International Mathematical Forum, Vol. 15, 2020, no. 6, 265 - 275 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2020.91281

Mannheim B-Curves in Weyl Space

Nil Kofoglu

Beykent University
Faculty of Science and Letters
Department of Mathematics
Ayazaga-Maslak, Istanbul, Turkey

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

We have defined Mannheim B-curves and Mannheim B-pair in three dimensional Weyl space W_3 . Under the condition that the pair (C, C^*) is a Mannheim B-pair in W_3 , we have given some theorems such as the relation between Bishop vector fields of C and C^* ; the relation between Bishop curvatures of C and C^* ; the relation between Frenet curvatures of C and C^* .

Mathematics Subject Classification: 53B25, 53A25

Keywords: Weyl space, Bishop frame, Mannheim B-curves, Mannheim B-pair

1 Introduction

Mannheim curves have been presented by Mannheim in 1878 and by Blum [3] in 1966. After that, Mannheim partner curves have been studied in Euclidean 3-space by Liu and Wang [8] in 2008 and by Orbay and Kasap [12] in 2009. Besides, Mannheim partner curves in dual space have been examined by Özkaldı et al. [15] in 2009. Generalized Mannheim curves have been given in Minkowski space-time E_1^4 by Akyiğit et al. [1] in 2011 and in Euclidean 4-space by Matsuda and Yorozu [10] in 2009. Later, Mannheim offsets of ruled surfaces have been defined by Orbay et al. [13] in 2009 and dual Mannheim partner curves have been expressed bu Güngör and Tosun [4] in 2010. Furthermore, the quaternionic Mannheim curves in Euclidean 4-space, weakened Mannheim curves and

quaternionic Mannheim curves of Aw(k)-type in Euclidean 3-space have been characterized by Okuyucu [11] in 2013, by Karacan [5] in 2011 and by Kızıltuğ and Yaylı [6] in 2015, respectively.

Recently, Mannheim curves have been defined according to different frame such as Mannheim partner D-curves (Önder and Kızıltuğ, 2012) [14] and Mannheim B-curves (Masal and Azak, 2017) [9].

2 Preliminaries

Let C be a curve in three dimensional Weyl space W_3 . Let $\{v_1^i, v_2^i, v_3^i, \kappa_1, \kappa_2\}$ $\{v_1^i, v_1^i, v_2^i, v_1^i, k_1, k_2\}$ be the Frenet and Bishop apparatus [2] of C, respectively. Then, Frenet and Bishop formulas of C are expressed in the following form:

$$v_{1}^{k} \dot{\nabla}_{k} v_{1}^{i} = \kappa_{1} v_{1}^{i}
 v_{1}^{k} \dot{\nabla}_{k} v_{2}^{i} = -\kappa_{1} v_{1}^{i} + \kappa_{2} v_{3}^{i}
 v_{1}^{k} \dot{\nabla}_{k} v_{3}^{i} = -\kappa_{2} v_{2}^{i}$$
(1)

and

$$v_1^k \dot{\nabla}_{k_1} v^i = k_1 n_1^i + k_2 n_2^i
 v_1^k \dot{\nabla}_{k_1} n^i = -k_1 v^i
 v_1^k \dot{\nabla}_{k_2} n^i = -k_2 v^i.$$
(2)

Besides, the relation between Frenet and Bishop vector fields [7] and the curvatures of Frenet and Bishop [7] can be written as follows:

$$\begin{pmatrix} v^i \\ v^i \\ v^i \\ v^i \\ v^i \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v^i \\ 1 \\ n^i \\ 1 \\ n^i \\ 2 \end{pmatrix}$$
(3)

3 Mannheim B-Curves in Weyl Space

Let C and C^* be curves in three dimensional Weyl space W_3 . Let us denote arc-length of C and C^* by s and s^* , respectively. Then, we can express the

curves C and C^{\star} in the form $C: x^i = x^i(s)$ and $C^{\star}: \overset{\star}{x}^i = \overset{\star}{x}^i(s^{\star})(i=1,2,3)$, respectively. Let us denote Bishop apparatus of C and C^{\star} by $\{\overset{\star}{v}^i, \overset{\star}{n}^i, \overset$

Definition 3.1. If the Bishop vector field n^i coincides with the Bishop vector field n^i at the corresponding points of curves C and C^* , then the curve C is called a Mannheim partner B-curve of C^* and (C, C^*) is also called Mannheim B-pair.

