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Abstract

We have defined Mannheim B-curves and Mannheim B-pair in three
dimensional Weyl space W3. Under the condition that the pair (C, C?)
is a Mannheim B-pair in W3, we have given some theorems such as the
relation between Bishop vector fields of C and C?; the relation between
Frenet vector fields of C and C?; the relation between Bishop curvatures
of C and C?; the relation between Frenet curvatures of C and C?.
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1 Introduction
Mannheim curves have been presented by Mannheim in 1878 and by Blum [3]
in 1966. After that, Mannheim partner curves have been studied in Euclidean
3-space by Liu and Wang [8] in 2008 and by Orbay and Kasap [12] in 2009. Be-
sides, Mannheim partner curves in dual space have been examined by Özkaldı
et al. [15] in 2009. Generalized Mannheim curves have been given in Minkowski
space-time E4

1 by Akyiḡit et al. [1] in 2011 and in Euclidean 4-space by Matsuda
and Yorozu [10] in 2009. Later, Mannheim offsets of ruled surfaces have been
defined by Orbay et al. [13] in 2009 and dual Mannheim partner curves have
been expressed bu Güngör and Tosun [4] in 2010. Furthermore, the quater-
nionic Mannheim curves in Euclidean 4-space, weakened Mannheim curves and
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quaternionic Mannheim curves of Aw(k)-type in Euclidean 3-space have been
characterized by Okuyucu [11] in 2013, by Karacan [5] in 2011 and by Kızıltuḡ
and Yaylı [6] in 2015, respectively.

Recently, Mannheim curves have been defined according to different frame
such as Mannheim partner D-curves (Önder and Kızıltuḡ, 2012) [14] and
Mannheim B-curves (Masal and Azak, 2017) [9].

2 Preliminaries
Let C be a curve in three dimensional Weyl space W3. Let {v

1
i, v

2
i, v

3
i, κ1, κ2}

{v
1
i, n

1
i, n

2
i, k1, k2} be the Frenet and Bishop apparatus [2] of C, respectively.

Then, Frenet and Bishop formulas of C are expressed in the following form:

v
1
k∇̇kv1

i = κ1v2
i

v
1
k∇̇kv2

i = −κ1v1
i + κ2v3

i

v
1
k∇̇kv3
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i

(1)
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v
1
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i

v
1
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v
1
k∇̇kn2

i = −k2v1
i.

(2)

Besides, the relation between Frenet and Bishop vector fields [7] and the
curvatures of Frenet and Bishop [7] can be written as follows:

v
1
i

v
2
i

v
3
i

 =
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2
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1
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τ
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1
k∇̇kθ, k1 = κ1 cos θ, k2 = κ1 sin θ, k2

1 + k2
2 = κ2

1,
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2
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1
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3
S

1
sin θ, k2 =

2
S

1
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3
S

1
cos θ, where

r

S
s

=
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s
v
s

k and q
τ
rs

=
q

Tk
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v
s

k(r 6=
s; r, s, q = 1, 2, 3) are called geodesic curvature and Chebyshev curvature of
the first kind of the net (v

1
, v

2
, v

3
) [16].

3 Mannheim B-Curves in Weyl Space
Let C and C? be curves in three dimensional Weyl space W3. Let us denote
arc-length of C and C? by s and s?, respectively. Then, we can express the
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curves C and C? in the form C : xi = xi(s) and C? : ?
x
i

= ?
x
i
(s?)(i = 1, 2, 3),

respectively. Let us denote Bishop apparatus of C and C? by {v
1
i, n

1
i, n

2
i, k1, k2}

{?v
1

i
,
?
n
1

i
,
?
n
2

i
,
?

k1,
?

k2}, respectively.

Definition 3.1. If the Bishop vector field n
1
i coincides with the Bishop vector

field ?
n
2

i
at the corresponding points of curves C and C?, then the curve C is

called a Mannheim partner B-curve of C? and (C,C?) is also called Mannheim
B-pair.

This can be formalized as

C(s) = C?(s?) + λ(s?) ?n
2
(s?) (4)

or
xi(s) = ?

x
i
(s?) + λ(s?) ?n

2

i
(s?) (5)

where λ is a function of s?, see Figure 1.

