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Abstract

In this paper, we define the operations “ ∗ ” and “ · ” on the set [0, 1]
and show that [0, 1] is a KS-semigroup. Also, we define the operations
“ ⊗ ” and “ � ” on FX

Y , where Y is any KS-semigroup and show that
and FX

Y is also KS-semigroup. We also investigate the structure of these
KS-semigroups including the KS-semigroup FX

[0,1].

Keywords: BCK-algebra, semigroup, KS-semigroup, ideal of a KS-semigroup,
stable KS-semigroup

1 Introduction

A class of algebra known as the BCK-algebra was introduced by Y. Imai
and K. Iseki in [2]. Since then, a great deal of studies on BCK-algebra has
been produced and one of it was that of K.H. Kim in [3] where KS-semigroup
was introduced. In this paper, we introduce operations on the sets [0, 1] and
FX
Y , where Y is any KS-semigroup, and with these operations, the sets [0, 1]

and FX
Y are made into KS-semigroups. We also investigate some structure of

these KS-semigroups.
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2 Preliminary

We now review some definitions and results that will be used in this paper.

Definition 2.1 [2] Let X be a nonempty set, “ ∗ ” a binary operation in X
and 0 ∈ X. An algebraic system (X, ∗, 0) is called a BCK-algebra if “ ∗ ”
satisfies the following conditions: For all x, y, z ∈ X,

(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(2) (x ∗ (x ∗ y)) ∗ y = 0,

(3) x ∗ x = 0,

(4) 0 ∗ x = 0,

(5) x ∗ y = 0 and y ∗ x = 0 implies x = y.

Definition 2.2 [3] A BCK-algebra X is said to be commutative if for all
x, y ∈ X, x ∗ (x ∗ y) = y ∗ (y ∗ x).

Definition 2.3 [3] Let X be a nonempty set. The system (X, ·) is called a
semigroup if “ · ” is an associative binary operation.

Definition 2.4 [3] An algebraic system (X, ∗, ·, 0) is called a KS-semigroup
if it satisfies the following conditions:

(1) (X, ∗, 0) is a BCK algebra,

(2) (X, ·) is a semigroup,

(3) The operation · is distributive (on both sides) over ∗, that is, for all
x, y, z ∈ X

(a) x · (y ∗ z) = (x · y) ∗ (x · z)

(b) (x ∗ y) · z = (x · z) ∗ (y · z)

For convenience, we write x · y by xy.

Definition 2.5 [3] A nonempty subset Y of a KS-semigroup X with binary
operations “ ∗ ” and “ · ” is called a sub KS-semigroup if Y is closed under
“ ∗ ” and “ · ”, that is,

(1) x ∗ y ∈ Y for all x, y ∈ Y , and

(2) xy ∈ Y for all x, y ∈ Y .
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Definition 2.6 [3] A nonempty subset Y of a KS-semigroup X is said to be
a left(respectively right) ideal of X if

1. xy ∈ Y (respectively yx ∈ Y ) whenever x ∈ X and y ∈ Y ; and

2. x ∗ y ∈ Y and y ∈ Y imply that x ∈ Y for all x, y ∈ X.

If Y is both a left and a right ideal, then Y is called a two-sided ideal or simply
an ideal.

Remark 2.7 An ideal is a sub KS-semigroup and if Y is an ideal, then 0 ∈ Y .

Definition 2.8 An ideal Y 6= X of a KS-semigroup X is said to be a maximal
ideal if for every ideal Z of X with Y ⊆ Z ⊆ X, then either Y = Z or Z = X.

Definition 2.9 [3] LetX and Y be KS-semigroups and f : X −→ Y be a func-
tion. Then f is a KS-semigroup homomorphism or simply a homomorphism
if f(xy) = f(x)f(y) and f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X.

Definition 2.10 [3] Let X and Y be KS-semigroups and f : X −→ Y be a
homomorphism. Then f is an epimorphism if f is onto. If, in addition, f is
one-to-one, f is called an isomorphism.

Definition 2.11 [3] Let f : X −→ Y be a KS-semigroup homomorphism.
The kernel of f is the set ker f = {x ∈ X : f(x) = 0}.

Theorem 2.12 [3] Let f : X −→ Y be a KS-semigroup homomorphism. If B
is an ideal of Y , then f−1(B) = {x ∈ X : f(x) ∈ B} is an ideal of X containing
Ker f .