This can be formalized as

$$C(s) = C^{\star}(s^{\star}) + \lambda(s^{\star}) \underset{2}{\overset{\star}{n}}(s^{\star}) \tag{4}$$

or

$$x^{i}(s) = \overset{\star}{x}^{i}(s^{\star}) + \lambda(s^{\star})\overset{\star}{n}^{i}(s^{\star}) \tag{5}$$

where λ is a function of s^* , see Figure 1.

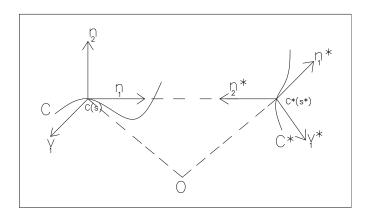


Figure 1: Mannheim B-Curves

Let us obtain the relation between the Bishop vector fields of C and C^* such that the pair (C, C^*) is a Mannheim B-pair:

Since v_1^i is orthogonal to n_1^i and $n_1^i = n_2^{\star i}$, n_1^i is orthogonal to n_2^i . Therefore, n_1^i can be written as

$$v^i = \gamma_1 \overset{\star}{v}^i + \gamma_2 \overset{\star}{n}^i \tag{6}$$

or

$$v_1^i = \cos \alpha v_1^{\star i} + \sin \alpha v_1^{\star i} \tag{7}$$

where $\alpha = \langle (v_1^i, v_1^{\star i}), \gamma_1 = g_{ij} v_1^i v_1^{\star j} = \cos \alpha \text{ and } \gamma_2 = g_{ij} v_1^i v_1^{\star j} = \cos(\frac{\pi}{2} - \alpha) = \sin \alpha.$

Since n_2^i is orthogonal to n_1^i and $n_1^i = n_2^{\star i}$, n_2^i is orthogonal to $n_2^{\star i}$. Then, n_2^i can be written as

$$n_{2}^{i} = \eta_{1} \overset{\star}{v}^{i} + \eta_{2} \overset{\star}{n}^{i} \tag{8}$$

or

$$n_{2}^{i} = -\sin\alpha v_{1}^{\star i} + \cos\alpha n_{1}^{\star i} \tag{9}$$

where $\eta_1 = g_{ij} \eta_2^{i \overset{\star}{v}^j} = \cos(\frac{\pi}{2} + \alpha) = -\sin \alpha$ and $\eta_2 = g_{ij} \eta_2^{i \overset{\star}{\eta}^j} = \cos \alpha$.

By means of (7) and (9), we can express this relation among Bishop vector fields in the following matrix form:

$$\begin{pmatrix} v^{i} \\ n^{i} \\ n^{i} \\ n^{i} \\ 2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ 0 & 0 & 1 \\ -\sin \alpha & \cos \alpha & 0 \end{pmatrix} \begin{pmatrix} \star^{i} \\ v \\ 1 \\ \star^{i} \\ n^{i} \\ 1 \\ \star^{i} \\ n \\ 2 \end{pmatrix}. \tag{10}$$

Theorem 3.2. If the pair (C, C^*) is a Mannheim B-pair then λ is a non-zero constant.

Proof. Let (C, C^*) be a Mannheim B-pair. Then (5) is satisfied.

