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Abstract
In this work we introduce and investigate the inverse Cesàro se-

quence. We compute the explicit formula with hint of exponential par-
tial Bell polynomials. We apply the result to Bernoulli numbers, zeta
function at even positive integers and Euler numbers to evaluate sums
of products of these numbers as K. Dilcher [3].
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1 Introduction

The sequence cn of complex numbers is a Cesàro sequence (see [7]) if it satisfies
the recursion formula

cn =
n∑
k=0

(
n

k

)
(−1)kck (1)

It is easy to verify that (−1)nBn and (−1)n

n+1
Gn+1 are Cesàro sequences, where

Bn and Gn are Bernoulli numbers and Genocchi numbers defined respectively
in means of exponential generating functions t

et−1
and 2t

et+1
. The identity (1)

can be rewritten in the form

(1− (−1)n) cn =
n−1∑
k=0

(
n

k

)
(−1)kck. (2)
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If n even we obtain
n−1∑
k=0

(
n

k

)
(−1)kck = 0 (3)

and if n odd we will have

cn =
1

2

n−1∑
k=0

(
n

k

)
(−1)kck. (4)

Let C(t) =
∑
n≥0 cn

tn

n!
the corresponding exponential generating function. Ac-

cording to identity (1); cn results from Cauchy product (see [4]) of et and
C(−t). Then C(t) satisfies the identity

C(t) = etC(−t). (5)

If c0 6= 0; C−1(t) is a generating function too. Regarding the identity (5) we
will have

C−1(t) = e−tC−1(−t) or C−1(−t) = etC−1(t). (6)

If c0 = 0, (C?)−1 is a generating function, where C?(t) = t−1C(t). Let us
consider c(1)

n the sequence generated by the exponential generating function
C−1(t) =

∑
n≥0 c

(1)
n

tn

n!
, then c(1)

n satisfies the recursion formula

c(1)
n = (−1)n

n∑
k=0

(
n

k

)
c

(1)
k . (7)

Definition 1.1 All the sequences satisfying the identity (7) with the first
term not zero are so called inverse Cesàro sequences.

Since we have C−1(t)C(t) = 1 we obtain

n∑
k=0

(
n

k

)
c

(1)
k cn−k =

⌊
1

n+ 1

⌋
, (8)

where bac denotes the integer part of a real number a. Following the identity
(8); the connection between Cesàro sequence and its inverse is

c(1)
n = − 1

c0

n−1∑
k=0

(
n

k

)
c

(1)
k cn−k. (9)

From the identity (6) follows C−1(t)C(−t) = e−t and

n∑
k=0

(
n

k

)
(−1)kc

(1)
k cn−k = 1. (10)
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Furthermore

c(1)
n =

(−1)n

c0

− (−1)n

c0

n−1∑
k=0

(
n

k

)
(−1)kc

(1)
k cn−k (11)

The second member of the expressions (9) and (11) depends on first terms

c
(1)
k . Our interest in this work is to give explicit formula of c(1)

n in means

of ck without apparition of terms c
(1)
k . In this demarche appear exponential

partial Bell polynomials Bn,k. These polynomials are defined in means of the
generating function

1

k!

∑
m≥1

xm
tm

m!

k =
∑
n≥k

Bn,k (x1, · · · , xn−k+1)
tn

n!
. (12)

The explicit formula of Bn,k is

Bn,k (x1, · · · , xn−k+1) =
n!

k!

∑
πn(k)

(
k

k1, · · · , kn

)
n−k+1∏
r=1

(
xr
r!

)kr
, (13)

where πn(k) is the set of all (k1, · · · , kn−k+1) such that k1 + · · · + kn−k+1 = k
and k1 + 2k2 + · · · + (n − k + 1)kn−k+1 = n. For more details about these
polynomials we refer to the book [1] of L. Comtet.

