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Abstract 

 

In this paper, we study strong proximinality in the function space ),(
φ

XL  , where 

  is a modulus function and X is a Banach space. We prove some new results in 

this direction. The main theorem is that: if G is a separable subspace of X, then G is 

strongly proximinal in X if and only if ),(
φ

GL  is strongly proximinal 

in ),(
φ

XL  . An important result that follows directly is: for G a separable subspace 

of X, then G is strongly proximinal in X if and only if ),( G L p
 is strongly 

proximinal in ),(  XL p
, for 0 < p <1.  
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1. Introduction and some Preliminaries 

 

 Let ),,( T be a finite measure space and X a Banach space. Let ),(
φ

XL   the 

space of all equivalence classes of strongly measurable X-valued functions 

whereφ is a modulus function such that       
T

dtfφ )( .  
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It is important to mention here that this does not define a norm on ),(
φ

XL  . 

However, in order to make ),(
φ

XL   a complete metric space, the following metric 

is defined on ),(
φ

XL  ;
 

For f and g in ),( XL 
φ

 then d(f, g) = || f - g ||φ  = 
T

 ║f (t) − g(t)║dt. 

An example of a modulus function is  (x) = x
p
, 0 < p < 1. So, a special case from 

above, one can define the function space ),( XL p , 0 < p < 1, of equivalence 

classes of strongly measurable functions f : TX, where      
T

.)(  dtf
p

For f 

 ),( XL p , 0 < p < 1 , let || f || p  =      
T

dtf
p

 )( then ),( XL p

 is also a complete 

metric space via the metric  

d(f, g) = gf  p =  
T

p
dtgtf )()( . 

      Let G be a non-empty subset of a Banach space (X, ||.||) and let x   X. The set 

of best approximation points to x from G is defined by: 

        
G P (x) = {y G : ||x − y|| = d(x, G)}, where d(x, G) = inf {||x − z||: z   G}.  

 

The set G is called proximinal (resp. Chebyshev) if 
G P (x) contains at least (resp. 

exactly) one point for every x X. The mapping 
G P : X → 2

G
, which associates 

with each x   X the set 
G P (x), is called the metric projection of X onto G.  

       For the basic theory on proximinality in normed spaces, see [10]. Proximinality 

in spaces of Bochner p-integrable function spaces ),(  XL p
, where 1≤ p <  , had 

been studied by many authors, see [4], [5], [7], [9] and others later on. On the other 

hand, the authors in [6] studied proximinality in ),( XL p , where  0 < p < 1.         

        Strong Proximinality was first considered by Godefroy and Indumathi, see [2]. 

For some other works in this area see [1], [3] and the references there in. A 

proximinal subset G of X is called strongly proximinal at a point x ∈ X \ G  if for 

any ε > 0 there exists a δ > 0 such that 
G P (x, δ) ⊆ 

G P (x) + εBX, where BX is the 

unit ball of X and 
G P (x, δ) = {z ∈G : || x – z || < d(x, G) + δ}. The set 

G P (x, δ) is 

sometimes called the set of near best approximation points to x. G is called strongly 

proximinal in X if it is strongly proximinal at each x, for all x ∈ X \ G.  
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However, an equivalent definition, that is easier to deal with, will be given in the 

next section: see Definition 2.2. 

Strong proximinality is one of many other proximinality notions of sets in 

Banach spaces which lead to important properties of approximation theory in these 

spaces. Therefore, it is critical to study the existence and some properties of such 

sets in function spaces also. In a recent work, see [11], the author studied strong 

proximinality in the spaces of Bochner p-integrable functions ),(  XL p
, 1≤ p < . 

Part of the work was to show that: "If G is separable and strongly proximinal 

subspace in X, then ),( G L p
 is strongly proximinal in ),(  XL p

, 1≤ p < ."  

      It is worth noting that proximinality in the ),(
φ

XL   space and as a special case 

for ),( XL p , 0 < p < 1, has been studied in [6]. On the other hand, strong 

proximinality for these spaces is not encountered anywhere.  

     This paper is devoted to study strong proximinality in the function 

space ),(
φ

XL  . Our goal is to prove that the above result in [11], is still valid 

for ),(  XL p
,
 0 < p < 1. In the following section, we introduce some results 

concerning strong proximinality theory in the Lφ - space that are needed for the 

proofs of the main results. In the last section, we give our main results in which we 

prove that ),( G L 
φ

 is strongly proximinal in ),(  XL 
φ

, when G is separable in X 

if and only if G strongly proximinal in X. As corollary, we obtain that this result is 

also valid for ),(  XL p
, 0 < p <1.  

 

2. Some General Results  

 

      The first result that is of most importance in the theory of best approximation in 

function spaces is the Distance Theorem. We prove a distance formula in ),(  XL 
φ

. 

A similar formula have been obtained for L
p
- spaces, 1 ≤ p <  , [7].      

