International Mathematical Forum, Vol. 15, 2020, no. 4, 163 - 171 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2020.91262

Slant Helices According to Type-1 Bishop Frame in Weyl Space

Nil Kofoglu

Beykent University
Faculty of Science and Letters
Department of Mathematics
Ayazaga-Maslak, Istanbul, Turkey

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

In this paper, we have defined slant helices according to Bishop frame (type-1 Bishop frame) in three dimensional Weyl space W_3 . Besides, we have given necessary and sufficient conditions of a curve to be slant helix in W_3 .

Mathematics Subject Classification: 53B25, 53A25.

Keywords: Weyl space, type-1 Bishop frame, slant helix

1 Introduction

A manifold with a conformal metric g_{ij} and a symmetric connection ∇_k satisfying the compatibility condition

$$\nabla_k g_{ij} - 2T_k g_{ij} = 0 \tag{1}$$

is called a Weyl space which will be denoted by $W_3(g_{ij}, T_k)$. The vector field T_k is named the complementary vector field. Under a renormalization of the metric tensor g_{ij} in the form

$$\overset{v}{g}_{ij} = \lambda^2 g_{ij} \tag{2}$$

the complementary vector field T_k is transformed by the law

$$\overset{v}{\mathbf{T}_k} = \mathbf{T}_k + \partial_k \ln \lambda \tag{3}$$

where λ is a scalar function [11].

If under the transformation (2), the quantity A is called a satellite of g_{ij} with weight $\{p\}$.

The prolonged derivative and prolonged covariant derivative of A are, respectively, defined ([6], [12])

$$\dot{\partial}_k A = \partial_k A - p T_k A \tag{4}$$

and

$$\dot{\nabla}_k A = \nabla_k A - p T_k A. \tag{5}$$

The $v_r^i(i, r = 1, 2, 3)$ be the contravariant components of the vector field v_r in $W_3(g_{ij}, T_k)$. Suppose that the vector fields v_r are normalized by the conditions $g_{ij}v_r^iv_r^j = 1$.

The prolonged covariant derivative of the vector field v is given by [13]

$$\dot{\nabla}_k v_r^i = T_k^s v_s^i \quad (s = 1, 2, 3).$$
 (6)

The quantities

$$\frac{q}{r} = T_k^q v^k \quad (q = 1, 2, 3; \quad r \neq s)$$
(7)

and

$$\overset{r}{\underset{s}{\text{Z}}} = \overset{r}{\underset{s}{\text{T}}} \overset{v}{\underset{s}{\text{V}}} \overset{k}{\underset{s}{\text{V}}} \tag{8}$$

are called the Chebyshev curvature of the first kind and geodesic curvature of the net (v_1, v_2, v_3) [13], respectively.

Since the net (v_1, v_2, v_3) is an orthogonal net, we have [13]

$$T_k^r = 0, \quad T_k^p + T_k^r = 0 \quad (r \neq p).$$
(9)

2 Preliminaries

Izumiya and Takeuchi [7] defined slant helices which are generalizations of the notion of general helices. Kula and Yaylı [9] investigated the spherical indicatrix of slant helices and showed that the tangent and binormal indicatrix of them are spherical helices. Also, Kula et al. [10] gave some characterizations for slant helices in Euclidean 3-space. Bkçï£; and Karacan defined slant helices according to Bishop frame [4]. Ali and Turgut [1] extended the notion of slant helix from Euclidean 3-space to Euclidean n-space. Ali and Turgut [2] researched the position vector of a timelike slant helix in Minkowski 3-space E_1^3 . Recently, Dogan studied the proof of theorem which characterizes a slant helix [5].

3 Slant Helices According to Type-1 Bishop Frame in Weyl Space

Let C be a curve in three dimensional Weyl space W_3 . Let v, v and v be the tangent vector field, principal normal vector field and binormal vector field of C at a point P. Let they constitute Frenet frame: $\{v, v, v\}$. Since this frame is an orthonormal basis, these vector fields are normalized by the conditions $g_{ij}v^i_1v^j=g_{ij}v^i_2v^j=g_{ij}v^i_3v^j=1$ and besides the conditions $g_{ij}v^i_1v^j=g_{ij}v^i_1v^j=g_{ij}v^i_1v^j=0$ are satisfied. These two conditions are also expressed as $g_{ij}v^i_1v^j=g^i_1v^i_1v^j=0$.