2 Explicit formula of inverse Cesàro sequence

The explicit formula of the inverse Cesàro sequence c(1)
n is given by following

theorem

Theorem 2.1 If c0 6= 0 we obtain c
(1)
0 = 1

c0
and for n ≥ 1;

c(1)
n =

n∑
k=1

(−1)kk!c−1−k
0 Bn,k (c1, · · · , cn−k+1) . (14)

If c0 = 0 we have

c(1)
n =

n∑
k=1

(−1)kk!
(
c1

2

)−1−k
Bn,k

(
c2

2
, · · · , cn−k+2

n− k + 2

)
. (15)

In means of Theorem 2.1 and identities (9) and (11); some recursive formulae
on exponential partial Bell polynomials are given in the following immediate
corollary
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Corollary 2.2 We have

n∑
k=1

(−1)kk!Bn,k (c1, · · · , cn−k+1) =

− 1

c0

n∑
k=1

k∑
i=1

(
n

k

)
(−1)ii!Bk,i (c1, · · · , ck−i+1) cn−k (16)

and
n∑
k=1

(−1)kk!Bn,k (c1, · · · , cn−k+1) =

(−1)n

c0

− (−1)n

c0

n∑
k=0

k∑
i=1

(
n

k

)
(−1)n−k(−1)ii!Bk,i (c1, · · · , ck−i+1) cn−k (17)

2.1 Proof of Theorem 2.1

Let f(t) =
∑
n≥0 ant

n a generating function without regarding if it is ex-
ponential or ordinary generating function, with the first coefficient a0 6= 0.
Then for any complex number α; fα(t) is a generating function too. Let
fα(t) =

∑
n≥0 f

∆(n, k)tn, In our recent works [5, 6] we have obtained the fol-
lowing explicit formula of f∆(n, k):

f∆(n, α) =
n∑
k=1

∑
k1+···+kn=k

k1+2k2+···+nkn=n

(
α

k

)(
k

k1, · · · , kn

)
aα−k0 ak11 · · · aknn , n ≥ 1,

where (
α

k

)
=

(α)k
k!

and
(α)k = α (α− 1) · · · (α− k + 1)

is a falling number. It is obvious to remark that for j > n−k+ 1, only kj = 0.
Then for n ≥ 1 we have

f∆(n, α) =
1

n!

n∑
k=1

(α)ka
α−k
0 Bn,k(1!a1, · · · , (n− k + 1)!an−k+1). (18)

If α = −1 the last formula reduced to

f∆(n,−1) =
1

n!

n∑
k=1

(−1)ka
α−k
0 Bn,k(1!a1, · · · , (n− k + 1)!an−k+1). (19)

This result is a consequence of Faà di Bruno formula (see [2])

(g ◦ h)(n) (t) =
n∑
k=1

(
g(k) ◦ h(t)

)
Bn,k

(
h(1)(t), · · · , h(n−k+1)(t)

)
,
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used for computing successive derivatives of the composition g◦f of two deriva-
tive functions until order n. In our case,we reproduce explicitly the proof by
taking g(t) = t−1 and f(t) = C(t) and we obtain

dnC−1(t)

dtn
=

n∑
k=1

(−1)kC
−1−k(t)Bn,k

(
C(1)(t), · · · , C(n−k+1)(t)

)
.

If c0 6= 0, C−1(t) is a generating function. Then

C−1(t) =
∑
n≥0

dnC−1(t)

dtn
|t=0

tn

n!

and

C−1(t) = c−1
0 +

∑
n≥1

n∑
k=1

(−1)kc
−1−k
0 Bn,k (c1, · · · , cn−k+1)

tn

n!

In the special case c0 = 0, the identity (5) becomes

C?(t) = etC?(−t)

where C?(t) =
∑
n≥0

cn+1

n+1
tn

n!
with the first term is not zero. We apply again the

same technique to obtain the second identity (15).

3 Application to Bernoulli and Euler numbers

The Cesàro sequence (−1)nBn is identic to Bernoulli numbers Bn except for
n = 1. Without lost generality, in this section by computing the inverse Cesàro
sequence B(1)

n we revisit the sums of products of Bernoulli numbers (see [3]) and
obtaining similar explicit formula including the closed form of sums of products
of zeta functions. The zeta function is defined over the set of complex numbers
formally by the series

ζ(s) =
∑
n≥1

1

ns
. (20)

The values of ζ at even positive integers is given via the well-known Euler
formula

ζ(2n) = (−1)n−1 (2π)2nB2n

2(2n)!
. (21)

K. Dilcher investigated the sum

SN(n) =:
∑(

2n

2j1, 2j2, · · · , 2jN

)
B2j1B2j2 · · ·B2jN (22)
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and provide (see [3, Theorem 1]) that

SN(n) =
(2n)!

(2n−N)!

bN−1
2 c∑

k=0

b
(N)
k

B2N−2k

2N − 2k
. (23)

b
(N)
k is a sequence of rational numbers defined recursively by b

(1)
0 = 1 and

b
(N+1)
k = − 1

N
b

(N)
k +

1

4
b

(N−1)
k−1 . (24)

In our case, we investigate the new sum

S(n) =
n∑
k=1

(−1)k
∑(

k

k2, · · · , k2a

)
a∏
r=1

(
B2r

(2r)!

