International Mathematical Forum, Vol. 15, 2020, no. 2, 93 - 101 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2020.91248

Semi Regular Local Rings

Zubayda M. Ibraheem^{1*} and Anees A. Fthee²

1,2 Department of Mathematics
College of Computer Sciences and Mathematics,
University of Mosul, Mosul, Iraq
*Corresponding author

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

A ring R is said to be right (left) semi regular local ring or (srl-ring) if for every $a \in R$, either a or (1 - a) is right (left) semi regular element. In this paper, we introduce some characterization and basic properties of this rings. Also, we studied the relation between semi regular local rings and Von Neumann regular local rings, Von Neumann regular rings, clean rings, exchange rings and suitable rings.

Keywords: Local rings, Von Neumann regular rings, Clean rings, Exchange rings and suitable rings.

1 Introduction

Throughout this paper, R denotes associative rings with identity; all modules are unitary. For a subset X of R, the right (left) annihilator of X is denoted by r(X) and (l(X)). If $X = \{a\}$ we usually abbreviate it to r(a), (l(a)). A right R— module R is called R—injective, if for any principal right ideal R of R and any R—homomorphism of R into R can be extended to one of an R into R is said to be Von Neumann regular ring (or just regular) if and only if for each R is said to be right (left) semi-regular ring, if and only if for each R is said to be right (left) semi-regular ring, if and only if for each R in R is called to associate element. A ring R is called local ring, if it has exactly one maximal ideal [4],[6]. A ring R is called Von Neumann regular local ring (VNL—ring) if for all R is called clean ring, if each element R can be written as, R is R under R is called clean ring, if each element R in R can be written as, R is R under R is an idemical ring, if each element R in R can be written as, R is R under R is an idemical ring, if each element R in R can be written as, R is R under R is an idemical ring, if each element R in R can be written as, R is R under R is an idemical ring, if each element R in R can be written as, R is R under R is an idemical ring, if each element R in R can be written as, R is R under R in R and R is an idemical ring, if each element R in R can be written as, R is R under R in R and R is an idemical ring.

potent element and u is unit element [3]. A ring R is said to be exchange ring, if for each element a in R, there exists idempotent element e in R such that, $e \in aR$ and $(1-e) \in (1-a)R$ [9]. Nicholson in [9], called a ring R a suitable ring, if for each element a in R, there exists idempotent element e in R such that $e-a \in R(a-a^2)$.

2 The Semi Regular Local Rings

In this section we give the definition of semi-regular local rings with some of its characterization and basic properties.

Definition 2.1: A ring R is said to be right (left) semi regular local ring or (srl-ring) if for every $a \in R$, either a or (1-a) is right (left) semi regular element. Now, we give the most important result of this section.

Proposition 2.2: If *R* is right semi regular local ring, then the associated elements are idempotent.

Proof: Let $a \in R$. Then either a or (1-a) is semi regular element in R. If a is semi regular element, then there exists b in R such that a = ab and r(a) = r(b), so a(1-b) = 0, then $(1-b) \in r(a) = r(b)$ and hence b(1-b) = 0. Thus $b = b^2$. Now, if (1-a) is semi regular then there exists c in R such that (1-a) = (1-a)c and r(1-a) = r(c). So (1-a)(1-c) = 0, then $(1-c) \in r(1-a) = r(c)$ and, hence c(1-c) = 0. Therefore $c = c^2$

Proposition 2.3: If R is a reduced right semi regular local ring, then the associated elements are unique.

