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Abstract

It has been empirically observed that the average shape of natural
fragmentation results – such as natural rock fragments – is a distorted
cube (known as cuboid). Recently, a complex explanation was provides
for this empirical fact. In this paper, we propose a simple geometry-
based physical explanation for the ubiquity of cuboid fragments.
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1 Formulation of the Problem

Empirical fact. The average shape of natural rock fragments – and other
natural fragmentation results – is cuboid, a distorted cube; see, e.g., [4] and
references therein. How can we explain this empirical fact?

A recent explanation. Recently, in [4], this empirical fact was explained:
complex theoretical analysis of the dynamics of fragmentation, together with
computer simulations of the corresponding random fragmentation process, in-
deed show that the majority of fragments have a cuboid form.
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It is always desirable to have a simple explanation based on first
principles. In physics, even when a phenomenon is obtained as a result of
complex mathematical analysis and/or complex computer simulations, it is
usually possible to have a simple physical explanation of this phenomenon –
at least on the qualitative level – an explanation that should be ideally based
on first principles; see, e.g., [5, 15].

It is therefore desirable to come up with a simple first-principle explanation
for the cuboid phenomenon.

What we do in this paper. In this paper, we provide a geometric explana-
tion for the ubiquity of cuboid fragments.

2 Our Explanation

Importance of symmetries. In this explanation, we will utilize the ideas of
symmetry – one of the main ideas of modern physics; see, e.g., [5, 15].

The importance of symmetries is easy to explain. How do we know that
any physical law is valid? For example, how do we know that when we drop
an object, it will start falling with the acceleration of 9.81 m/sec2? Well, we
observed it at one location. Then we change orientation, repeat the experi-
ment, and the result is the same. We shift ourselves to a different location –
and we again observe the same phenomenon. After several such experiments,
we conclude that this phenomenon is invariant (= does not change) under all
possible rotations and shifts. Since every two location on the Earth surface
can be obtained from each other by an appropriate shift, we conclude that this
phenomenon is indeed universal.

This was a simple example, but this is a general idea of why we conclude
that certain laws of physics are universal. The corresponding transformations
can be more complex – they may involve re-scaling, changing the sign of all the
electric charges, replacing each particle with its anti-particle, etc., but the main
idea of symmetry remains the same. Symmetry is so ubiquitous that usually,
new physical theories are formulated not in terms of differential equations – as
it was in Newton’s times – but in terms of corresponding symmetries. More-
over, theories that were originally formulated in terms of differential equations
– such as Maxwell’s equations of electrodynamics or Einstein’s equations of
gravity – can be reformulated in terms of symmetries; see, e.g., [8, 9, 12, 13].

In view of the importance of symmetries, we will use symmetries in our
analysis.

What are the symmetries of the original pre-fragmentation state?
In the first approximation, the yet-unfragmented rock is homogenous and
isotropic, it has the same properties at each location and in each direction.
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In other words, the original state of the rock is, in this approximation, invari-
ant with respect to arbitrary shifts and rotations in 3-D space.

Fragmentation breaks some of these symmetries. Once cracks appear,
some of the symmetries are violated. Indeed, the mechanical properties are
different at the crack’s location and at locations where the rock has not yet
cracked. Thus, we no longer have invariance with respect to all possible shifts:
namely, we do not have invariance with respect to shifts that move a location
on a crack to a location where the rock is not cracked.

What are the symmetries of the transformed state? Such symmetry
violations are ubiquitous in nature. According to statistical physics (see, e.g.,
[5, 15]), the most frequent transformations from a symmetric state are to a
state in which the largest number of symmetries are preserved. For example,
from a highly symmetric solid state, usually, a substance moves into a liquid
state in which some symmetries are preserved and only then to a gas state.
There exist direct transitions from solid to gas – dry ice is a good example –
but they are rare.

This general fact is not just a summary of simple easily observed phe-
nomenon: this general fact can explain, e.g., all geometrical forms that we ob-
serve in celestial bodies, how these forms evolve and which are more frequent
ones, from the usual spiral shape of galaxies to the (approximate) geometric
progression formed by distances from planets to the Sun; see, e.g., [6, 7, 14].

Let us therefore apply this general principle to fragmentation. According
to this principle, fragments should have the most symmetric shapes.

Which shapes are the most symmetric? Every shape can be approxi-
mated, with any desired accuracy, by a polyhedron – just like every curve can
be approximated by a piece-wise linear ones. Thus, without losing generality,
we can assume that fragments have polyhedral shapes.

Which polyhedra are the most symmetric? This is a well-studied geomet-
rical question. Polyhedra have vertices, these vertices are connected by edges,
and edges form planar faces. In the original non-fragmented state, every two
locations could be transformed into one another by an appropriate shift, every
two lines could be transformed into one another by an appropriate combina-
tion of shift and rotation, and every two planes could also be transformed into
one another by an appropriate combination of shift and rotation.

In a fragmented states, we can not longer transform each spatial location
into another one while preserving the physical properties: In each shift or ro-
tation of a polyhedron, vertices are transformed into vertices, edges into edges,
and faces into faces. But at least we can require that every two edges of the
polyhedron can be transformed into each other by an appropriate combination
of rotation and shift, and likewise every two edges can be transformed into
each other, and every two faces can be transformed into each other. Such
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polyhedra are known as regular; see, e.g., [1, 2, 3].
All regular polyhedra are known – they include five convex ones (known

as Platonic solids): tetrahedron, cube, octahedron, dodecahedron, and icosa-
hedron, as well as four non-convex one. Which of these none forms should we
observe?

Let us take into account that we are talking about fragmentation. In
this paper, we are not interested in abstract geometric forms, we are interested
in shapes obtained by fragmentation. Thus, we are interested in shapes that,
when placed back together, would fill the original 3D space. Polyhedra that
have this property are known as space-filling polyhedra; see, e.g., [11].

This explains the cuboids. Interestingly, the only space-filling regular poly-
hedron is the cube; see, e.g., [1, 10] and references therein.

This explains the ubiqity of cuboids among rock fragments.
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