Theorem 2.13 [3] Let f : X −→ Y be a KS-semigroup homomorphism. If X
is commutative, then f(X) is commutative.

Definition 2.14 [3] A KS-semigroup X is said to have a unit element 1 if for
all x ∈ X, x1 = 1x = x.

Definition 2.15 [3] A KS-semigroup X is said to be strong if ∀x, y ∈ X,
x ∗ xy = x ∗ y.

Definition 2.16 [3] A nonempty subset A of a KS-semigroup X is said to be
stable if xa, ax ∈ A whenever x ∈ X and a ∈ A.

Let Y be an ideal of a KS-semigroup X and define the relation Ỹ on X by
xỸ y if and only if x ∗ y, y ∗ x ∈ Y .

Remark 2.17 [3] The relation Ỹ on X is an equivalence relation.
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Since an equivalence relation partitions a set into equivalence classes, de-

note by Yx =
{
y ∈ X : xỸ y

}
as the equivalence class containing x and the

quotient X/Y = {Yx : x ∈ X} as the set of all equivalence classes in X. On
X/Y , define the operations ⊗ and � by Yx ⊗ Yy = Yx∗y and Yx � Yy = Yxy.
Then the following result holds.

Remark 2.18 [3] The system (X/Y,⊗,�) is a KS-semigroup with zero ele-
ment Y0 = Y and is called the quotient KS-semigroup.

3 Results and Discussion

On the set [0, 1], define the operations “ ∗ ” and “ · ” respectively as follows:
x∗y = x−y if x ≥ y and x∗y = 0 if x < y, and x·y as the usual multiplication.
Then the following hold.

Lemma 3.1 For all x, y, z ∈ [0, 1], [(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = 0.

Proof : Consider the following cases:
Case 1. x ≥ y
If y ≤ z ≤ x, then x− y ≥ x− z so that

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [(x− y) ∗ (x− z)] ∗ (z − y)

= [(x− y)− (x− z)] ∗ (z − y)

= (z − y) ∗ (z − y)

= (z − y)− (z − y)

= 0.

If z ≤ y ≤ x, then x− y ≤ x− z so that

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [(x− y) ∗ (x− z)] ∗ 0

= 0 ∗ 0

= 0− 0

= 0.

If y ≤ x ≤ z, then x− y ≤ z − y so that

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [(x− y) ∗ 0] ∗ (z − y)

= [(x− y)− 0] ∗ (z − y)

= (x− y) ∗ (z − y)

= 0.
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Case 2. x < y
If x < z ≤ y or x ≤ z < y, then

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [0 ∗ 0] ∗ 0

= [0− 0] ∗ 0

= 0 ∗ 0

= 0− 0

= 0.

If z ≤ x < y, then

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [0 ∗ (x− z)] ∗ 0

= 0 ∗ 0

= 0− 0

= 0.

If x < y ≤ z, then

[(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = [0 ∗ 0] ∗ (z − y)

= [0− 0] ∗ (z − y)

= 0 ∗ (z − y)

= 0.

Therefore, in all cases, the lemma is proved. �

Lemma 3.2 For all x, y ∈ [0, 1], [x ∗ (x ∗ y)] ∗ y = 0.

Proof : Consider the following cases:
Case 1. If x ≥ y, then x ≥ x− y so that

[x ∗ (x ∗ y)] ∗ y = [x ∗ (x− y)] ∗ y
= [x− (x− y)] ∗ y

= y ∗ y
= y − y
= 0.

Case 2. If x < y, then

[x ∗ (x ∗ y)] ∗ y = [x ∗ 0] ∗ y
= [x− 0] ∗ y
= x ∗ y
= 0.

Therefore, for all x, y ∈ [0, 1], [x ∗ (x ∗ y)] ∗ y = 0. �
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Lemma 3.3 For all x, y ∈ [0, 1], we have

1. x ∗ x = 0

2. If x ∗ y = 0 and y ∗ x = 0, then x = y,

3. x ∗ 0 = x; and

4. 0 ∗ x = 0.

Proof :

1. x ∗ x = x− x = 0.

2. If x ∗ y = 0 and y ∗ x = 0, then x ≤ y and y ≤ x and so x = y.

3. x ∗ 0 = x− 0 = x.