Proof: Let $a \in R$, since R is right srl-ring. Then either a or (1-a) is semi regular element in R. If a is semi regular, then there exists an element $b \in R$ such that a =ab and r(a) = r(b). Now, assume that b is not unique associated element for a, then there exists an element \bar{b} in R such that $a = a\bar{b}$ and $r(a) = r(\bar{b})$. Hence $ab = a\overline{b}$, then $a(b - \overline{b}) = 0$. So $(b - \overline{b}) \in r(a) = r(b) = r(\overline{b})$. Then $b(b - \overline{b}) \in r(a) = r(b) = r(b) = r(b)$. $(\overline{b}) = 0$ and $(\overline{b}(b - \overline{b})) = 0$. Thus $(b^2 = b\overline{b})$ and $(\overline{b}b) = (\overline{b})^2$, then $(b = b\overline{b})$ and $(b\overline{b}) = (\overline{b})$. Since R is reduced, then $r(b) = l(b) = l(\bar{b})$. Thus $(b - \bar{b}) \in l(b) = l(\bar{b})$, and hence $(b - \bar{b}) b = 0$, then $b^2 = b\bar{b}$, and hence $b = b\bar{b}$. Therefore $b = \bar{b}b = \bar{b}b$ $b\bar{b} = \bar{b}$. Now, if (1-a) is semi regular element, then there exists an element $c \in R$ such that (1-a) = (1-a)c and r(1-a) = r(c). Assume that c is not unique, then there exists \bar{c} in R such that $(1-a) = (1-a)\bar{c}$ and $r(1-a) = r(\bar{c})$. Hence $(1-a)c = (1-a)\bar{c}$, then $(1-a)(c-\bar{c}) = 0$. Thus $(c-\bar{c}) \in r(1-a)$ $a) = r(c) = r(\bar{c})$. Now $c(c - \bar{c}) = 0$, then $c^2 = c\bar{c}$ and $\bar{c}(c - \bar{c}) = 0$, thus $\bar{c}c = \bar{c}^2$ and hence $c = c\bar{c}$ and $\bar{c}c = \bar{c}$. Since R is reduced, then $r(c) = l(c) = \bar{c}$ $l(\bar{c})$. Then $(c-\bar{c})c=0$, that is $c^2=c\bar{c}$ and $(c-\bar{c})\bar{c}=0$, hence $c\bar{c}=\bar{c}^2$, so $c = c\bar{c}$ and $c\bar{c} = \bar{c}$. Therefore $c = c\bar{c} = c\bar{c} = \bar{c}$.

Proposition 2.4: Any element a in a right semi regular local ring is regular if Ra = Rb for any associated b of R.

Proof: Assume that Ra = Rb. Then ra = b where $r \in R$ and $ra \in Ra$ and $b \in Rb$. Since b is idempotent element, then $Rb \oplus R(1-b) = R$ then b+(1-b) = 1 where $b \in Rb$ and $(1-b) \in R(1-b)$. Now b+(1-b) = 1, then ra+(1-b) = 1, and ara+a(1-b) = a, hence ara = a, since $(1-b) \in r(a)$ therefor a is regular element. Now, if R(1-a) = Rb, then assume that s(1-a) = b, where $s(1-a) \in R(1-a)$ and $b \in Rb$. Now $Rb \oplus R(1-b) = R$, hence b+(1-b) = 1, then s(1-a)+(1-b) = 1, thus (1-a)s(1-a) = (1-a). Therefore (1-a) is regular element in R.

Proposition 2.5: The epimorphism image of right semi regular local ring is right semi regular local ring.