)k2r
(25)

in order to give its explicit formula.
∑

is the sum over all (k2, k4, · · · , k2a) where
2a is the greatest even number inferior to n−k+1; such that k2 + · · ·+k2a = k
and 2k2 + · · ·+ 2ak2a = n. Then n must be even as we will see later.

The Euler numbers are defined in means of the generating function

2

et + 1
=
∑
n≥0

En
tn

n!
. (26)

The first few values are E0 = 1, E1 = −1
2
, E3 = 1

4
, · · · and E2n = 0 for n ≥ 1.

The expression of S(n) depends in these numbers and we have

Theorem 3.1

S(n) = − 2En+1

(n+ 1)!
. (27)

Regarding the characteristics of numbers En, the expression (27) becomes

S(2n) = − 2E2n+1

(2n+ 1)!
and S(2n+ 1) = 0.

Proof. Let

C(t) =
tet + t

2 (et − 1)
=
∑
n≥0

B2n
t2n

(2n)!

and

C−1(t) =
∑
n≥0

B(1)
n

tn

n!
.

Then

C−1(t) =
2(et − 1)

tet + t
=

2

t

(
1− 2

et + 1

)
=

2

t

1−
∑
n≥0

En
tn

n!

 = −2
∑
n≥0

En+1

n+ 1

tn

n!
.
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From this identity lead B(1)
n = −2En+1

n+1
. Since En vanish for even positive

numbers except zero, then B
(1)
2n+1 = 0 and B

(1)
2n = −2E2n+1

2n+1
. But in means of

identity (14) Theorem 2.1 we will have

B(1)
n =

2En+1

n+ 1
=

n∑
k=1

(−1)kk!Bn,k (B2, · · · , B2a) .

But

Bn,k (B2, · · · , B2a) =
n!

k!

∑(
k

k2, · · · , k2a

)
a∏
r=1

(
B2r

(2r)!

)k2r
.

Then identity (27) Theorem 3.1 follows.

According to Euler formula we have

B2r

(2r)!
= (−1)r−1 2ζ(2r)

(2π)2r
.

Furthermore the following corollary is immediate.

Corollary 3.2

n∑
k=1

∑(
k

k2, · · · , k2a

)
2k

a∏
r=1

ζk2r(2r) =
2(2π)nEn+1

(−1)
n
2 (n+ 1)!

. (28)

In the literature the Genocchi numbers Gn are defined by

2t

et + 1
=
∑
n≥0

Gn
tn

n!
.

These numbers are introduced and studied by Angelo Genocchi (1817-1889).
We have G0 = 0, G1 = 1 and G2n+1 = 0, n > 0. G2n are odd integer and
related to tangent hyperbolic by

t tanh
t

2
= −

∑
n≥1

G2n
t2n

(2n)!
.

Since we have (the proof is left as an exercise)

t tanh
t

2
=
∑
n≥1

2
(
22n − 1

)
B2n

t2n

(2n)!

we obtain
G2n = −2

(
22n − 1

)
B2n. (29)

G0 = 0 implies that C(t) = 2t
et+1

is not invertible. to escape the problem we

consider the function C?(t) = 2
et+1

which generates numbers Gn+1

n+1
; we deduce
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that Gn+1

n+1
= En and (−1)nEn is a Cesàro sequence. We can easily verify that

2
e−t+1

= 2et

et+1
. The series expansion of et+1

2
is

et + 1

2
= 1 +

∑
n≥1

1

2

tn

n!
.

From the last identity follows the inverse Cesàro sequence E(1)
n which is given

by E
(1)
0 = 1 and E(1)

n = 1
2

for n ≥ 1. We have already proved the following
theorem.

Theorem 3.3 For n ≥ 1 we have

n∑
k=1

(−1)k
∑(

k

k1, · · · , k2a+1

)
a∏
r=1

(
E2r+1

(2r + 1)!

)k2r+1

=
1

2n!
. (30)

the symbol
∑

means that the sum is over all (k3, k5, · · · , k2a+1) where 2a + 1
is the greatest odd number inferior to n− k+ 1; such that k3 + · · ·+ k2a+1 = k
and 3k2 + · · ·+ (2a+ 1)k2a+1 = n.
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