 

Theorem 2.1. (Distance Theorem)   

     Let φ   be a modulus function and f ),(  XL 
φ

 . Then the real valued function 

d(f (·), G) )(
φ

L  and   d(f, ),( G L 
φ

) = ║ d(f (·), G)║φ  . 
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Proof. For f ),(  XL 
φ

  then f is strongly measurable, hence there exists a 

sequence of simple functions say {Sn} in ),(  XL 
φ

 such that  

lim
n

║ Sn(t) − f (t)║= 0, a.e t in T . 

The Continuity of the distance function implies that 

lim
n

| d(Sn(t), G) − d(f (t), G) | = 0. 

 

Set hn(t)= d(Sn(t),G). Then each hn is a simple function and so d(f (·), G) is 

measurable. Now, since d(f (t), G) ≤ ║f (t) − z║, for all z ∈G, thus for any g in in 

),( G L 
φ

 we have,  

d(f (t), G) ≤ ║f (t) − g(t)║, a.e. t in T and for all g ),( G L 
φ

 . 

Then since φ   is increasing, we get                    

                                     φ  d(f (t), G ) ≤ φ║f (t) − g(t)║. 

Hence,                         
T

φ  d(f (t), G ) dt  ≤  
T

φ║f (t) − g(t)║ dt. 

Therefore,            ║ d(f (·), G ) ║


 ≤ ║f − g║


,  for all g ),( G L 
φ

 .  

Consequently d(f (·), G) )(
φ

L , then by taking the infimum over all g in 

),( G L 
φ

, we get :  

                                ║ d(f (·), G) ║


 ≤ d(f, ),( G L 
φ

)                                          (1) 

     For the other direction, again f ),(  XL 
φ

  is strongly measurable implies that 

for given ε > 0, there exists a simple function f ′ ),(  XL 
φ

  and ║ f − f ′ ║


< ε/3. 

We can write f ′ in the form f ′(t) = 


n

i

i tx χ
1

A  )(
i

, where the Ai′s are disjoint, 

measurable subsets of T satisfying  UAi = T and xi  X.  

Now, for each i =1, 2, ..., n, take yi ∈G such that ║ xi – yi ║ < d(xi, G ) + ε/3µ(T). 

Set g(t) =


n

1i

i )t(χ  y
iA  then g ),( G L 

φ
  and 
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            d(f, ),( G L 
φ

)  =  inf {║ f – h║


, h ),( G L 
φ

 }  ≤  ║ f – g ║


.  

But,  ║ f – g ║


 = 
T

φ║f(t) − g(t)║ dt  = 
T

φ║ f (t) − f ′(t) + f ′(t) − g(t)║ dt.                                                                                                                         

Then by triangular inequality and φ  is increasing,      

║ f – g ║


  ≤  
T

φ (║ f (t) − f ′(t) ║ + ║f ′(t) − g(t)║)dt 

And by a property of the modulus function (subadditive property), we get 

   ║ f – g ║


  ≤  
T

φ║ f (t) − f ′(t) ║dt + 
T

φ║f ′(t) − g(t)║dt 

                                                 = ║ f − f ′ ║


  +  
T

φ║ f ′(t) − g(t) ║ dt 

                                                <  ε/3  + ║



n

1i

iiAi )y)(t( x ║


 

                                                < ε/3  + 


n

1i

φ║ xi – yi ║ µ(Ai) 

                                                < ε/3  + 


n

1i

φ  (d(xi , G ) + ε/3µ(T))  µ(Ai) 

                                                ≤ ε/3  + 


n

1i

[φd(xi , G) + φ (ε/3µ(T))] µ(Ai) 

                                                < ε/3  + 


n

1i

[φd(xi , G) + ε/3µ(T)] µ(Ai) 

                                                 ≤ ε/3  + 
T

φd(f ′(t) , G) dt  +  ε/3   

                                                 ≤ 2ε/3  +  
T

φd(f (t), G) dt + 
T

φ║ f (t) − f ′ (t)║ dt    

                                                 ≤ 2ε/3  +  
T

φd(f (t), G) dt + ║ f − f ′ ║


 

                                                 ≤  ε  + ║ d(f (·),G ) ║


  

 

So, as ε → 0, and from (1) above we have,  

 

d(f, ),( G L 
φ

) = ║ d(f (·), G) ║


. ■ 
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      In what follows, we give an alternative definition for strong proximinality of 

subsets in a Banach space which we will use in the proofs of our results.  

 

Definition 2.2. (Strongly Proximinal)  

     A proximinal subset of G of a Banach space X is said to be strongly proximinal 

if for each x X and for any minimizing sequence {yn}  G for x, there is a 

subsequence {ynk} of {yn} and a sequence {zk}  
G P (x)  such that ‖ynk - zk ‖0. 

(This is equivalent to: d(ynk, 
G P (x)) 0 ), where a minimizing sequence {yn}  G 

for x is that satisfying: lim
n

‖ x - yn ‖ = d(x , G).  

Lemma 2.3.  

      Let {gn} in ),( G L 
φ

 be a minimizing sequence for f  ),(  XL 
φ

 then there 

exists a minimizing sequence in G for f (t) X,  a.e t in T.  

 

Proof.  Let {gn} in ),( G L 
φ

 be a minimizing sequence for f  in ),(  XL 
φ

  i.e 
 

                                             φngf     d(f, ),( G L 
φ

).  