We can write Frenet formulas for these vector fields in the following form:

$$v_1^k \dot{\nabla}_k v_1^i = \kappa_1 v_2^i \tag{10}$$

$$v_1^k \dot{\nabla}_k v_2^i = -\kappa_1 v_1^i + \kappa_2 v_3^i \tag{11}$$

$$v_1^k \dot{\nabla}_k v_3^i = -\kappa_2 v_2^i. \tag{12}$$

Multiplying (10) by $g_{ij}_{\gamma}^{j}$ and summing on i and j, we get

$$T_{1k}^{p} v^{k} v^{i} v^{j} g_{ij} = \kappa_1 \tag{13}$$

or

$$T_{1k}^{2}v^{k} = \kappa_{1} \tag{14}$$

or

$$\overset{2}{\overset{2}{\stackrel{}{\sim}}} = \kappa_1 \tag{15}$$

where $T_k^1 = 0$, $g_{ij} v_2^i v_2^j = 1$ and $g_{ij} v_3^i v_2^j = 0$.

Multiplying (12) by $g_{ij}v^{j}$ and summing on i and j, we have

$$T_{3}^{k} v^{k} v^{i} v^{j} g_{ij} = -\kappa_{2}$$
 (16)

or

$$T_{3}^{2}v^{k} = -\kappa_{2} \tag{17}$$

or

$$-\tau_1^2 = \kappa_2 \tag{18}$$

where $g_{ij} v_1^i v_2^j = 0$, $g_{ij} v_2^i v_2^j = 0$ and $T_k^3 = 0$.

The Bishop frame [3] or parallel transport frame is an alternative approach to define a moving frame that is well defined even when the curve has vanishing second derivative. Let us denote the type-1 Bishop frame by $\{v^i, n^i, n^i\}$. The derivative formulas of this frame defined as

$$v_1^k \dot{\nabla}_k v_1^i = k_1 v_1^i + k_2 v_2^i \tag{19}$$

or

$$v_1^k \dot{\nabla}_k \eta_1^i = -k_1 v_1^i \tag{20}$$

or

$$v_1^k \dot{\nabla}_k v_2^i = -k_2 v_1^i \tag{21}$$

where k_1 and k_2 are named as Bishop curvatures or natural curvatures [8]. Multiplying (19) by $g_{ij} \eta^i$ and summing on i and j, we have

$$T_{1}^{p} v^{k} v^{i} n^{j} g_{ij} = -k_{1}$$
(22)

or

$$T_{1k}^{2} v^{k} v^{i} n^{j} g_{ij} + T_{1k}^{3} v^{k} v^{i} n^{j} g_{ij} = k_{1}$$
(23)

or

$$\mathop{\rm cos}_{1}^{2}\cos\theta - \mathop{\rm cos}_{1}^{3}\sin\theta = k_{1} \tag{24}$$

where $\theta = \langle (v_2^i, v_1^i), g_{ij} v_1^i v_1^j = 1, \text{ and } g_{ij} v_1^i v_1^j = 0.$

Multiplying (19) by $g_{ij}n_j^j$ and summing on i and j, we get

$$T_{ik}^{p} v^{k} v^{i} n^{j} g_{ij} = k_{2}$$
 (25)

or

$$T_{1}^{2} v^{k} v^{i} n^{j} g_{ij} + T_{1}^{3} v^{k} v^{i} n^{j} g_{ij} = k_{2}$$
(26)

or

$$\mathop{\rm Z}_{1}^{2} \sin \theta + \mathop{\rm Z}_{1}^{3} \cos \theta = k_{2} \tag{27}$$

where $g_{ij} n_2^i n_2^j = 1$.

