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Abstract

In this paper, we study strong proximinality in the function space L? (1, X), where
@ 1s a modulus function and X is a Banach space. We prove some new results in
this direction. The main theorem is that: if G is a separable subspace of X, then G is

strongly proximinal in X if and only if L®(x,G) is strongly proximinal
inL? (1, X). An important result that follows directly is: for G a separable subspace
of X, then G is strongly proximinal in X if and only if LP(x, G) is strongly
proximinal inL" (x, X), for 0 < p <1.
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1. Introduction and some Preliminaries

Let (T,Z, z) be a finite measure space and X a Banach space. Let L?(u, X) the
space of all equivalence classes of strongly measurable X-valued functions

where ¢ is a modulus function such that I(p” f(t)|du <.
T
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It is important to mention here that this does not define a norm on L®(x,X).
However, in order to make L? (z, X) a complete metric space, the following metric
is defined on L? (1, X)

Forfand gin L?(x,X) thend(f, g) = |If-g |, = J.(p | ® —g(® | dt.

.
An example of a modulus function is ¢ (x) = x°, 0 < p < 1. So, a special case from

above, one can define the function spaceL”(x, X), 0 < p < 1, of equivalence

classes of strongly measurable functions f : T—> X, where j |f (t)||p dy < co. For f
T

e LP(u,X), 0<p<1,let|f], = I ||f(t)||p du then LP(x, X) is also a complete
T

metric space via the metric
d(f, g) =[ f — gl =] [ f®) - 9(®)]"du.

Let G be a non-empty subset of a Banach space (X, ||.|[) and let x € X. The set
of best approximation points to x from G is defined by:
P.(x)={y €G:|x —y||=d(x, G)}, where d(x, G) = inf {|lx — z||: z € G}.

The set G is called proximinal (resp. Chebyshev) if P_(x) contains at least (resp.
exactly) one point for every x  X. The mapping P_: X — 2%, which associates
with each x € Xthe set P_ (x), is called the metric projection of X onto G.

For the basic theory on proximinality in normed spaces, see [10]. Proximinality
in spaces of Bochner p-integrable function spaces L” (4, X), where 1< p < o« had
been studied by many authors, see [4], [5], [7], [9] and others later on. On the other
hand, the authors in [6] studied proximinality in L" (z, X), where 0 <p<1.

Strong Proximinality was first considered by Godefroy and Indumathi, see [2].
For some other works in this area see [1], [3] and the references there in. A
proximinal subset G of X is called strongly proximinal at a point x € X\ G if for
any € > 0 there exists a 6 > 0 such that P, (x, 8) < P, (X) + eBx, where By is the

unit ball of X and P_(x, 8) = {z €G : [ x -z || < d(x, G) + &}. The set P_(X, 6) is
sometimes called the set of near best approximation points to x. G is called strongly
proximinal in X if it is strongly proximinal at each x, for all x € X \ G.
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However, an equivalent definition, that is easier to deal with, will be given in the
next section: see Definition 2.2.

Strong proximinality is one of many other proximinality notions of sets in
Banach spaces which lead to important properties of approximation theory in these
spaces. Therefore, it is critical to study the existence and some properties of such
sets in function spaces also. In a recent work, see [11], the author studied strong

proximinality in the spaces of Bochner p-integrable functions L (x, X), 1<p<oo.
Part of the work was to show that: "If G is separable and strongly proximinal

subspace in X, then LP (z, G) is strongly proximinal inL" (¢, X) 1<p<o."

It is worth noting that proximinality in the L? (x, X) space and as a special case

for LP(,X), 0 < p < 1, has been studied in [6]. On the other hand, strong
proximinality for these spaces is not encountered anywhere.

This paper is devoted to study strong proximinality in the function
space L? (1, X). Our goal is to prove that the above result in [11], is still valid
forL?(u, X). 0 < p < 1. In the following section, we introduce some results
concerning strong proximinality theory in the L?- space that are needed for the
proofs of the main results. In the last section, we give our main results in which we

prove that L? (1, G) is strongly proximinal in L? (1, X) , when G is separable in X
if and only if G strongly proximinal in X. As corollary, we obtain that this result is
also valid for L (£, X), 0 < p <1.