Proof: Let $f: R \to \overline{R}$ be epimorphism function such that R is right (srl-ring) and let $\overline{1}$, $\overline{1}$, $\overline{1}$, $\overline{1}$ in $\overline{1}$. Then there exists 1, $\overline{1}$, $\overline{1}$ e in $\overline{1}$ such that f(x) = y and $f(e) = \overline{e}$. Now since R is right (srl-ring), then either x or 1 - x is semi regular. If x = xeand r(x) = r(e). Hence $y = f(x) = f(xe) = f(x)f(e) = y \bar{e}$ then $y = y \bar{e}$. Now, to prove that $r(y) = r(\bar{e})$. Let $a \in r(y)$ then ya = 0 hence f(x)a = 0, then $x f^{-1}(a) = 0$. Hence $f^{-1}(a) \in r(x) = r(e)$, thus $ef^{-1}(a) = 0$, then f(e)a = 0, thus $\bar{e}a = 0$, then $a \in r(\bar{e})$. Therefore $r(y) \subseteq r(\bar{e})$ (1). Let $b \in r(\bar{e})$, then $\bar{e}b = 0$. Hence f(e)b = 0, thus $ef^{-1}(b) = 0$, then $f^{-1}(b) \in ef^{-1}(b)$ r(e) = r(x). So $xf^{-1}(b) = 0$, hence f(x)b = 0. Thus yb = 0, then $b \in r(y)$. Therefore $r(\bar{e}) \subseteq r(y)$ (2). Now, from (1) and (2), we have $r(\bar{e}) = r(y)$. Now, if 1 - x is semi regular then (1 - x) = (1 - x)e and r(1 - x) = r(e), then $(\bar{1} - y) = \bar{1} + (-y) = f(1) + f(-x) = f(1-x) = f((1-x)e) = f(1-x)e$ $x)f(e) = (\overline{1} - y)\overline{e}$. Hence $(\overline{1} - y) = (\overline{1} - y)\overline{e}$. Now to prove that $r(\overline{1} - y) = (\overline{1} - y)\overline{e}$. $r(\bar{e})$. Let $c \in r(\bar{1}-y)$. Then $(\bar{1}-y)$ c=0, hence f(1-x)c=0 and (1-y) $(x) f^{-1}(c) = 0$, thus $f^{-1}(c) \in r(1-x) = r(e)$, then $ef^{-1}(c) = 0$ and hence f(e) c = 0. Thus $\bar{e}c = 0$ then $c \in r(\bar{e})$, hence $r(\bar{1} - y) \subseteq r(\bar{e}) \dots \dots (3)$. Let $d \in r(\bar{e})$. Then $\bar{e}d = 0$, hence f(e) d = 0. Thus $ef^{-1}(d) = 0$ then $f^{-1}(d) \in ef^{-1}(d)$ r(e) = r(1-x) and hence $(1-x) f^{-1}1(d) = 0$. Thus f(1-x) d = 0, then $(\bar{1} - y) d = 0$ that is $d \in r(\bar{1} - y)$. Therefore $r(\bar{e}) \subseteq r(\bar{1} - y)$(4). Now from (3) and (4) we get $r(\bar{e}) = r(\bar{1} - y)$. Hence either y or $\bar{1} - y$ is semi regular element in \overline{R} . Therefore \overline{R} is semi regular local ring.

Proposition 2.6: Let R be a ring, then R is right semi regular local ring if and only if either r(a) or r(1-a) is direct summand for all a in R.

Proof: Assume that $a \in R$ and r(a) is direct summand. Then there exists $I \subset R$ such that $R = r(a) \oplus I$, then there are elements $b \in I$ and $d \in r(a)$, such that d + b = 1, and hence ad + ab = a, then a = ab. Now, to prove that r(a) = r(b). Let $x \in r(a)$ then ax = 0, hence

abx = 0 and $bx \in r(a)$. But $bx \in I$ and $r(a) \cap I = 0$, then bx = 0 and $x \in r(b)$. Therefore $r(a) \subseteq r(b)...(1)$. Now, let $y \in r(b)$ then by = 0, hence aby = 0, thus ay = 0, hence $y \in r(a)$. Therefore $r(b) \subseteq r(a) \dots (2)$. Now from (1) and (2) we have r(a) = r(b), then a is semi regular element. Now assume that $(1-a) \in R$ and r(1-a) is direct summand. Then there exists $J \subset R$ such that $R = r(1-a) \oplus I$. Now let $c \in I$ and $f \in r(1-a)$ such that 1 = f + c, then (1-a) = (1-a)f + (1-a)c, and hence (1-a) = (1-a)c. Now to prove that r(1-a) = r(c). Now let $w \in r(1-a)$, then (1-a)w = 0, hence (1-a)w = 0 $cw \in r(1-a)$. But $cw \in I$ and $I \cap r(1-a) = 0$ then a)cw = 0. Thus cw = 0, hence $w \in r(c)$. Therefore $r(1-a) \subseteq r(c)$ (3). Now, let $z \in$ r(c), then cz = 0 and hence (1-a)cz = 0. Thus (1-a)z = 0, then $z \in$ r(1-a), and therefore $r(c) \subseteq r(1-a)$ (4). Now from (3) and (4), we have r(c) = r(1-a) that is 1-a is semi regular element. Therefore, R is right semi regular local ring. Conversely, assume that R is right semi regular local ring. Then either a or (1-a) is semi regular element. If a is semi regular element, then there exists b in R such that a = ab and r(a) = r(b). Since a(1 - b) = 0, then $(1 - b) \in$ r(a), then 1 = b + (1 - b), hence R = bR + (1 - b)R, thus R = bR + r(a). To prove $bR \cap r(a) = 0$. Now let $x \in bR \cap r(a)$, then $x \in bR$ and $x \in r(a)$, hence x = br for some $r \in R$ and ax = 0. Since, $x \in r(a) = r(b)$, then bx = 0and hence b.br = 0, hence br = 0, thus x = 0. Therefore $bR \cap r(a) = 0$. Hence r(a) is direct summand . Now , if 1-a is semi regular if (1-a) is semi regular then there exists $0 \neq c \in R$ such that (1-a) = (1-a)c and r(1-a) = r(c)since (1-a)(1-c) = 0 and $(1-c) \in r(1-a)$, then 1 = c + (1-c) hence R = cR + (1-c)R therefore R = cR + r(1-a). To prove $r(1-a) \cap cR = 0$. Now let $y \in r(1-a) \cap cR$ then $y \in r(1-a)$ and $y \in cR$, hence (1-a)y = 0and y = cr for some $r \in R$. Since $y \in r(1 - a) = r(c)$, then cy = 0 and $c \cdot cr = a$ 0, hence cr = 0, and thus y = cry = 0, then $r(1 - a) \cap cR = (0)$. Therefore r(1-a) is direct summand.

