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Abstract

We prove that there is no symmetric orthogonal circulant matrix
with complex entries and that the number of distinct symmetric or-
thogonal circulant matrices of order n is 2bn/2c+1.
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1 Introduction and preliminaries

A symmetric orthogonal circulant matrix is the simplest orthogonal matrix
such that the sum of elements in each column equals 1. Orthogonal matri-
ces with this property can be applied to data anonymization in the field of
statistics [3]. Craigen and Kharaghani [1] proved that there is no circulant
Hermitian complex Hadamard matrix of order larger than 4. In this paper we
study the relationship between the eigenvalues of an orthogonal circulant ma-
trix, a real orthogonal circulant matrix, and a symmetric orthogonal circulant
matrix. By using these relationships, we prove that there is no symmetric or-
thogonal circulant matrix with complex entries and that the number of distinct
symmetric orthogonal circulant matrices of order n is 2bn/2c+1.

We denote by (aij)0≤i.j≤n−1 the n×n matrix whose (i+1, j+1)-th entry is
aij. We also denote by circ(a0, . . . , an−1) the circulant matrix whose first row
is (a0 . . . an−1), by diag(d0, . . . , dn−1) the diagonal matrix whose i-th diagonal
element is di, and by Fn the n× n Fourier matrix (ωn

ij)0≤i,j≤n−1, where ωn =
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e2π
√
−1/n. It is well known [2] that an n× n matrix Cn is circulant if and only

if there exist d0, . . . , dn−1 ∈ C such that

Cn = Fndiag(d0, . . . , dn−1)Fn
−1 =

1

n
Fn(diωn

−ij)0≤i,j≤n−1

=
1

n

(
n−1∑
k=0

ωn
ikdkωn

−kj

)
0≤i,j≤n−1

=
1

n
circ

(
n−1∑
k=0

dkωn
−0k,

n−1∑
k=0

dkωn
−1k, . . . ,

n−1∑
k=0

dkωn
−(n−1)k

)
.

From this property, we shall derive our results.

2 Main results

We write

1

n
circ

(
n−1∑
k=0

dkωn
−0k, . . . ,

n−1∑
k=0

dkωn
−(n−1)k

)
=

 v0
...

vn−1

 .

Then it holds that

v0 · v0 =
1

n2

n−1∑
i=0

(
n−1∑
k=0

dkωn
−ik

)(
n−1∑
k=0

dkωn
−ik

)
(1)

=
1

n2

n−1∑
i=0

( ∑
0≤s,t≤n−1

dsdtωn
−i(s+t)

)

=
1

n

(
d0

2 +
n−1∑
t=1

dtdn−t

)
,

v0 · vi =
1

n2

n−1∑
j=0

(
n−1∑
k=0

dkωn
−jk

)(
n−1∑
k=0

dkωn
−(j−i)k

)
(2)

=
1

n2

n−1∑
j=0

( ∑
0≤s,t≤n−1

dsdtωn
−j(s+t)+it

)

=
1

n

(
d0

2 +
n−1∑
t=1

dtdn−tωn
it

)

for 1 ≤ i ≤ n− 1. From these equatios, the following lemma is derived.
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Lemma 2.1. Cn is an orthogonal circulant matrix if and only if there exist
d0, . . . , dn−1 ∈ C satisfying the following conditions:

(i) d0
2 = 1 and didn−i = 1 for 1 ≤ i ≤ n− 1.

(ii)

Cn =
1

n
circ

(
n−1∑
k=0

dkωn
−0k,

n−1∑
k=0

dkωn
−1k, . . . ,

n−1∑
k=0

dkωn
−(n−1)k

)
.

Proof. By (1) and (2), a circulant matrix Cn is orthogonal if and only if
d0, . . . , dn−1 ∈ C such that

d0
2 +

n−1∑
t=1

dtdn−t = n, (3)

d0
2 +

n−1∑
t=1

dtdn−tωn
it = 0 (4)

for 1 ≤ i ≤ n − 1. (4) is equivalent to asserting that d0
2 +

∑n−1
t=1 dtdn−tx

t is
divisible by

∑n−1
t=0 xt. Hence (3) and (4) is equivalent to (i).

Furthermore, we have the following lemmas

Lemma 2.2. Cn is a real orthogonal circulant matrix if and only if there
exist d0, . . . , dn−1 ∈ C satisfying the conditions of Lemma 2.1 and

(iii) di = dn−i for 1 ≤ i ≤ n− 1.

Proof. An orthogonal circulant matrix Cn is a real matrix if and only if

n−1∑
k=0

dkωn
−ik =

n−1∑
k=0

dkωn
ik (5)

for 0 ≤ i ≤ n−1. (5) is equivalent to asserting that (d0−d0)+
∑n−1

i=1 (dn−i−di)xi
is divisible by xn − 1. Hence (5) is equivalent to (iii). Note that the condition
d0 = d0 can be omitted because of d0

2 = 1.

Lemma 2.3. Cn is a symmetric orthogonal circulant matrix if and only if
there exist d0, . . . , dn−1 ∈ C satisfying the following conditions

(iv) di = ±1 for 0 ≤ i ≤ n− 1,

(v) di = dn−i for 1 ≤ i ≤ n− 1,

and the condition (ii) in Lemma 2.1.
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Proof. An orthogonal circulant matrix Cn is symmetric if and only if

n−1∑
k=0

dkωn
−ik =

n−1∑
k=0

dkωn
−(n−i)k (6)

for 1 ≤ i ≤ n − 1. (6) is equivalent to asserting that
∑n−1

i=1 (dn−i − di)x
i is

divisible by
∑n−1

t=0 xt. Hence (6) is equivalent to (v), so that (i) can be replaced
by (iv).

These lemmas imply the following theorems.

Theorem 2.4. A symmetric orthogonal circulant matrix is a real matrix.

Proof. Suppose that Cn is a symmetric orthogonal circulant matrix. By (iv)
and (v), we have di = dn−i = dn−i for 1 ≤ i ≤ n − 1. By Lemma 2.2, the
theorem follows.

Theorem 2.5. The number of distinct symmetric orthogonal circulant ma-
trices of order n is 2bn/2c+1.

Proof. Let Cn and Cn
′ be symmetric orthogonal circulant matrices and let

Cn
′ =

1

n
circ

(
n−1∑
k=0

dk
′ωn
−0k,

n−1∑
k=0

dk
′ωn
−1k, . . . ,

n−1∑
k=0

dk
′ωn
−(n−1)k

)
.

If Cn = Cn
′, then diag(d0, . . . , dn−1) = diag(d0

′, . . . , dn−1
′). Hence, by Lemma

2.3, we see that there is a one-to-one correspondence between the set of all
symmetric orthogonal circulant matrices and

{(d0, . . . , dbn/2c) | d0 = ±1, . . . , dbn/2c = ±1} = {±1}bn/2c+1.
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