4. 0 ∗ x = 0 since x ≥ 0. �

Combining the previous lemmas, we obtain:

Theorem 3.4 The set [0, 1], together with the binary operation “ ∗ ”, is a
BCK-algebra.

Since usual multiplication is an associative binary operation on [0, 1], the
following theorem follows.

Theorem 3.5 The triple 〈[0, 1], ∗, ·〉 is a KS-semigroup.

Theorem 3.6 [0, 1] is a commutative BCK-algebra

Proof : Let x, y ∈ [0, 1] and consider the following cases:

Case 1. If x ≥ y, then x ∗ (x ∗ y) = x ∗ (x − y) = x − (x − y) = y while
y ∗ (y ∗ x) = y ∗ 0 = y − 0 = y.

Case 2. If x < y, then x ∗ (x ∗ y) = x ∗ 0 = x− 0 = x while

y ∗ (y ∗ x) = y ∗ (y − x) = y − (y − x) = x.

Hence, in either case, x, y ∈ X, x ∗ (x ∗ y) = y ∗ (y ∗ x). �

Corollary 3.7 If f : [0, 1] −→ X is an epimorphism of KS-semigroups, then
X is commutative.

Proof : By Theorem 3.6, [0, 1] is commutative and by Theorem 2.13, f([0, 1]) is
commutative. Since f is onto, f([0, 1]) = X. Thus, X is commutative. �
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Theorem 3.8 The sets [0, a) and [0, a] are sub KS-semigroups and are stable
subsets of [0, 1] for all a ∈ [0, 1].

Proof : Let x, y ∈ [0, a). Then 0 ≤ xy < x < a implies that xy ∈ [0, a). Also, if
x < y, x ∗ y = 0 ∈ [0, a). If x ≥ y, x ∗ y = x− y ≤ x < a. Thus, x ∗ y ∈ [0, a).
Similarly, let x, y ∈ [0, a]. Then 0 ≤ xy ≤ x ≤ a implies that xy ∈ [0, a]. Also,
if x < y, then x ∗ y = 0 ∈ [0, a] and if x ≥ y, then x ∗ y = x − y ≤ x ≤ a.
Thus, x ∗ y ∈ [0, a]. Hence, [0, a) and [0, a] are sub KS-semigroups of [0, 1]. To
show stability, let x ∈ [0, 1] and y ∈ [0, a). Then xy = yx ≤ y < a implies
xy ∈ [0, a). Thus, [0, a) is stable. Similarly, let x ∈ [0, 1] and y ∈ [0, a]. Then
xy = yx ≤ y ≤ a implies xy ∈ [0, a]. Thus, [0, a] is stable. �

Theorem 3.9 If {0} 6= Y ⊆ [0, 1] is an ideal of [0, 1], then Y = [0, a] for some
a ∈ [0, 1].

Proof : Let {0} 6= Y be an ideal of [0, 1]. Then, 0 ∈ Y and there is 0 6= x in Y .
Now, let 0 ≤ z ≤ x. Then by definition of “∗”, z∗x = 0 ∈ Y . Since x ∈ Y and
Y is an ideal, z ∈ Y . This means that Y contains all real numbers between 0
and x. Let a = sup {x : x ∈ Y }. Then a 6= 0 and for all z ∈ [0, 1] such that
0 ≤ z < a, z ∈ Y . Now, a ∗ z = a− z < a. This means that a ∗ z ∈ Y . Since
z ∈ Y and Y is an ideal, a ∈ Y . Therefore, Y = [0, a]. �

The following example provides a closed subset of [0, 1] which is not an
ideal.

Example 3.10 Consider the subset Y = [0, 1/2] of [0, 1]. Take y = 1/4 in Y
and x = 2/3 in [0, 1]. Then x ∗ y = 2/3− 1/4 = 5/12 < 1/2. Hence, x ∗ y ∈ Y
with y ∈ Y . However, x /∈ Y . Thus, [0, 1/2] is not an ideal in [0, 1].

Theorem 3.11 The only ideals in [0, 1] are {0} and [0, 1]. Hence, {0} is a
maximal ideal.