Proposition 2.7: Let R be an abelian and right semi regular local ring. Then any element x in R can be written as x = s + a or 1 - x = s + a, where s is semi regular element and a is nilpotent element.

Proof: Assume that $x \in R$ is semi regular element, then there exists $e \in R$ such that x = xe and r(x) = r(e). Now, x = xe + (x - xe). We will prove that xe is semi regular element and (x - xe) is nilpotent element. Now xe = xe.e, to prove r(xe) = r(e). Now let $b \in r(xe)$, then xeb = 0 and $eb \in r(x) = r(e)$, hence e.eb = 0 and eb = 0, then $b \in r(e)$, and hence $r(xe) \subseteq r(e)$(1). Now let $c \in r(e)$, then ec = 0. Hence xec = 0, thus $c \in r(xe)$, therefore $r(e) \subseteq r(xe)$(2). Now from (1) and (2) we have r(xe) = r(e). Then xe is semi regular element. Now, $(x - xe)^n = (x(1 - e))^n = x^n (1 - e)n^n = 0$. Then (x - xe) is nilpotent element. Now if 1 - x is semi regular element, then there exists $c \in R$ such that (1 - x) = (1 - x)c and (1 - x) = r(c). Then (1 - x)c is semi regular

element and (1-x)-(1-x)c is nilpotent element. Then (1-x)c=(1-x)c. c and to prove r((1-x)c)=r(c). Now let $a \in r((1-x)c)$, then (1-x)ca=0, hence $ca \in r(1-x)=r(c)$ thus cca=0. Therefore ca=0, then $a \in r(c)$ and hence $r((1-x)c) \subseteq r(c)$...(3). Now let $d \in r(c)$, then cd=0, and hence (1-x)cd=0 thus $d \in r((1-x)c)$. Therefore $r(c) \subseteq r((1-x)c)$...(4). Now from (3) and (4) we have r(c)=r((1-x)c), hence (1-x)c is semi regular element. Now, $[(1-x)-(1-x)c]^n=[(1-x)(1-c)]^n=[(1-x)^n(1-c)^n]=0$. Therefore [(1-x)-(1-x)c] is nilpotent element.

3 The relation between right semi regular local ring and another ring

In this section we give the relation between right semi regular local ring and VNL-ring, local ring, Von Neumann ring, clean ring, exchange ring and suitable ring.

Proposition 3.1: Let R be a local ring. Then R is right semi regular local ring.