(24) and (27) are the quantities in Weyl space that correspond to natural curvatures.

On the other hand, $v_1^k \dot{\nabla}_k v_1^i = \kappa_1 v_2^i$. Multiplying this equality by $g_{ij} n_1^j$ and using (22), we get

$$k_1 = \kappa_1 \cos \theta. \tag{28}$$

Multiplying the same equality by $g_{ij}\eta_j^j$ and using (25), we get

$$k_2 = \kappa_1 \sin \theta. \tag{29}$$

From (28) and (29), we have

$$k_1^2 + k_2^2 = \kappa_1^2. (30)$$

Since v_2^i is orthogonal to v_1^i , v_2^i can be written in the following form:

$$v_2^i = \alpha n_1^i + \beta n_2^i \tag{31}$$

or

$$v_2^i = \cos\theta n_1^i + \sin\theta n_2^i \tag{32}$$

where $\theta = \langle (v^i, n^i) \rangle$.

Using $v_3^k = \varepsilon_{ijk} v_1^i v_2^j$ and (32) and right-hand rule, we get

$$v_3^k = \varepsilon_{ijk} v^i (\cos \theta n^j + \sin \theta n^j) = \cos \theta n^k - \sin \theta n^k.$$
 (33)

From (12), (32) and (33), we have

$$v_1^l \dot{\nabla}_l v_3^k = -(v_1^l \dot{\nabla}_l \theta)(\sin \theta v_2^k + \cos \theta v_1^k)$$
(34)

$$-\kappa_2 y^k = -(y^l \dot{\nabla}_l \theta) y^k \tag{35}$$

$$\kappa_2 = v^l \dot{\nabla}_l \theta. \tag{36}$$

The relation among the vector fields of Frenet frame and type-1 Bishop frame is in the following form:

$$\begin{pmatrix} v^i \\ v^i \\ v^i \\ v^i \\ v^i \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v^i \\ 1 \\ n^i \\ 1 \\ n^i \\ 2 \end{pmatrix}. \tag{37}$$

Definition 3.1. Let C be a curve in W_3 . C is called a slant helix if the vector field n^i has constant angle θ with some fixed vector field u, i.e., $g_{ij}n^iu^j = \cos \varphi$ where u is normalized in the form $g_{ij}u^iu^j = 1$.

Theorem 3.2. Let C be a curve which has non-zero natural curvatures in W_3 . C is a slant helix if and only if $\frac{k_1}{k_2}$ is constant.

Proof. Let C be a slant helix. Then

$$g_{ij}\eta^i u^j = \cos\varphi = \text{constant}$$
 (38)

is satisfied by means of Definition 3.1 where $\varphi = \sphericalangle(n^i, u^j)$.

By taking prolonged covariant derivative of (38) in the direction of v_1^k , we get

$$g_{ij}(v_1^k \dot{\nabla}_k v_1^i) u^j = 0 \tag{39}$$

or

$$g_{ij}v^iu^j = 0 \quad (k_1 \neq 0).$$
 (40)

Again, by taking prolonged covariant derivative of (40) in the direction of v^k , we have

$$g_{ij}(v_1^k \dot{\nabla}_k v_1^i) u^j = 0 \tag{41}$$

or

$$k_1 g_{ij} n^i u^j + k_2 g_{ij} n^i u^j = 0 (42)$$

or

$$k_1 \cos \varphi + k_2 \sin \varphi = 0 \tag{43}$$

or

$$\frac{k_1}{k_2} = -\frac{\sin \varphi}{\cos \varphi} = -\tan \varphi = \text{constant}. \tag{44}$$

Conversely, suppose that $\frac{k_1}{k_2} = -\tan \varphi$.

From (40), we write

$$u^j = \alpha n^j + \beta n^j \tag{45}$$

or

$$u^{j} = \cos \varphi n_{1}^{j} + \sin \varphi n_{2}^{j} \tag{46}$$

where $\varphi = \sphericalangle(n_1^j, u^j)$.