Figure 1: Mannheim B-Curves

Let us obtain the relation between the Bishop vector fields of C and C?

such that the pair (C,C?) is a Mannheim B-pair:
Since v

1
i is orthogonal to n

1
i and n

1
i = ?

n
2

i
, v

1
i is orthogonal to ?

n
2

i
. Therefore,

v
1
i can be written as

v
1
i = γ1

?
v
1

i
+ γ2

?
n
1

i
(6)

or
v
1
i = cosα?v

1

i
+ sinα ?

n
1

i
(7)
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where α = ^(v
1
i,
?
v
1

i
), γ1 = gijv1

i ?v
1

j
= cosα and γ2 = gijv1

i ?n
1

j
= cos(π2−α) = sinα.

Since n
2
i is orthogonal to n

1
i and n

1
i = ?

n
2

i
, n

2
i is orthogonal to ?

n
2

i
. Then, n

2
i

can be written as
n
2
i = η1

?
v
1

i
+ η2

?
n
1

i
(8)

or
n
2
i = − sinα?v

1

i
+ cosα ?

n
1

i
(9)

where η1 = gijn2
i ?v
1

j
= cos(π2 + α) = − sinα and η2 = gijn2

i ?n
1

j
= cosα.

By means of (7) and (9), we can express this relation among Bishop vector
fields in the following matrix form:


v
1
i

n
1
i

n
2
i

 =

 cosα sinα 0
0 0 1

− sinα cosα 0




?
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1

i

?
n
1
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?
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 . (10)

Theorem 3.2. If the pair (C,C?) is a Mannheim B-pair then λ is a non-
zero constant.

Proof. Let (C,C?) be a Mannheim B-pair. Then (5) is satisfied.
If we take the prolonged covariant derivative of (5) in the direction of ?

v
1

k
,

we get
?
v
1

k ?
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i
.

(11)

Let us denote left hand side of (11) by

?
v
1

k ?

∇̇kx
i = (vk

1
∇̇kx

i).A. (12)

By using (12) in (11), we have

v
1
i.A = (1− λ

?

k2)
?
v
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i
+ (?v

1

k ?

∇̇kλ) ?n
2

i
. (13)

Multiplying (13) by gijvj1 and summing on i and j, we obtain

A = (1− λ
?

k2) cosα (14)
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where gij
?
n
2

i
vj
1

= gijn
i

1
vj
1

= 0.
From (13) and (14), we have

vi
1

(1− λ
?

k2) cosα = (1− λ
?

k2)
?
v
1

i
+ (?v

1

k ?

∇̇kλ) ?n
2

i
. (15)

Multiplying (15) by gij
?
n
2

j
and summing on i and j, we obtain

?
v
1

k ?

∇̇kλ = 0 (16)

where gijvi1
?
n
2

j
= gijv

i

1
nj
1

= 0, gij
?
v
1

i ?
n
2

j
= 0 and gij

?
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2

i ?
n
2

j
= 1.

Thus, λ is a non-zero constant.
Theorem 3.3. If (C,C?) is a Mannheim B-pair in W3, then there are the

following relations between Bishop vector fields of C and C?:

vi
1

= ε
?
v
1

i
, ni

1
= ε

?
n
2

i
, ni

2
= ε

?
n
1

i

where ε = ±1 for α = 0 and α = π.

Proof. Let (C,C?) be a Mannheim B-pair inW3. Then λ is a non-zero constant.
So, we get from (13)

vi
1
A = (1− λ

?

k2)
?
v
1

i
. (17)

Multiplying (17) by gij
?
v
1

i
and summing on i and j, we have

A cosα = 1− λ
?

k2 (18)

where gijvi1
?
v
1

j
= cosα and gij

?
v
1

i ?
v
1

j
= 1.

Using (14) in (18), we get cos2 α = 1. That is, cosα = 1 for α = 0 and
cosα = −1 for α = π. So, sinα = 0 is obtained.

If obtained results are used in equation (10), we have

vi
1

= ε
?
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i
, ni
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?
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i
, ni

2
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where cosα = ε = ±1 for α = 0 and α = π.

Theorem 3.4. Let (C,C?) be a Mannheim B-pair inW3. Let us denote their
Frenet apparatus by {v

1
i, v

2
i, v

3
i, κ1, κ2} and {

?
v
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i
,
?
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i
,
?
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3

i
,
?
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?
κ2} in W3, respectively.

The relations between Frenet vector fields of C and C? are given by
?
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2
− ε cos(θ? − εθ)vi

3
?
v
3

i
= cos(θ? − εθ)vi

2
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3

where ε = ±1 for α = 0 and α = π.
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Proof. Let (C,C?) be a Mannheim B-pair in W3. Let us express (3) for Frenet
and Bishop apparatus of C?:
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Using (3), (4) and Theorem 3.3, we get
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2
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(22)

where ε = cosα; ε = 1 for α = 0, ε = −1 for α = π.