Proof: Since R is local ring then by proposition (10.1.3) in [5] either a or 1-a is invertible element. If a is invertible, then there exists b in R such that ab=1 and hence aba=a. Let e=ba. Then ae=a. To prove that r(a)=r(e) let $x\in r(a)$, hence ax=0, and bax=0 thus ex=0 hence $x\in r(e)$ therefore $r(a)\subseteq r(e)$(1). Now, let $y\in r(e)$ then ey=0 hence bay=0 thus abay=0, then ay=0, hence $y\in r(a)$, therefore $r(e)\subseteq r(a)$...(2). From (1) and (2) we have r(a)=r(e). Therefore a is right semi regular in a Now, if a is invertible element then there exists a in a such that a in a in

Corollary 3.2: Every Von Neumann regular ring is right semi regular local ring.

Proposition 3.3: Let R be VNL- ring. Then R is right semi regular local ring.

Proof: By the same proof of proposition (3.1)

It's clearly that, the converse of proposition (3.3) is not true.

Now we give a necessary condition to get the converse of above proposition.

Proposition 3.4: If R is right semi regular local ring and R_R is P-injective, then R is VNL-ring.

Proof: Let $a \in R$, since R is right semi regular local ring. Then either a or 1-ais a semi regular element. If a is semi regular element, then there exists b in R such that a = ab and r(a) = r(b). To prove a is regular we need to prove that Ra = abl(r(a)) for any a in R. Let $x \in l(r(a))$. Now define $f: aR \to R$ by f(ar) = xr for all $r \in R$. We shall prove first that f is well define. If $ar_1 = ar_2$, then a(r1 - r2) =0 and, hence $(r_1 - r_2) \in r(a)$ but $r(a) = r(l(r(a)) \subseteq r(x))$. Thus $(r_1 - r_2) \in r(a)$ r(x), so $xr_1 = xr_2$. Therefore f is well define. Now, since R is P-injective then there exists c in R such that f(ar) = car and $x = f(a) = ca \in Ra$, this prove that $l(r(a)) \subseteq Ra$. The converse inclusion is easy, so Ra = l(r(a)) = l(r(b)) = Rb. Then Ra = Rb, and by proposition (2.4) we have a is regular element. Now, If 1 a is semi regular element then there exists d in R such that (1 - a) = (1 - a)dand r(1-a) = r(d). To prove (1-a) is regular we need to prove that R(1-a) = r(d). a = l(r(1-a)) for any (1-a) in R. Let $y \in l(r(1-a))$. Now, define f: (1-a) $a)R \rightarrow R$ by f(1-a)r = yr for all $r \in R$. We shall prove first f is well defined. If $(1-a)r_1 = (1-a)r_2$, then $(1-a)(r_1-r_2) = 0$ and, hence $(r_1-r_2) \in r(1-r_2)$ a). But $r(1-a) = r(l(r(1-a)) \subseteq r(y))$. Thus $(r_1 - r_2) \in r(y)$ and hence $yr_1 = yr_2$. Therefore f is well define. Now, since R is P-injective then there exists k in R such that f((1-a)r) = k(1-a)r, then $y = f(1-a) = k(1-a) \in$ R(1-a). This prove that $l(r(1-a)) \subseteq R(1-a)$, the converse inclusion is easy, so R(1-a) = l(r(1-a)) = l(r(d)) = Rd. Then R(1-a) = Rd, then by proposition (2.4) we have 1 - a is regular element. Therefore, R is VNL-ring

Proposition 3.5: Let R be a VNL-ring. Then for each proper ideal I of R, the quotient ring R/I is right semi regular local ring.

