corollary 3.15 Let X be any set. The system <F[§1},®,®,f0> is a KS-

SEMIGTrOUP.

Theorem 3.16 IfY is a KS-semigroup with unit element 1 and X is any set,
then F5X has unit element fi(x) = 1,Vx € X.
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Proof: By Theorem 3.14, F¥ is a KS-semigroup. Let g € F{¥ and z € X.
Then (9 © f1)(z) = g(x)f1(z) = g(x)1 = g(z) and

(i ©9)(x) = filz)g(x) = 1g(z) = g().
Thus, g ® fi = fi ©® g = g. Therefore, f; is the unit element of FyX. O

Corollary 3.17 F[é(,l} has unit element puy(x) = 1,Vo € X.

Proof: Since in [0, 1] we have 21 = 1o = x, [0, 1] has unit element 1 and so by
Theorem 3.16, the result follows. O

Theorem 3.18 IfY is a strong KS-semigroup, then so is F5X.

Proof: Let f,g € F{*. Since Y is a strong KS-semigroup, by Definition 2.15,

(fog)(z) = flx)xg(z) = f()x f(x)g(z) = f(z)=(fOg)(x) = (fO(fOg))(z).
Therefore, f ® g = f @ (f ® g) and so F5¥ is strong. O

Theorem 3.19 If X is any set and N is an ideal of a KS-semigroup Y, then
the set V.= {f € F{¥: f(X) C N} is an ideal of F{*.

Proof: Let f € V, 2z € X and g € F{*. Then (f ® g)(z) = f(z)g(x) € N.
Since N is an ideal of Y, f ©® g € V. Similarly, (¢ ® f)(z) = g(z)f(x) € N
implies that g © f € V. Next, let f ®g € Vg € V and x € X. Then
(f®g)(z) = f(x)*xg(z) € N and g(z) € N. This means that f(z) € N for N
is an ideal. Thus, f € V. Therefore, V is an ideal of FyX. O

Corollary 3.20 The only ideals of F[é(,u are { fo} and F[fil].

Proof: By Theorem 3.11, the only ideals of [0, 1] are {0} and [0, 1]. Thus, by
Theorem 3.19, the ideals of F[é(,l} are V, = {f € F[()il] : f(X) € {0}, } ={fo},

and V; = {g € Fif,) 9(X) € [0,1]} = F,, O
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