Theorem 3.5. Let (C,C?) be a Mannheim B-pair in W3. Then the relation
between the second Bishop curvature

?

k2 of the curve C? and the first Bishop
curvature k1 of the curve C is as follows:

?

k2 = k1

1 + λk1
.
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Proof. Let (C,C?) be a Mannheim B-pair in W3. Then vi1 A = (1 − λ
?

k2)
?
v
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i
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satisfied.
Taking prolonged covariant derivative of this equality in the direction of

?
v
1

k
, we have
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Multiplying (24) by gijnj1 and summing on i and j, we get
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Using (18) in (24), we get
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?
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?
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The proof is completed.

Remark 3.6. Using [7] in (26),
?

k2 can also be expressed in the following
form:

?

k2 =

2
S

1
cos θ −

3
S

1
sin θ

1 + λ(
2
S

1
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3
S

1
sin θ)
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Theorem 3.7. Let (C,C?) be a Mannheim B-pair inW3. Then the following
equalities are satisfied:

k1A = cosα
?

k2
?

k1 + k2A = 0.
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Proof. Let (C,C?) be a Mannheim B-pair. Then v
1
i = cosα?v

1

i
is obtained from

(10) and Theorem 3.3.
Taking prolonged covariant derivative of this equality in the direction of

?
v
1

k
, we get

(v
1
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i)A = cosα?v
1
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∇̇k
?
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i
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?
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i
+

?
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?
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i
). (29)

Multiplying (29) by gij
?
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j
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?
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?
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j cosαv
1
k = − cosαεjkiv1

kn
1
i = − cosαn

2
j.

Multiplying (29) by gij
?
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j
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?
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i

1
n
1
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1
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?
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1
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Remark 3.8. Using [7], (27) and (30),
?

k1 can also be expressed in the
following form:

?

k1 = −

2
S

1
sin θ +

3
S

1
cos θ

1 + λ(
2
S

1
cos θ −

3
S

1
) sin θ

cosα. (33)

Theorem 3.9. Let (C,C?) be a Mannheim B-pair in W3. Then there is a
relation between the first Frenet curvatures of C and C? in the following form:

?
κ1 = κ1|A|.
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Proof. Let (C,C?) be a Mannheim B-pair in W3. Using (30) and (32), we get
?

k
2

1 +
?

k
2

2 = (k1
2 + k2

2)A2

?
κ

2
1 = κ2

1A
2

?
κ1 = κ1|A|.

(34)

Remark 3.10. Using [7] and (34), we obtain

2
?

S
1

=
2
S

1
|A| (35)

where ?
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2
?

S
1

=
2
?

Tk
1

?
v
1

k
and κ1 =

2
S

1
=

2
Tk
1
v
1
k.

Theorem 3.11. Let (C,C?) be a Mannheim B-pair in W3. Then

?
c
1

i
= c

1
i(1− λ

?

k2)

is satisfied where ?
c
1

i
are the geodesic vector fields of the net (?v

1
,
?
v
2
,
?
v
3
) occurred by

the vector fields of C? and c
1
i are the geodesic vector fields of the net (v

1
, v

2
, v

3
)

occurred by the vector fields of C in W3 [16].

Proof. Let (C,C?) be a Mannheim B-pair in W3.
Taking prolonged covariant derivative of the first equation in (22) in the

direction of ?
v
1

k
, we have

?
v
1

k ?

∇̇k
?
v
1

i
= ε

?
v
1

k ?
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1
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i)A (36)
p
?
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1

?
v
1
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v
p

i
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p
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1
v
1
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p

iA (p = 1, 2, 3) (37)
p
?

S
1

?
v
p

i
= ε

p

S
1
v
p

iA (38)
?
c
1

i
= εc

1
iA. (39)

Using (14) in (39), we get

?
c
1

i
= c

1
i(1− λ

?

k2). (40)
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By means of (27) and Theorem 3.11, we can give the following theorem:

Theorem 3.12. Let (C,C?) be a Mannheim B-pair in W3. The net (?v
1
,
?
v
2
,
?
v
3
)

is a geodesic net in W3 if and only if the net (v
1
, v

2
, v

3
) is a geodesic net in W3.
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