Taking prolonged covariant derivative of (46) in the direction of v_1^k , we get

$$v_1^k \dot{\nabla}_k u^j = -(k_1 \cos \varphi + k_2 \sin \varphi) v_1^j. \tag{47}$$

Since $\frac{k_1}{k_2} = -\tan \varphi$, we obtain $k_1 \cos \varphi + k_2 \sin \varphi = 0$.

That is, $v_1^k \dot{\nabla}_k u^j = 0$ is valid. u is a constant vector field.

The proof is completed.

Remark 3.3. The equation (12) is equivalent to

$${\mathop{Q}\limits_{1}^{2}}\cos(\theta-\varphi) - {\mathop{Q}\limits_{1}^{3}}\sin(\theta-\varphi) = 0$$

by means of (24) and (27).

Theorem 3.4. C is a slant helix if and only if

$$\det(\boldsymbol{v}_{\boldsymbol{l}}^{k}\dot{\nabla}_{k}\boldsymbol{\eta}^{i},\boldsymbol{v}_{\boldsymbol{l}}^{l}\dot{\nabla}_{l}(\boldsymbol{v}_{\boldsymbol{l}}^{k}\dot{\nabla}_{k}\boldsymbol{\eta}^{i}),\boldsymbol{v}_{\boldsymbol{l}}^{h}\dot{\nabla}_{h}(\boldsymbol{v}_{\boldsymbol{l}}^{l}\dot{\nabla}_{l}(\boldsymbol{v}_{\boldsymbol{l}}^{k}\dot{\nabla}_{k}\boldsymbol{\eta}^{i})))=0.$$

Proof. Let C be a slant helix. Then, $\frac{k_1}{k_2} = \text{constant from Theorem 3.1.}$ On the other hand, let us calculate the following derivatives of n^i :

$$v_1^k \dot{\nabla}_k \eta_1^i = -k_1 v_1^i \tag{48}$$

$$v_1^l \dot{\nabla}_l (v_1^k \dot{\nabla}_{k_1} \dot{v}^i) = -(v_1^l \dot{\nabla}_l k_1) v_1^i - k_1^2 v_1^i - k_1 k_2 v_2^i$$
(49)

$$v_{1}^{h}\dot{\nabla}_{h}(v_{1}^{l}\dot{\nabla}_{l}(v_{1}^{k}\dot{\nabla}_{k}n_{1}^{i})) = \left[-v_{1}^{h}\dot{\nabla}_{h}(v_{1}^{l}\dot{\nabla}_{l}k_{1}) + k_{1}^{3} + k_{1}k_{2}^{2}\right]v_{1}^{i} - 3k_{1}(v_{1}^{h}\dot{\nabla}_{h}k_{1})n_{1}^{i} + \left[-2k_{2}v_{1}^{l}\dot{\nabla}_{l}k_{1} - k_{1}v_{1}^{h}\dot{\nabla}_{h}k_{2}\right]n_{2}^{i}.$$

$$(50)$$

$$\det({\scriptstyle v^k\dot{\nabla}_k}{\scriptstyle n^i,\,v^l\dot{\nabla}_l}({\scriptstyle v^k\dot{\nabla}_k}{\scriptstyle n^i)},{\scriptstyle v^h\dot{\nabla}_h}({\scriptstyle v^l\dot{\nabla}_l}({\scriptstyle v^k\dot{\nabla}_k}{\scriptstyle n^i)}))=$$

$$= \begin{vmatrix} -k_1 & 0 & 0 \\ -v_l^l \dot{\nabla}_l k_1 & -k_1^2 & -k_1 k_2 \\ -v_1^h \dot{\nabla}_h (v_1^l \dot{\nabla}_l k_1) + k_1^3 + k_1 k_2^2 & -3k_1 v_1^h \dot{\nabla}_h k_1 & -2k_2 v_1^l \dot{\nabla}_l k_1 - k_1 v_1^h \dot{\nabla}_h k_2 \end{vmatrix}$$

$$= k_1^3 (v_1^h \dot{\nabla}_h \frac{k_1}{k_2}) k_2^2.$$

(51)

Since $\frac{k_1}{k_2} = \text{constant}$, $v_1^h \dot{\nabla}_h \frac{k_1}{k_2} = 0$ is valid. Then

$$\det(v_1^k \dot{\nabla}_k v_1^i, v_1^l \dot{\nabla}_l (v_1^k \dot{\nabla}_k v_1^i), v_1^k \dot{\nabla}_h (v_1^l \dot{\nabla}_l (v_1^k \dot{\nabla}_k v_1^i))) = 0$$

is obtained.