2. Some General Results

The first result that is of most importance in the theory of best approximation in

function spaces is the Distance Theorem. We prove a distance formula in L? (i, X) .
A similar formula have been obtained for LP- spaces, 1 <p < o, [7].

Theorem 2.1. (Distance Theorem)

Let ¢ be a modulus function and f € L? (1, X). Then the real valued function
d(f (), G) e L?(u) and d(f, L?(1,G)) = || d(F (), G)| ¢ -
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Proof. For fe L?(u, X) then f is strongly measurable, hence there exists a
sequence of simple functions say {S,} in LY (1, X) such that
lim || Ss® —f@®]|=0,aetinT.

n—oo

The Continuity of the distance function implies that

lim [ d(Sa(t), G) —d(f (), G) | = 0.

N—o0

Set hp(t)= d(Sy(t),G). Then each h, is a simple function and so d(f(.), G) is
measurable. Now, since d(f (t), G) < [|f (t) — z||, for all z €G, thus for any g in in

L? (1, G) we have,
d(f (1), G) < ||f () — g(v)||, ae. tin Tand forall ge L? (1, G)..

Then since ¢ is increasing, we get

p df @), G)< o |[F (-9

Hence, J o d(f (), G)dt < _[ o |f®—a®] dt.
T T
Therefore, | d(t (), G) || = |- gl , forallg e L? (1, G).

Consequently d(f(.), G) L?(u), then by taking the infimum over all g in
L? (4, G), we get :
[ df () o), <d, L"(u.6)) )

For the other direction, again f € L? (1, X) is strongly measurable implies that
for given & > 0, there exists a simple function f ‘e L? (¢, X) and || f—f’ || (p< &/3.

We can write f ' in the form f '(t) = in Xa, (), where the Aj's are disjoint,

i=1

measurable subsets of T satisfying UA;j =T and xje X.
Now, for each i =1, 2, ..., n, take y; €G such that || xi—yi || <d(xi, G) + /3y,

Setg(®) =Y %, (1) theng € L? (1, G) and

i=1
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d(f, L G)) = inf {|[ f-h[| ,vheluG)} < | f-g] .

B, [ f-gll, =] olo-golla =] o 10110 +10-g0] a

T T
Then by triangular inequality and ¢ is increasing,

It-all, <[ edlfO-t® |+ lt0-o0]

d
And by a property of the modulus function (subadditive property), we get

It-oll, = ol fo-1o o] o0 -g]o

T T

-t + [ ol fo-oo | o

1

< g/3 + ” Zn:XAi(t)(xi -Yi) ” 0

<e/3+Y o xi—vyi| nAy
i=1

n

<e3 +) ¢ (dXi,G)+emum) HA)
i=1

<g/3 + Z [pd(xi, G) + ¢ (erzum)] H(A)

n

<e3 +) [pd(X, G) + ezum] MA)

i=1

<eg/3 + I pd(f'(t),G) dt + /3
T

<23 + | pdE (), G dt+| o] FO—1 @] dt
T T

<2¢/3 + deUGLG)m*‘”f—f'"¢
T

Sa+"MH%GHb
So, as € — 0, and from (1) above we have,

df, L' G) = dt ). 6) || - =
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In what follows, we give an alternative definition for strong proximinality of

subsets in a Banach space which we will use in the proofs of our results.

Definition 2.2. (Strongly Proximinal)
A proximinal subset of G of a Banach space X is said to be strongly proximinal
if for each x €X and for any minimizing sequence {y,}< G for X, there is a

subsequence {yn} of {yn} and a sequence {zi} = P_(X) such that lyn - z« | >0,
(This is equivalent to: d(yn, P, (X)) — 0), where a minimizing sequence {y.}= G

for x is that satisfying: lim __Ix -y, I=d(x, G).

Lemma 2.3.

Let {g.} in L? (1, G) be a minimizing sequence for f € L?(x, X) then there
exists a minimizing sequence in G for f (tf)e X, a.etinT.