If we take the prolonged covariant derivative of (5) in the direction of $\overset{\star}{v}^{k}$, we get

$$\dot{v}_{1}^{k} \dot{\nabla}_{k} x^{i} = \dot{v}_{1}^{k} \dot{\nabla}_{k} \dot{x}^{i} + (\dot{v}_{1}^{k} \dot{\nabla}_{k} \lambda) \dot{n}_{2}^{i} + \lambda \dot{v}_{1}^{k} \dot{\nabla}_{k} \dot{n}_{2}^{i}$$

$$= (1 - \lambda \dot{k}_{2}) \dot{v}_{1}^{i} + (\dot{v}_{1}^{k} \dot{\nabla}_{k} \lambda) \dot{n}_{2}^{i}.$$
(11)

Let us denote left hand side of (11) by

$$\overset{\star}{v}^k \dot{\overset{\star}{\nabla}}_k x^i = (v_1^k \dot{\nabla}_k x^i).A. \tag{12}$$

By using (12) in (11), we have

$$v_{1}^{i}.A = (1 - \lambda k_{2}) v_{1}^{*i} + (v_{1}^{*k} \nabla_{k}^{*} \lambda) v_{2}^{*i}.$$
(13)

Multiplying (13) by $g_{ij}v_1^j$ and summing on i and j, we obtain

$$A = (1 - \lambda k_2) \cos \alpha \tag{14}$$

where $g_{ij} \overset{\star}{n}_{2}^{i} v_{1}^{j} = g_{ij} \overset{*}{n}_{1}^{i} v_{1}^{j} = 0.$

From (13) and (14), we have

$$v_{1}^{i}(1-\lambda k_{2}^{*})\cos \alpha = (1-\lambda k_{2}^{*})v_{1}^{*i} + (v_{1}^{*} \nabla_{k}^{*} \lambda)v_{2}^{*i}.$$
 (15)

Multiplying (15) by $g_{ij} \stackrel{\star^j}{n}$ and summing on i and j, we obtain

$$\stackrel{\star}{v}^{k} \stackrel{\star}{\nabla}_{k} \lambda = 0 \tag{16}$$

where $g_{ij}v_1^i n_2^j = g_{ij}v_1^i n_1^j = 0$, $g_{ij}v_1^i n_2^j = 0$ and $g_{ij}n_2^i n_2^i = 1$.

Thus, λ is a non-zero constant.

Theorem 3.3. If (C, C^*) is a Mannheim B-pair in W_3 , then there are the following relations between Bishop vector fields of C and C^* :

$$v_1^i = \varepsilon_1^{\star^i}, \quad n_1^i = \varepsilon_2^{\star^i}, \quad n_2^i = \varepsilon_1^{\star^i}$$

where $\varepsilon = \pm 1$ for $\alpha = 0$ and $\alpha = \pi$.

Proof. Let (C, C^*) be a Mannheim B-pair in W_3 . Then λ is a non-zero constant. So, we get from (13)

$$v_1^i A = (1 - \lambda k_2) v_1^{*i}. \tag{17}$$

Multiplying (17) by $g_{ij} \overset{\star^i}{v_1^i}$ and summing on i and j, we have

$$A\cos\alpha = 1 - \lambda k_2^{\star} \tag{18}$$

where $g_{ij}v_1^i v_1^{\star j} = \cos \alpha$ and $g_{ij}v_1^{\star i}v_1^j = 1$.

Using (14) in (18), we get $\cos^2 \alpha = 1$. That is, $\cos \alpha = 1$ for $\alpha = 0$ and $\cos \alpha = -1$ for $\alpha = \pi$. So, $\sin \alpha = 0$ is obtained.

If obtained results are used in equation (10), we have

$$v_1^i = \varepsilon_1^{\star^i}, \quad n_1^i = \varepsilon_2^{\star^i}, \quad n_2^i = \varepsilon_1^{\star^i}$$

where $\cos \alpha = \varepsilon = \pm 1$ for $\alpha = 0$ and $\alpha = \pi$.