Proof : Let Y be an ideal in [0, 1]. Then Y = [0, a] for some a ∈ [0, 1] by
Theorem 3.9. If a = 0, then Y = {0}. Consider 0 < a < 1. Choose a
very small r such that 0 < r < a, a + r/2 ≤ 1 and a − r/2 ≥ 0 and take
x = a + r/2 and y = a − r/2. Then x ∈ [0, 1], x /∈ Y , y ∈ Y . Thus,
x ∗ y = x − y = a + r/2 − (a − r/2) = r < a. Hence, x ∗ y ∈ Y with y ∈ Y .
Since Y is an ideal, x ∈ Y . This is a contradiction. Thus, a = 1, in which
case, Y = [0, 1]. �

Theorem 3.12 If Y is a maximal ideal in [0, 1], then there is an isomorphism
from [0, 1] to [0, 1]/Y .



230 Luzviminda T. Ranara and Jocelyn P. Vilela

Proof : By Theorem 3.11, Y = {0} so that if x ∈ [0, 1], then

Yx =
{
y ∈ [0, 1] : xỸ y

}
= {y ∈ [0, 1] : x ∗ y, y ∗ x ∈ Y }
= {y ∈ [0, 1] : x ∗ y = y ∗ x = 0}
= {y ∈ [0, 1] : x = y}
= {x} .

Now, consider the mapping f : [0, 1] −→ [0, 1]/Y defined by f(x) = Yx. If
x = y, then x∗ y = 0 = y ∗x, which means that x∗ y and y ∗x are in Y . Thus,
xỸ y so that Yx = Yy. Hence, f(x) = f(y) implying that f is well-defined.
Also, f(xy) = Yxy = Yx � Yy = f(x)� f(y) and

f(x ∗ y) = Yx∗y = Yx ⊗ Yy = f(x)⊗ f(y).

Thus, f is a KS-semigroup homomorphism. Let x ∈ kerf . Then

{x} = Yx = f(x) = Y0 = Y = {0} ,

where Y0 is the zero in [0, 1]/Y . Thus, x = 0 and kerf = {0}. That is, f is
one-to-one. Next, let Yx ∈ [0, 1]/Y . Then x ∈ [0, 1] and f(x) = Yx. Thus, f is
onto. Therefore, f is an isomorphism of [0, 1] onto [0, 1]/Y. �

Theorem 3.13 If f : [0, 1] −→ X is an epimorphism of KS-semigroups, then
the only ideals in X are {0} and X.

Proof : Let B ⊆ X be an ideal in X. Then by Theorem 2.12, f−1(B) is
an ideal in [0, 1]. By Theorem 3.11, f−1(B) = {0} or f−1(B) = [0, 1]. If
f−1(B) = {0}, then B = {0}. If f−1(B) = [0, 1], then f onto implies that
X = f([0, 1]) ⊆ f(f−1(B)) ⊆ B ⊆ X. Therefore, B = X. �

Let X be any set, Y be a KS-semigroup and FX
Y be the set of all functions

f : X −→ Y . Define the operations “ ⊗ ” and “ � ” on FX
Y as follows:

(f ⊗ g)(x) = f(x) ∗ g(x), (f � g)(x) = f(x) · g(x) where “ ∗ ” and “ · ” are
operations in Y . The next result shows that FX

Y , together with “⊗” and “�”
is a KS-semigroup.

Theorem 3.14 The system
〈
FX
Y ,⊗,�, f0

〉
is a KS-semigroup, where f0 is the

zero function.

Proof : First, show that “ ⊗ ” and “ � ” are binary operations on FX
Y . Let

f, g ∈ FX
Y . Then ∀x ∈ X, (f ⊗g)(x) = f(x)∗g(x) and (f �g)(x) = f(x) ·g(x).

Since Y is a KS-semigroup, “∗” and “ ·” are binary operations in Y , f⊗g and



On KS-semigroups [0, 1] and FX
Y 231

f � g are in FX
Y . Next, let f, g, h ∈ FX

Y and x ∈ X. Then f(x), g(x), h(x) ∈ Y
and since Y is a KS-semigroup,

(a)vm[(f ⊗ g)⊗ (f ⊗ h)]⊗ (h⊗ g)(x)vmmmmmmmmmmmmmm

vmnnnnnnnnnnn = [(f ⊗ g)⊗ (f ⊗ h)](x) ∗ (h⊗ g)(x)

= [(f ⊗ g)(x) ∗ (f ⊗ h)(x)] ∗ (h⊗ g)(x)

= [(f(x) ∗ g(x)) ∗ (f(x) ∗ h(x))] ∗ (h(x) ∗ g(x))

= 0

= f0(x).