Conversely, suppose that

$$\det(v_1^k\dot{\nabla}_kv_1^i,v_1^l\dot{\nabla}_l(v_1^k\dot{\nabla}_kv_1^i),v_1^h\dot{\nabla}_h(v_1^l\dot{\nabla}_l(v_1^k\dot{\nabla}_kv_1^i)))=0.$$

Then $v_1^h \dot{\nabla}_h \frac{k_1}{k_2} = 0$ is obtained. That is $\frac{k_1}{k_2} = \text{constant}$. C is a slant helix.

Theorem 3.5. C is a slant helix if and only if

$$det(\underline{v}_1^k \dot{\nabla}_k \underline{n}^i, \underline{v}_l^l \dot{\nabla}_l(\underline{v}_l^k \dot{\nabla}_k \underline{n}^i), \underline{v}_l^h \dot{\nabla}_h(\underline{v}_l^l \dot{\nabla}_l(\underline{v}_l^k \dot{\nabla}_k \underline{n}^i))) = 0.$$

Proof. Let C be a slant helix. Then, $\frac{k_1}{k_2} = \text{constant from Theorem 3.1.}$ Let us calculate the following derivatives of n^i :

$$v_1^k \dot{\nabla}_k v_2^i = -k_2 v_1^i \tag{52}$$

$$v_1^l \dot{\nabla}_l (v_1^k \dot{\nabla}_k v_2^i) = -(v_1^l \dot{\nabla}_l k_2) v_1^i - k_1 k_2 v_1^i - k_2^2 v_2^i$$
(53)

$$v_{1}^{h}\dot{\nabla}_{h}(v_{1}^{l}\dot{\nabla}_{l}(v_{1}^{k}\dot{\nabla}_{k}v_{2}^{i})) = [-v_{1}^{h}\dot{\nabla}_{h}(v_{1}^{l}\dot{\nabla}_{l}k_{2}) + k_{1}^{2}k_{2} + k_{2}^{3}]v_{1}^{i} + [-2k_{1}v_{1}^{h}\dot{\nabla}_{h}k_{2} - k_{2}v_{1}^{h}\dot{\nabla}_{h}k_{1}]v_{1}^{i} - 3k_{2}(v_{1}^{h}\dot{\nabla}_{h}k_{2})v_{2}^{i}.$$

$$(54)$$

 $\det({\scriptstyle {\scriptstyle V}}^{\scriptstyle k}\dot{\nabla}_{\scriptstyle k}{\scriptstyle {\scriptstyle N}}^{\scriptstyle i},{\scriptstyle {\scriptstyle V}}^{\scriptstyle l}\dot{\nabla}_{\scriptstyle l}({\scriptstyle {\scriptstyle V}}^{\scriptstyle k}\dot{\nabla}_{\scriptstyle k}{\scriptstyle {\scriptstyle N}}^{\scriptstyle i}),{\scriptstyle {\scriptstyle V}}^{\scriptstyle h}\dot{\nabla}_{\scriptstyle h}({\scriptstyle {\scriptstyle V}}^{\scriptstyle l}\dot{\nabla}_{\scriptstyle l}({\scriptstyle {\scriptstyle V}}^{\scriptstyle k}\dot{\nabla}_{\scriptstyle k}{\scriptstyle {\scriptstyle N}}^{\scriptstyle i})))=$