Theorem 3.4. Let (C, C^*) be a Mannheim B-pair in W_3 . Let us denote their Frenet apparatus by $\{v_1^i, v_2^i, v_3^i, \kappa_1, \kappa_2\}$ and $\{v_1^i, v_2^i, v_3^i, v_1^i, v_2^i, v_3^i, v_1^i, v_2^i, v_3^i, v_1^i, v_2^i\}$ in W_3 , respectively. The relations between Frenet vector fields of C and C^* are given by

$$\begin{aligned} & \overset{\star^{i}}{\overset{i}{v}} = \varepsilon v_{1}^{i} \\ & \overset{\star^{i}}{\overset{v}{v}} = \sin(\theta^{\star} - \varepsilon \theta) v_{2}^{i} - \varepsilon \cos(\theta^{\star} - \varepsilon \theta) v_{3}^{i} \\ & \overset{\star^{i}}{\overset{v}{v}} = \cos(\theta^{\star} - \varepsilon \theta) v_{2}^{i} - \varepsilon \sin(\theta^{\star} - \varepsilon \theta) v_{3}^{i} \end{aligned}$$

where $\varepsilon = \pm 1$ for $\alpha = 0$ and $\alpha = \pi$.

Proof. Let (C, C^*) be a Mannheim B-pair in W_3 . Let us express (3) for Frenet and Bishop apparatus of C^* :

$$\begin{pmatrix} \star^{i} \\ v \\ 1 \\ \star^{i} \\ v \\ 2 \\ \star^{i} \\ v \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta^{\star} & \sin \theta^{\star} \\ 0 & -\sin \theta^{\star} & \cos \theta^{\star} \end{pmatrix} \begin{pmatrix} \star^{i} \\ v \\ 1 \\ \star^{i} \\ n \\ 1 \\ \star^{i} \\ n \\ 2 \end{pmatrix}$$
(19)

where $\theta^* = \sphericalangle(\overset{\star}{\overset{i}{v}},\overset{\star}{\overset{i}{n}}).$

Using (3), (4) and Theorem 3.3, we get

$$\begin{pmatrix} \star^i \\ v \\ 1 \\ \star^i \\ v \\ 2 \\ \star^i \\ v \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta^* & \sin \theta^* \\ 0 & -\sin \theta^* & \cos \theta^* \end{pmatrix} \begin{pmatrix} \cos \alpha & 0 & 0 \\ 0 & 0 & -\cos \alpha \\ 0 & 1 & 0 \end{pmatrix}.$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
v^{i} \\
1 \\
v^{i} \\
2 \\
v^{i} \\
3
\end{pmatrix}$$
(20)

or

$$\begin{aligned} & \overset{v}{\overset{i}} = \cos \alpha \overset{v}{\overset{i}} \\ & \overset{v}{\overset{i}} = \{\sin \theta^{\star} \cos \theta - \sin \theta \cos \alpha \cos \theta^{\star}\} \overset{v}{\overset{i}} + \{-\sin \theta^{\star} \sin \theta - \cos \theta \cos \alpha \cos \theta^{\star}\} \overset{v}{\overset{i}} \\ & \overset{v}{\overset{i}} = \{\cos \theta^{\star} \cos \theta + \sin \theta \sin \theta^{\star} \cos \alpha\} \overset{v}{\overset{i}} + \{-\cos \theta^{\star} \sin \theta + \cos \theta \sin \theta^{\star} \cos \alpha\} \overset{v}{\overset{i}} \\ & \overset{i}{\overset{i}} = \{\cos \theta^{\star} \cos \theta + \sin \theta \sin \theta^{\star} \cos \alpha\} \overset{v}{\overset{i}} + \{-\cos \theta^{\star} \sin \theta + \cos \theta \sin \theta^{\star} \cos \alpha\} \overset{v}{\overset{i}} \end{aligned}$$

or

$$\dot{v}_{1}^{i} = \varepsilon v_{1}^{i}
\dot{v}_{2}^{i} = \sin(\theta^{*} - \varepsilon \theta) v_{2}^{i} - \varepsilon \cos(\theta^{*} - \varepsilon \theta) v_{3}^{i}
\dot{v}_{3}^{i} = \cos(\theta^{*} - \varepsilon \theta) v_{2}^{i} + \varepsilon \sin(\theta^{*} - \varepsilon \theta) v_{3}^{i}$$
(22)

where $\varepsilon = \cos \alpha$; $\varepsilon = 1$ for $\alpha = 0$, $\varepsilon = -1$ for $\alpha = \pi$.