Then by Distance theorem, we have 

                                                φngf    
φ

Gf )),(( d . 

This implies, 

║ f  – gn ║


  -  
φ

Gf )),(( d   0 

By a property: convergence in 
φ

L  implies pointwise convergence a.e. t in T for 

subsequences. Hence,    a subsequence {gnk(t)} such that: 

)()( tgtf nk  -  d(f(t), G)    0 ,  a.e. t in T. 

Therefore, {gnk (t)} in G is a minimizing sequence for f (t) in X, a.e. t in T. ■ 

 

3. Strong Proximinality of ),( G L 
φ

 in  ),(  XL 
φ

 

 

     In this section, we give our main results in which we prove the strong 

proximinality of ),( G L 
φ

 in ),(  XL 
φ

, whenever G is separable and strongly 

proximinal in X. 
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Theorem 3.1. Let G be separable subspace of X. If G is strongly proximinal in X 

then ),( G L 
φ

 is strongly proximinal in  ),(  XL 
φ

. 

 

Proof. Let G be strongly proximinal in X then by definition G is proximinal in X 

and since G is separable in X then ),( G L 
φ

 is proximinal in ),(  XL 
φ

. By 

Theorem 2.5. in [6] and Theorem 3.4. in [9]. 

Now, assume ),( G L 
φ

 is not strongly proximinal in ),(  XL 
φ

. Hence,   f in 

),(  XL 
φ

, 0  and a sequence {gn}  ),( G L 
φ

 such that {gn} a minimizing 

sequence for f  in ),(  XL 
φ

 but d(gn, 
),( G L φP (f ) )  .  So, by the Lemma 2.3.,    

a subsequence {gnk(t)} in G which is a minimizing sequence for f (t) in X,  a.e  t in 

T.  i.e. 

║ f(t)  – gnk(t) ║       d( f (t) , G ) ,   a.e  t in T. 

 

Since G is strongly proximinal in X, this implies d(gnk(t), 
G P (f(t)) )     0,  a.e  t in 

T. But the distance function d(gnk(.), 
G P (f(.)) ): T   R  is continuous, hence  

measurable and since φd(gnk(t), 
G P (f(t)) ) ║ f(t)  – gnk(t) ║   2 φ║ f(t)║, a.e  t 

in T, then  

d(gnk(.), 
G P (f(.)) ) )(

φ
L  and  

T

φd(gnk(t), 
G P (f(t)) ) dt     0. 

This means that, ║ d(gnk(.), 
G P (f(.)) ) ║


   0. Again by Distance theorem, we 

get d(gn, 
),( G L φP (f ) 0)   which contradicts the assumption above. ■ 

 

Theorem 3.2.  Let ),( G L 
φ

 is strongly proximinal in ),(  XL 
φ

. Then G is 

strongly proximinal in X. 
 

Proof. If ),( G L 
φ

 is strongly proximinal ),(  XL 
φ

 then by definition ),( G L 
φ

 

is proximinal in  ),(  XL 
φ

 .  Hence, G is proximinal in X. See [6].  

Now, let   > 0 and { yn } be a minimizing sequence in G for  x  X .  i.e:   

║x - yn ║   d(x , G). 

Define  f  ),(  XL 
φ

 as  f(t) = xt )(Tχ  and {gn}  ),( G L 
φ

 such that for each 

n, gn(t) = )(tTχ yn , where, )(Tχ  is the characteristic function. Then 
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     ║ f – gn║


 = 
T

φ║ f (t) – gn (t)║dt = 
T

φ dt   nyx  = nyxφ    µ(T) .  

But since, { yn } is a minimizing sequence in G for x and φ continuous then 

nyxφ     φ  d(x, G) . 

Also,
   

φ  d(x, G) . µ(T) = 
T

φ dt,  G) ( xd = 
T

φ dtfd  G) (t)( ,  = 
φ

Gf )),(( d . 

Now, by the above argument and the Distance theorem, we have {gn}
),( G L φP (f)   

satisfying 

║ f – gn║

  d(f,  ),( G L 

φ
).  

This means that {gn} is a minimizing sequence in ),( G L 
φ

 for f , hence by the 

given that ),( G L 
φ

 is strongly proximinal in ),(  XL 
φ

 then   {gnk}={ )(tTχ . ynk} 

a subsequence of {gn},  such that    

d(gnk , 
),( G L φP (f ) ) = || ),(( nkgd  

G P (f(.)) ) ||


    0 

But, f (t) = )(tTχ . x  and gnk(t) = )(tTχ . ynk, where { ynk } is a subsequence of { yn} 

in G satisfying 

))(,( xyd Gnk P     0. 

Hence, G is strongly proximinal in X. ■ 

 

Theorem 3.3. Let G be separable subspace of X. G is strongly proximinal in X if 

and only if ),( G L p
 is strongly proximinal in  ),(  XL p

, for 0 < p <1. 

 

Proof.   Taking  (x) = x
p 

, 0 < p <1 and apply the above two theorems. ■   
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