$$= \begin{vmatrix} -k_2 & 0 & 0 \\ -v^l \dot{\nabla}_l k_2 & -k_1 k_2 & -k_2^2 \\ -v_1^h \dot{\nabla}_h (v_1^l \dot{\nabla}_l k_2) + k_1^2 k_2 + k_2^3 & -2k_1 v_1^h \dot{\nabla}_h k_2 - k_2 v_1^h \dot{\nabla}_h k_1 & -3k_1 v_1^h \dot{\nabla}_h k_2 \end{vmatrix}$$

$$= k_2^5 (v_1^h \dot{\nabla}_h \frac{k_1}{k_2}). \tag{55}$$

Since $\frac{k_1}{k_2} = \text{constant}$, $v_1^h \dot{\nabla}_h \frac{k_1}{k_2} = 0$ is valid. Then

$$\det(v_1^k \dot{\nabla}_k v_2^i, v_1^l \dot{\nabla}_l (v_1^k \dot{\nabla}_k v_2^i), v_1^h \dot{\nabla}_h (v_1^l \dot{\nabla}_l (v_1^k \dot{\nabla}_k v_2^i))) = 0$$

is obtained.

Conversely, suppose that

$$\det(\underline{v}_1^k \dot{\nabla}_k \underline{n}^i, \underline{v}_1^l \dot{\nabla}_l (\underline{v}_1^k \dot{\nabla}_k \underline{n}^i), \underline{v}_1^h \dot{\nabla}_h (\underline{v}_1^l \dot{\nabla}_l (\underline{v}_1^k \dot{\nabla}_k \underline{n}^i))) = 0.$$

Then $v_1^h \dot{\nabla}_h \frac{k_1}{k_2} = 0$, i.e., $\frac{k_1}{k_2} = \text{constant. } C$ is a slant helix. The proof is completed.

References

- [1] A.T. Ali and M. Turgut, Some characterization of slant helices in the Euclidean space E^n , Hacettepe J. of Math. Stat., **39** (3) (2010), 327-336.
- [2] A.T. Ali and M. Turgut, Position vector of a time-like slant helix in Minkowski 3-space, J. Math. Anal. Appl., 365 (2010), 559-569. https://doi.org/10.1016/j.jmaa.2009.11.026
- [3] L.R. Bishop, There is more than one way to frame a curve, *Amer. Math. Monthly*, **82** (1975), 246-251. https://doi.org/10.2307/2319846
- [4] B. Bukçu and M.K. Karacan, The slant helices according to Bishop frame, World Academy of Sci., Eng. and Tech., **59** (2009), 1039-1042.
- [5] F. Doğan, The proof of theorem which characterizes a slant helix, New Trends in Math. Sci., 4 (2) (2016), 56-60. https://doi.org/10.20852/ntmsci.2016217021

- [6] V. Hlavaty, Les Courbes de la Variete W_n , Memory. Sci. Math., Paris, 1934.
- [7] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, *Turk. J. Math.*, **28** (2004), 153-163.
- [8] M.K. Karacan and B. Bukçu, On natural curvatures of Bishop frame, J. of Vectorial Relativity, 5 (2010) 34-41.
- [9] L. Kula and Y. Yaylı, On slant helix ad its spherical indicatrix, Applied Mathematics and Computation, 169 (1) (2005), 600-607. https://doi.org/10.1016/j.amc.2004.09.078
- [10] L. Kula, N. Ekmekçi, Y. Yaylı and K. Ilarslan, Characterization of slant helices in Euclidean 3-space, *Turk. J. Math.*, **34** (2010), 261-273.
- [11] A. Norden, Affinely Connected Spaces, GRMFL Moscow, 1976.
- [12] A. Norden and S. Yafarov, Theory of non geodesic vector fields in two dimensional affinely connected spaces, *Izv. Vuzov. Matem.*, **12** (1974), 29-34.
- [13] B. Tsareva and G. Zlatanov, On the geometry of the nets in the n-dimesional space of Weyl, J. of Geometry, 38 (1990), 182-197. https://doi.org/10.1007/bf01222903

Received: May 25, 2020; Published: June 10, 2020