Theorem 3.5. Let (C, C^*) be a Mannheim B-pair in W_3 . Then the relation between the second Bishop curvature k_2 of the curve C^* and the first Bishop curvature k_1 of the curve C is as follows:

$$\overset{\star}{k}_2 = \frac{k_1}{1 + \lambda k_1}.$$

Proof. Let (C, C^*) be a Mannheim B-pair in W_3 . Then $v_1^i A = (1 - \lambda k_2) v_1^{*i}$ is satisfied.

Taking prolonged covariant derivative of this equality in the direction of $\mathring{\boldsymbol{v}}^k$, we have

$$(v_1^k \dot{\nabla}_k v_1^i) A^2 + v_1^i (v_1^{\star k} \dot{\nabla}_k^{\star} A) =$$

$$-\lambda (v_1^{\star k} \dot{\nabla}_k^{\star k} v_2) v_1^{\star i} + (1 - \lambda k_2) (v_1^{\star k} \dot{\nabla}_k^{\star i} v_2^{\star i})$$

$$(23)$$

or

$$(k_1 n_1^i + k_2 n_2^i) A^2 + v_1^i (v_1^{\star k} \overset{\star}{\nabla}_k A) =$$

$$-\lambda (v_1^{\star k} \overset{\star}{\nabla}_k \overset{\star}{k}_2) v_1^{\star i} + (1 - \lambda k_2) k_1 n_1^{\star i} + (1 - \lambda k_2) k_2 n_2^{\star i}.$$
(24)

Multiplying (24) by $g_{ij}n_1^j$ and summing on i and j, we get

$$k_1 A^2 = (1 - \lambda k_2) k_2^* \tag{25}$$

where $g_{ij} n_1^i n_2^j = 1$, $g_{ij} v_1^i n_2^j = 0$, $g_{ij} v_1^{\star i} n_2^j = g_{ij} v_1^{\star i} n_2^j = 0$, $g_{ij} n_1^{\star i} n_2^j = g_{ij} n_1^{\star i} n_2^j = 0$, and $g_{ij} n_1^{\star i} n_2^j = g_{ij} n_1^{\star i} n_2^j = 1$.

Using (18) in (24), we get

$$k_1 = \frac{\overset{\star}{k_2}}{1 - \lambda \overset{\star}{k_2}} \quad \text{or} \quad \overset{\star}{k_2} = \frac{k_1}{1 + \lambda k_1}.$$
 (26)

The proof is completed.

Remark 3.6. Using [7] in (26), k_2 can also be expressed in the following form:

$$\dot{k}_{2} = \frac{\overset{2}{\overset{2}{\underset{1}{\text{cos}}} \theta - \overset{3}{\underset{1}{\text{cos}}} \sin \theta}}{1 + \lambda (\overset{2}{\underset{1}{\text{cos}}} \theta - \overset{3}{\underset{1}{\text{cos}}} \sin \theta)}.$$
(27)

Theorem 3.7. Let (C, C^*) be a Mannheim B-pair in W_3 . Then the following equalities are satisfied:

$$k_1 A = \cos \alpha k_2^{\star}$$

$$k_1 + k_2 A = 0.$$

Proof. Let (C, C^*) be a Mannheim B-pair. Then $v_1^i = \cos \alpha v_1^{*i}$ is obtained from (10) and Theorem 3.3.

