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Abstract
In this work we introduce and investigate the inverse Cesaro se-
quence. We compute the explicit formula with hint of exponential par-
tial Bell polynomials. We apply the result to Bernoulli numbers, zeta
function at even positive integers and Euler numbers to evaluate sums
of products of these numbers as K. Dilcher [3].
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1 Introduction

The sequence ¢, of complex numbers is a Cesaro sequence (see [7]) if it satisfies

the recursion formula
" (n
(=3 (1) v )

k=0

It is easy to verify that (—1)"B, and (;}r)ln Gp11 are Cesaro sequences, where
B,, and G,, are Bernoulli numbers and Genocchi numbers defined respectively
in means of exponential generating functions 5 and . The identity (1)

1 ERNR
can be rewritten in the form

1= Ce =3 ()] 2)

k=0
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If n even we obtain

and if n odd we will have

e — ;nf (Z) (=1)cp. ()

k=0

Let C(t) = X,50 cn% the corresponding exponential generating function. Ac-
cording to identity (1); ¢, results from Cauchy product (see [4]) of e’ and
C(—t). Then C(t) satisfies the identity

C(t) = e'C(—t). (5)

If cg # 0; C7Y(t) is a generating function too. Regarding the identity (5) we
will have
CHt)=e'C7H—t) or O™} (—t) = 'C7H(1). (6)
If o = 0, (C*)7" is a generating function, where C*(t) = t~'C(t). Let us
consider cll) the sequence generated by the exponential generating function
C7Ht) = Yo VL, then ¢ satisfies the recursion formula

=y () @)

Definition 1.1 All the sequences satisfying the identity (7) with the first
term not zero are so called inverse Cesaro sequences.

Since we have C~1(#)C(t) = 1 we obtain

£ ()= a)

k=0

where |a| denotes the integer part of a real number a. Following the identity
(8); the connection between Cesaro sequence and its inverse is

1 n—1
V=-=3 (n) Men . (9)
Co k=0 k’

From the identity (6) follows C~!(¢)C(—t) = " and

i (Z) (—1)fcien s = 1. (10)

k=0
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Furthermore

C(l):(_l)"_(—l)"n_l ke 1
n 5 (1) e (1)

The second member of the expressions (9) and (11) depends on first terms
c,(fl). Our interest in this work is to give explicit formula of c(!) in means

of ¢, without apparition of terms c,(:). In this demarche appear exponential

partial Bell polynomials B, ;. These polynomials are defined in means of the
generating function

k
1 tm i
7l (z;l:cmm'> = ZBn,k (xh...,xn,kﬂ)a_ (12)

n>k
The explicit formula of B, j is
n! k nhEL g \ R
Bn y "ty dn— =7 - > 13

where m, (k) is the set of all (ky,---,k,_gs+1) such that ky + -+ + k1 = k
and ky + 2ks + -+ + (n — k + 1)k,_ry1 = n. For more details about these
polynomials we refer to the book [1] of L. Comtet.

2 Explicit formula of inverse Cesaro sequence

The explicit formula of the inverse Cesaro sequence (! is given by following
theorem

Theorem 2.1 If ¢y # 0 we obtain c(()l) = i and forn > 1;

n

c,(ll) = Z(—l)kk:!cal_anﬂk (1, Cnr1) - (14)
k=1

If cog = 0 we have

n —1-k
07(11) _ Z(_1>kk| <C21> Bn,k (022’ . CTL_M) . (15)

'n—k+2

In means of Theorem 2.1 and identities (9) and (11); some recursive formulae
on exponential partial Bell polynomials are given in the following immediate
corollary
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Corollary 2.2 We have

(_1)kk'Bn,k‘ (Cla e 7cn—k+1) -

NE

B
Il
—

1 n k
—zz( ) Vil (e, cxin) oo (16)
€0 =1

=1
and

n
Z k'Bnk Clu Cn—k+1> -
k=1

(=" ZZ( > (=1)%! By (c1,+y chivn) Cag (17)

o k=0 i=1

2.1 Proof of Theorem 2.1

Let f(t) = X,>0ant"™ a generating function without regarding if it is ex-
ponential or ordinary generating function, with the first coefficient ag # 0.
Then for any complex number «; f*(f) is a generating function too. Let
fo(t) = Snso f2(n, k)™, In our recent works [5, 6] we have obtained the fol-
lowing explicit formula of f2(n, k):

n
o k
A a—k _k k
mey=2. 2 (k)(k k)aO weal n=t
k= ki1+-+kn=k 1"

k14+2ko+--+nkp=n

where

and
()p=ala=1)--(a—k+1)

is a falling number. It is obvious to remark that for j > n—k+1, only k; = 0.
Then for n > 1 we have

1 n
FA( @) = — S (@hag  B(llar, o, (0 — K+ Dlag ). (19)
C k=1
If « = —1 the last formula reduced to

1 n
f2(n,—1) = ] ,;(_ Qg ank(l ap, -, (n—k+1Dlay_j1). (19)
This result is a consequence of Faa di Bruno formula (see [2])

(goh)™ (1) = zi: ( ) B (h(l)(t), - h(nfkﬂ)(t)) 7
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used for computing successive derivatives of the composition go f of two deriva-
tive functions until order n. In our case,we reproduce explicitly the proof by
taking g(t) =t~ and f(t) = C(t) and we obtain

u:i )oC 1— k (t) nk(C(l)(t)’...7C(n—k+1)(t)).