(b)vm((f ⊗ (f ⊗ g))⊗ g)(x) = (f ⊗ (f ⊗ g))(x) ∗ g(x)

= (f(x) ∗ (f ⊗ g)(x)) ∗ g(x)

= (f(x) ∗ (f(x) ∗ g(x)) ∗ g(x)

= 0

= f0(x).mmmmmmmmmmmmnnn

nnhh(c)vm (f ⊗ f)(x) = f(x) ∗ f(x) = 0 = f0(x).
ddnn(d)vm (f0 ⊗ f)(x) = f0(x) ∗ f(x) = 0 = f0(x).
ddnn(e) If f ⊗ g = f0 and g⊗ f = f0, then (f ⊗ g)(x) = 0 = (g⊗ f)(x) so that
f(x) ∗ g(x) = g(x) ∗ f(x). Thus, f(x) = g(x) for each x ∈ X and so f = g.
Therefore,

〈
FX
Y ,⊗, f0

〉
is a BCK-algebra. Also,

〈
FX
Y ,�

〉
is a semigroup since

((f � g)� h)(x) = (f � g)(x) · h(x)

= (f(x) · g(x)) · h(x)

= f(x) · (g(x) · h(x))

= f(x) · (g � h)(x)

= (f � (g � h))(x).

Therefore,
〈
FX
Y ,⊗,�, f0

〉
is a KS-semigroup. �

The next corollary follows from Theorems 3.5 and 3.14.

Corollary 3.15 Let X be any set. The system
〈
FX
[0,1],⊗,�, f0

〉
is a KS-

semigroup.

Theorem 3.16 If Y is a KS-semigroup with unit element 1 and X is any set,
then FX

Y has unit element f1(x) = 1,∀x ∈ X.
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Proof : By Theorem 3.14, FX
Y is a KS-semigroup. Let g ∈ FX

Y and x ∈ X.
Then (g � f1)(x) = g(x)f1(x) = g(x)1 = g(x) and

(f1 � g)(x) = f1(x)g(x) = 1g(x) = g(x).

Thus, g � f1 = f1 � g = g. Therefore, f1 is the unit element of FX
Y . �

Corollary 3.17 FX
[0,1] has unit element µ1(x) = 1,∀x ∈ X.

Proof : Since in [0, 1] we have x1 = 1x = x, [0, 1] has unit element 1 and so by
Theorem 3.16, the result follows. �

Theorem 3.18 If Y is a strong KS-semigroup, then so is FX
Y .

Proof : Let f, g ∈ FX
Y . Since Y is a strong KS-semigroup, by Definition 2.15,

(f⊗g)(x) = f(x)∗g(x) = f(x)∗f(x)g(x) = f(x)∗(f�g)(x) = (f⊗(f�g))(x).

Therefore, f ⊗ g = f ⊗ (f � g) and so FX
Y is strong. �

Theorem 3.19 If X is any set and N is an ideal of a KS-semigroup Y , then
the set V =

{
f ∈ FX

Y : f(X) ⊆ N
}
is an ideal of FX

Y .

Proof : Let f ∈ V , x ∈ X and g ∈ FX
Y . Then (f � g)(x) = f(x)g(x) ∈ N .

Since N is an ideal of Y , f � g ∈ V . Similarly, (g � f)(x) = g(x)f(x) ∈ N
implies that g � f ∈ V . Next, let f ⊗ g ∈ V, g ∈ V and x ∈ X. Then
(f ⊗ g)(x) = f(x) ∗ g(x) ∈ N and g(x) ∈ N . This means that f(x) ∈ N for N
is an ideal. Thus, f ∈ V . Therefore, V is an ideal of FX

Y . �

Corollary 3.20 The only ideals of FX
[0,1] are {f0} and FX

[0,1].

Proof : By Theorem 3.11, the only ideals of [0, 1] are {0} and [0, 1]. Thus, by

Theorem 3.19, the ideals of FX
[0,1] are V1 =

{
f ∈ FX

[0,1] : f(X) ⊆ {0} ,
}

= {f0},

and V2 =
{
g ∈ FX

[0,1] : g(X) ⊆ [0, 1]
}

= FX
[0,1]. �
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