Taking prolonged covariant derivative of this equality in the direction of $\stackrel{\star}{v}^k$, we get

$$(v_1^k \dot{\nabla}_k v^i) A = \cos \alpha v_1^{\star k} \dot{\nabla}_k v_1^{\star i}$$
(28)

or

$$(k_1 n_1^i + k_2 n_2^i) A = \cos \alpha (k_1 n_1^{\star} + k_2 n_2^{\star}).$$
 (29)

Multiplying (29) by $g_{ij} \overset{\star^j}{n_1}$ and summing on i and j, we have

$$-k_2 A = \overset{\star}{k_1} \tag{30}$$

or

$$\dot{k}_1 + k_2 A = 0 (31)$$

where

$$\overset{\star}{n}^{i} = \varepsilon_{jik} \overset{\star}{n}^{i} \overset{\star}{v}^{k} = \varepsilon_{jik} \overset{\dagger}{n}^{j} \cos \alpha \overset{\dagger}{v}^{k} = -\cos \alpha \varepsilon_{jki} \overset{\dagger}{v}^{k} \overset{\dagger}{n}^{i} = -\cos \alpha \overset{\dagger}{n}^{j}.$$

Multiplying (29) by $g_{ij} n_j^{\star j}$ and summing on i and j, we have

$$k_1 A = \cos \alpha k_2 \tag{32}$$

where
$$g_{ij} n_1^i n_2^{ij} = g_{ij} n_1^i n_1^j = 1$$
, $g_{ij} n_2^i n_2^{ij} = g_{ij} n_2^i n_1^j = 0$, $g_{ij} n_1^i n_2^{ij} = 0$ and $g_{ij} n_2^i n_2^{ij} = 0$

Remark 3.8. Using [7], (27) and (30), k_1 can also be expressed in the following form:

$$\dot{k}_1 = -\frac{\overset{2}{\underset{1}{\text{N}}} \sin \theta + \overset{3}{\underset{1}{\text{N}}} \cos \theta}{1 + \lambda (\overset{2}{\underset{1}{\text{N}}} \cos \theta - \overset{2}{\underset{1}{\text{N}}}) \sin \theta} \cos \alpha.$$
(33)

Theorem 3.9. Let (C, C^*) be a Mannheim B-pair in W_3 . Then there is a relation between the first Frenet curvatures of C and C^* in the following form:

$$\overset{\star}{\kappa}_1 = \kappa_1 |A|.$$

Proof. Let (C, C^*) be a Mannheim B-pair in W_3 . Using (30) and (32), we get

$$\dot{k}_{1}^{2} + \dot{k}_{2}^{2} = (k_{1}^{2} + k_{2}^{2})A^{2}$$

$$\dot{\kappa}_{1}^{2} = \kappa_{1}^{2}A^{2}$$

$$\dot{\kappa}_{1} = \kappa_{1}|A|.$$
(34)

Remark 3.10. *Using* [7] *and* (34), *we obtain*

Theorem 3.11. Let (C, C^*) be a Mannheim B-pair in W_3 . Then

$$\overset{\star^i}{\overset{\circ}{c}} = \overset{\circ}{\overset{\circ}{c}} (1 - \lambda \overset{\star}{\overset{\circ}{k}}_2)$$

Proof. Let (C, C^*) be a Mannheim B-pair in W_3 .

Taking prolonged covariant derivative of the first equation in (22) in the direction of $\overset{\star}{v}^{k}$, we have

$$\overset{\star}{v}^{k} \overset{\star}{\nabla}_{k} \overset{\star}{v}^{i} = \varepsilon \overset{\star}{v}^{k} \overset{\star}{\nabla}_{k} \overset{\star}{v}^{i} = \varepsilon (v^{k} \overset{\star}{\nabla}_{k} v^{i}) A$$
(36)

$$\overset{p}{\overset{\star}{T}_{h}}\overset{\star}{\overset{\star}{v}}\overset{k}{\overset{v}{v}}\overset{i}{\overset{p}{v}} = \varepsilon\overset{p}{\overset{p}{\overset{\star}{T}_{h}}}\overset{v}{\overset{k}{\overset{v}{v}}}\overset{i}{\overset{p}{\overset{p}{v}}}A \quad (p=1,2,3)$$
(37)

$$\overset{\star}{\overset{i}{c}}_{1} = \varepsilon \overset{i}{\overset{c}{c}}_{1} A. \tag{39}$$