Proof: Let $a + I \in R/I$ where $a \in R$. Since R is VNL-ring, then either a or (1 - I)a) is regular element. If a is regular element, then there exists b in R such that a =aba. Let e = ba then ae = a. That is a + I = ae + I = (a + I)(e + I). Now, to prove r(a+I) = r(e+I). Let $x+I \in r(a+I)$, then (a+I)(x+I) =I. Thus ax + I = I and hence (b + I)(ax + I) = I and then bax + I = I hence ex + I = I, that is (e + I)(x + I) = I thus $x + I \in r(e + I)$. Therefore r(a + I) $I) \subseteq r(e+I)...(1)$. Now, let $y+I \in r(e+I)$, then (e+I)(y+I) = I that is ey + I = I. Thus (a + I)(ey + I) = I, hence aey + I = I. Then abay + I = I, hence ay + I = I and thus (a + I)(y + I) = I. Hence $y + I \in r(a + I)$. Therefore $r(e+I) \subseteq r(a+I)...$ (2). From (1) and (2) we have r(e+I) = r(a+I). Then a + I is right semi regular element in R. Now, if 1 - a is regular element then there exists c in R such that (1-a)c(1-a)=(1-a). Let d=c(1-a), then (1-a)c(1-a)=(1-a). a)d = (1 - a). To prove that r((1 - a) + I) = r(d + I), let $z + I \in r((1 - a) + I)$ I), $z \in R$ then ((1-a)+I)(z+I)=I hence (1-a)z+I=I, thus (c+a)z+I=II((1-a)z + I) = I, therefore c(1-a)z + I = I. Then dz + I = I, hence (d + I) $I(z+I) = I \text{ thus } z+I \in r(d+I) \text{ then } r((1-a)+I) \subseteq r(d+I)...(3). \text{ Now,}$ let $w + I \in r(d + I)$, then (d + I)(w + I) = I hence dw + I = I. Thus ((1 - I)(w + I) = I)(a) + I(dw + I) = I, then (1 - a)dw + I = I, hence (1 - a)c(1 - a)w + I = II, then (1 - a)w + I = I hence

((1-a)+I)(w+I)=I and $w+I \in r((1-a)+I)$, thus $r(d+I)\subseteq r((1-a)+I)...$ (4). From (3) and (4) we have r(d+I)=r((1-a)+I). Then (1-a)+I is right semi regular element in R. Therefore R/I is right semi regular local ring. \blacksquare

Finally, we closed this section by the following theorem.

Theorem 3.6: Let R be a commutative semi regular local ring and R is P-injective. Then:

- 1)R is clean ring.
- 2)R is exchange ring.
- 3) R is suitable ring.

Proof: 1) By proposition (3.4) we have that R is a VNL-ring, and by proposition (5.1) (2) in [8], either a = ue or a = 1 + ue where $u \in U(R)$ and $e \in Idem(R)$. Now, if a = ue by Theorem (2.2) in [8]. Thus a = (ue + e - 1) + (1 - e) with $(ue + e - 1) \in U(R)$ since $(ue + e - 1)(u^{-1}e + e - 1) = 1$ and $(1 - e) \in Idem(R)$, so $a \in cln(R)$. Now, if a = 1 + ue = (ue + 1 - e) + e with $ue + 1 - e \in U(R)$ since $(ue + 1 - e)(u^{-1}e + 1 - e) = 1$ and $e \in Idem(R)$, then $a \in cln(R)$. Therefore R is clean ring.

```
2) By proposition (3.4) we have that R is a VNL-ring. And by proposition (5.1) (2)
in [1], either a = ue or a = 1 + ue where u \in U(R) and e \in Idem(R).
If a = ue and f = e where f^2 = f, then
(a-f)u = au - fu = (ue)u - eu = u^2e^2 - eu = (ue)^2 - eu = a^2 - eu
a(\text{since } e^2 = e \text{ and } ue = eu)
That is (a - f)u = a^2 - a, then a - f = (a^2 - a)u^{-1}, a - f = a^2u^{-1} - au^{-1}.
Hence f = a + au^{-1} - a^2u^{-1}, thus f = a(1 + u^{-1} - au^{-1}), therefore f = a(1 + u^{-1} - au^{-1})
at, hence f = aR
where t = (a + au^{-1} - a^2u^{-1}) \in R. Therefore e \in aR.
Now, 1 - f = 1 - (a + au^{-1} - a^2u^{-1}), then 1 - f = 1 - a - au^{-1} + a^2u^{-1}
1 - f = (1 - a)(1 - au^{-1}), hence 1 - f = (1 - a)L,
where L = (1 - au^{-1}) \in R.
Therefore 1 - f \in (1 - a)R.
Now, if a = 1 + ue and f = 1 - e, then (a - f)u = au - fu
(a-f)u = (1+ue)u - (1-e)u = u + u^2e - u + eu
(a-f)u = 1 + eu + ue + u^2e^2 - 1 - ue (by addition 1, -1, ue, -ue)
= (1 + ue)^2 - (1 + ue) = a^2 - a
(a - f)u = a^2 - a, then a - f = (a^2 - a)u^{-1}, and hence
f = a + au^{-1} - a^2u^{-1}
```

 $f = a(1 + u^{-1} - au^{-1})$, therefore f = ab, where $b = (a + au^{-1} - a^2u^{-1}) \in R$. Therefore $f \in aR$.