If g # 0, C71(t) is a generating function. Then

rCNt),
A =l

SOEDY

and
tn

C_l(t)zco_l_‘_gz_: kCO nk(cla"'acn—k—i-l)m
In the special case ¢y = 0, the identity (5) becomes

C*(t) = ' C*(—1)

where C*(t) = Y50 75 2 with the first term is not zero. We apply again the
same technique to obtain the second identity (15).

3 Application to Bernoulli and Euler numbers

The Cesaro sequence (—1)"B,, is identic to Bernoulli numbers B,, except for
n = 1. Without lost generality, in this section by computing the inverse Cesaro
sequence B} we revisit the sums of products of Bernoulli numbers (see [3]) and
obtaining similar explicit formula including the closed form of sums of products
of zeta functions. The zeta function is defined over the set of complex numbers

formally by the series

()= —. (20)

s e
The values of ( at even positive integers is given via the well-known Euler

formula
n—1 (2/”)2”32"

2n) = (-1 21
Clom) = (-1 (21)
K. Dilcher investigated the sum
251, 2j2, -+ 20n) w
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and provide (see [3, Theorem 1]) that

Svn) = G Z o )

b,(gN) is a sequence of rational numbers defined recursively by b((]l) =1 and

N-+1 1 N 1 N-1
pN T — —Nb,ﬁ, >+Zb§H ), (24)

In our case, we investigate the new sum

sw=ycs(, C () )

k=1

in order to give its explicit formula. 3 is the sum over all (kq, ky, - - -, ko, ) where
2a is the greatest even number inferior to n — k+1; such that ko +-- -+ koy = k
and 2ky + - - - + 2aky, = n. Then n must be even as we will see later.

The Euler numbers are defined in means of the generating function

2 "
= Z E,— (26)
e +1 n>0 nl
The first few values are Fy = 1, E = ,Eg = i, ---and Fy, =0 forn > 1.
The expression of S(n) depends in these numbers and we have
Theorem 3.1 op
S(n) = ——24L 27
"=~ 27)
Regarding the characteristics of numbers E,,, the expression (27) becomes
2FE541
S(2n) = ——— and 5(2 1) =0.
(2n) = =gy d 5@+ 1)
Proof. Let . )
tet +1 "
Clt)= —F—= = By,——
2(et —1) n%% (2n)!
and n
c'(t)=>_B{"—.
S0 n!
Then
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From this identity lead B() = —%. Since F, vanish for even positive
numbers except zero, then Bé,ll)ﬂ = 0 and Bé,ll) = —22%71{1. But in means of

identity (14) Theorem 2.1 we will have

28, n
Sl = S (—1)*K!B, g (B, -+, Baa) -

k=1
>k2r

B —
" n+1

But

Bn,k(B%”"BQa):Z;Z<k27 ’ )ﬁ(

r=1

Then identity (27) Theorem 3.1 follows.

According to Euler formula we have

BQ»,- o r712<—(27")
(2r)! =(=1) (2m)%r”

Furthermore the following corollary is immediate.
Corollary 3.2

“ k 4 2(2m)"Epyq
2P ¢ (2r) = i 28
2y, ) oo = 20 2
In the literature the Genocchi numbers G, are defined by

_ZGn o

n>0

These numbers are introduced and studied by Angelo Genocchi (1817-1889).
We have G = 0, G; = 1 and Gy,41 = 0, n > 0. G, are odd integer and
related to tangent hyperbolic by

2n
ttanhf = — Z ng

n>1

Since we have (the proof is left as an exercise)

t2n
ttanh— 2 (22" — 1) By,
220 By
we obtain
Gan = —2(2%" = 1) By, (29)
G = 0 implies that C(t) = tzjl is not invertible. to escape the problem we
consider the function C*(t) = =5 +1 which generates numbers G’_fll; we deduce
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that G"“ = FE, and (—1)"E, is a Cesaro sequence. We can easily verify that

t
- The series expansion of £ ; 1

e i+l t+1 15

e+1 1"
T

n>1

From the last identity follows the inverse Cesaro sequence E(}) which is given
by Eél) = 1and BV = % for n > 1. We have already proved the following
theorem.

Theorem 3.3 Forn > 1 we have

; k ! Eoriq Fart1
g(_l)kz (kla k2a+1> H ( 2r +1)! > - anl (30)

the symbol 3> means that the sum is over all (k3, ks, -, koqr1) where 2a + 1
is the greatest odd number inferior to n — k + 1; such that ks +-- -+ kogr1 = k
and 3k2 + -+ (2a + 1)k2a+1 =n.
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