Using (14) in (39), we get

$$\overset{\star}{\overset{i}{c}}_{1} = \overset{c}{\underset{1}{c}} (1 - \lambda \overset{\star}{k}_{2}). \tag{40}$$

By means of (27) and Theorem 3.11, we can give the following theorem:

Theorem 3.12. Let (C, C^*) be a Mannheim B-pair in W_3 . The net $(\overset{\star}{v}, \overset{\star}{v}, \overset{\star}{v})$ is a geodesic net in W_3 if and only if the net $(\overset{\star}{v}, \overset{\star}{v}, \overset{\star}{v})$ is a geodesic net in W_3 .

References

- [1] M. Akyiğit, S. Ersoy, I. Özgür and M. Tosun, Generilazed timelike Mannheim curves in Minskowski space-time E₁⁴, Mathematical Problems in Engineering, article ID 539378, 19 pages. https://doi.org/10.1155/2011/539378.
- R.L. Bishop, There is more than one way to frame a curve, American Mathematical Monthly, 82 (3) (1975), 246-251.
 https://doi.org/10.2307/2319846
- [3] R. Blum, A remarkable class of Mannheim curves, Canadian Mathematical Bulletin, 9 (1966), 223-228. https://doi.org/10.4153/cmb-1966-030-9
- [4] M.A. Güngör and M. Tosun, A study on dual Mannheim partner curves, *International Mathematical Forum*, **5** (47) (2010), 2319-2330.
- [5] M.K. Karacan, Weakened Mannheim curves, *International Journal of the Physical Sciences*, **6** (20) (2011), 4700-4705.
- [6] S. Kızıltuğ and Y. Yaylı, On the quaternionic Mannheim curves of Aw(k)-type in Euclidean space E^3 , Kuwait Journal of Science, **42** (2) (2015), 128-140.
- [7] N. Kofoglu, Slant helices according to type-1 Bishop frame in Weyl space, International Mathematical Forum, 15 (4) (2020), 163-171. https://doi.org/10.12988/imf.2020.91262
- [8] H. Liu and F Wang, Mannheim partner curves in 3-space, Journal of Geometry, 88 (2008), 120-126. https://doi.org/10.1007/s00022-007-1949-0
- [9] M. Masal and A.Z. Azak, Mannheim B-curves in the Euclidean 3-space E^3 , Kuwait Journal of Science, 44 (1) (2017), 36-41.
- [10] H. Matsuda and S. Yorozu, On generalized Mannheim curves in Euclidean 4-space, *Nihonkai Mathematical Journal*, **20** (2009), 33-56.
- [11] O.Z. Okuyucu, Characterizations of the quaternionic Mannheim curves in Euclidean space E^4 , International journal of Mathematical Combinatorics, 2 (2013), 44-53.

- [12] K. Orbay and E. Kasap, On Mannheim partner curves in E^3 , International Journal of the Physical Sciences, 4 (5) (2009), 261-264.
- [13] K. Orbay, E. Kasap and I. Aydemir, Mannheim offsets of ruled surfaces, Mathematical Problems in Engineering, article ID 160917, 9 pages. https://doi.org/10.1155/2009/160917.
- [14] M. Onder and S. Kızıltuğ, Bertrand and Mannheim partner D-curves on parallel surfaces in Minkowskii 3-space, *International Journal of Geometry*, **1** (2) (2012), 34-45.
- [15] S. Özkaldı, K. Ilarslan and Y. Yaylı, On Mannheim partner curve in dual space, *Ananele Stiintifice Ale Universitatii Ovidius Constanta*, **17** (2) (2009), 131-142.
- [16] B. Tsareva and G. Zlatanov, On the geometry of the nets in the n-dimesional space of Weyl, Journal of Geometry, 38 (1990), 182-197. https://doi.org/10.1007/bf01222903

Received: July 25, 2020; Published: August 12, 2020