Proof. Let{g.}in L’ (x, G) be a minimizing sequence for f in L? (i, X) i.e
||f —gn||¢ — d(f, LY (u,G)).
Then by Distance theorem, we have
[t -g.l, — 1a(f .6,
This implies,
If-all, - [t 0.0, -0

By a property: convergence in LY implies pointwise convergence a.e. t in T for
subsequences. Hence, 3 a subsequence {gnk(t)} such that:

If(®) -9, @) - d(f(t), G) —> 0, ae. tinT.
Therefore, {gnk (t)} in G is a minimizing sequence for f (t) in X, a.e.tinT. m

3.  Strong Proximinality of L? (x,G) in L?(u, X)

In this section, we give our main results in which we prove the strong

proximinality of L?(x,G) in L? (i, X), whenever G is separable and strongly
proximinal in X.
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Theorem 3.1. Let G be separable subspace of X. If G is strongly proximinal in X
then L? (1, G) is strongly proximinal in L? (i, X).

Proof. Let G be strongly proximinal in X then by definition G is proximinal in X

and since G is separable in X then L?(u, G) is proximinal in L?(u, X). By
Theorem 2.5. in [6] and Theorem 3.4. in [9].

Now, assume L? (i, G) is not strongly proximinal inL?(x, X). Hence, 3 f in

L? (1, X), €>0 and a sequence {go}<= L?(x, G) such that {g,} a minimizing

sequence for f in L? (i, X) but d(gn, Tw( o (f)) >¢. So, bythe Lemma 2.3., 3
4,

a subsequence {gn(t)} in G which is a minimizing sequence for f (t) in X, a.e tin
T. ie.
|| f(t) — gnk(t) || - d(f(),G), aetinT.

Since G is strongly proximinal in X, this implies d(gn(t), P, (f(t))) — 0, a.e tin
T. But the distance function d(gn(.), P, (f()) ): T — R is continuous, hence
measurable and since pd(gn(t), P, (f(1) ) <[ f(t) —gu® || <2 ¢ | fO)]. ae t
in T, then

d(gnk(), P, (f())) € L” () and J ¢ d(gnk(t), P, (f()) ) dt — 0.

4
This means that, || d(gu(.), P, () ) | , 0. Again by Distance theorem, we

get d(gn, ?LW,G) (f) ) = 0 which contradicts the assumption above. m

Theorem 3.2. Let L?(u, G) is strongly proximinal inL?(u, X). Then G is
strongly proximinal in X.

Proof. If L? (i, G) is strongly proximinal L? (x, X) then by definition L? (1, G)
is proximinal in L (1, X) . Hence, G is proximinal in X. See [6].
Now, let £ >0 and { y, } be a minimizing sequence in G for x ¢ X. i.e:

| x-ya | = dx, G).
Define fe L”(u,X) as f(t) = %+ (t)-x and {gn}= L?(x, G) such that for each
N, gn(t) = Y+ () yn, where, %+ (-) is the characteristic function. Then
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ool =] ol 10-a@la=] o x-y, Jdt= o] x-v] un

T T
But since, { y, } is a minimizing sequence in G for x and ¢ continuous then

o x=V,| = ¢ dx,G).
Also,

0 dx 6) . u(T) =] 0 d (x,G)dt=] pd (F(D.G)dt = |d(1(),G)],.

T T
Now, by the above argument and the Distance theorem, we have {g,} = P )(f)

LY (u,G
satisfying
I f-gnll - d(f, L7 G)).
This means that {g,} is a minimizing sequence in L?(x, G) for f , hence by the

given that LY (u, G) is strongly proximinal in L? (z, X) then 3 {gud={y; (1) - ynk}
a subsequence of {gn}, such that

d@. B, o, 1)) =11d(Gu ) PEN) - =0

But, f (t) = %+ (t). x and gnk(t) = Y+ (). Yok, Where { ynk } is a subsequence of { yn}
in G satisfying
”d(ynk Py (X))” — 0.

Hence, G is strongly proximinal in X. m

Theorem 3.3. Let G be separable subspace of X. G is strongly proximinal in X if
and only if L (u, G) is strongly proximinal in L" (u, X), for 0 < p <1.

Proof. Taking ¢ (x) =x", 0 < p <1 and apply the above two theorems. m
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