Now,
$$1 - f = 1 - (a + au^{-1} - a^2u^{-1})$$
, then $1 - f = 1 - a - au^{-1} + a^2u^{-1}$ $1 - f = (1 - a)(1 - au^{-1})$, hence $1 - f = (1 - a)k$, where $k = (1 - au^{-1}) \in R$.

Therefore $1 - f \in (1 - a)R$. Hence R is exchange ring.

3) By proposition (3.4) we have that R is a VNL-ring, and by proposition (5.1) (2) in [8], either a = ue or a = 1 + ue, where $u \in U(R)$ and $e \in Idem(R)$.

If
$$a = ue$$
 and $f = e$, where $f^2 = f$, then $u(a - f) = ua - uf$

$$= u(ue) - ue = u^2e^2 - ue$$
, since $(e = e^2)$

Now, $u(a-f) = (ue)^2 - ue$, then $u(a-f) = a^2 - a$ and $a-f = u^{-1}(a^2 - a)$, hence

$$f - a = u^{-1}(a - a^2)$$
, thus $f - a = R(a - a^2)$, where $f - a \in R(a - a^2)$.

Now, if a = 1 + ue and f = 1 - e, where $f^2 = f$.

Then
$$u(a - f) = ua - uf = u(1 + ue) - u(1 - e)$$

$$u(a - f) = u + u^2e - u + ue.$$

By addition 1, -1, ue, -ue and since $(e = e^2)$

$$u(a-f) = 1 + ue + ue + u^2e^2 - 1 - ue$$
, then $u(a-f) = (1 + ue)^2 - (1 + ue)$. $u(a-f) = a^2 - a$, hence $a - f = u^{-1}(a^2 - a)$ and thus $f - a = u^{-1}(a - a^2)$, hence

$$f - a = R(a - a^2)$$
, where $f - a \in R(a - a^2)$. Therefore, R is suitable ring.

Acknowledgements. The authors are very grateful to University of Mosul/ College of Computer Sciences and Mathematics for their provided facilities, which helped to improve the quality of this work.

Reference

- [1] O. Alkam and E. A. Osba, On the regular elements in Z_n , *Turkish J. Math*, **32** (2008), 31-39.
- [2] D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, *Algebra Colloquium*, **9** (2012), 1017-1040. https://doi.org/10.1142/s1005386712000831
- [3] N. Ashrafi and E. Nasibi, r-clean rings, arXiv prepr. arXiv1104.2167,2011.
- [4] D. M. Burton, Introduction to modern abstract algebra, *Addison-Wesley Pup. Co*, 1967.
- [5] M. Contessa, On PM-rings, Commun. Algebra, 10 (1982), 93-108. https://doi.org/10.1080/00927878208822703

- [6] M, Hazewinkel, N. Gubareni and V.N. Kirichenko, Algebra, rings and modules, *Springer Science & Business Media.*, Vol. 1, 2004.
- [7] N. H. McCoy, Generalized regular rings, *Bull. Am. Math. Soc*, **45** (1939), 175-178. https://doi.org/10.1090/s0002-9904-1939-06933-4
- [8] R. Y. C. Ming, On (von Neumann) regular rings, *Proc. Edinburgh Math. Soc.*, **19** (1974), 89-91. https://doi.org/10.1017/s0013091500015418
- [9] W. K. Nicholson, Lifting idempontents and exchange rings, *Trans. Am. Math. Soc.*, 229 (1977), 269-278. https://doi.org/10.1090/s0002-9947-1977-0439876-2
- [10] N. H. Shuker, On semi-regular rings, J. Educ. Sci., 21 (1994), 183-186.

Received: February 9, 2020; Published: March 13, 2020