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Abstract

In this paper, firstly, we obtained the differential equation of the
hyper-asymptotic curves in W,, with respect to a rectilinear congruence.
With the help of it, we defined the hyper-asymptotic curvature vector
field and the hyper-asymptotic curve in W,,. Secondly, we described an
asymptotic line of order p in W, in W, 11 and a geodesic of order p in
Wi+1. We gave necessary and sufficient condition to be an asymptotic
line of a curve in W,. And then we expressed the relation between
geodesics in W, and in W, 4. Thirdly, we stated the relations among
a hyper-asymptotic curve, an asymptotic line of second order and a
geodesic of second order in W,,. Finally, we expressed the condition to
be a geodesic of second order of a hyper-asymptotic curve.
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1 Introduction

A manifold with a conformal metric g;; and a symmetric connection V;, satis-
fying the compatibility condition

Vigi; — 2T%g;; = 0 (1)

is called a Weyl space, which will be denoted by W,,(g;;1%). The vector field
T}, is named the complementary vector field. Under a renormalization of the
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metric tensor g;; in the form

Jis = Ngij (2)
the complementary vector field T}, is transformed by the law

where \ is a scalar function [1].
If, under the transformation (2), the quantity A is changed according to
the rule

A=NA (4)
then A is called a satellite of g;; with weight {p}.
The prolonged covariant derivative of A is defined by [2]
VkA = VkA — kaA. (5)

Let Wy, (gij, T)) be n-dimensional Weyl space and W,,1(gap, Tt) be (n+1)-
dimensional Weyl space (i,7,k = 1,2,...,n; a,b,c = 1,2,...,n+1). Let a°
and u’ be the coordinates of W,,11(gap, T.) and W,,(gi;, Tk), respectively. The
metrics of W, (gi;, Ti) and Wii1(gas, T) are connected by the relations

9ij = Jap2i} (6)

where ¢ is the covariant derivative of z* with respect to u'. _
The prolonged covariant derivative of A with respect to u* and 2¢ are VA
and V_ A, respectively. These are related by the conditions

ViA = 25V, A. (7)

Let the normal vector field n® of W,,(g;;,T;) be normalized by the condi-
tion gen®n® = 1. The moving frame {z¢,n,} and its reciprocal {x% n®} are
connected by the relations [1]

n'ng =1, ngaf =0, nz, =0, ziz) = 0. (8)

Since the weight of z¢ is {0}, the prolonged covariant derivative of x¢
relative to u® is given by [1]

kaf = V! = wyn® (9)

where w;;, are the coefficients of the second fundamental form of W,,(g;;, Tk ).

Let v* and v' be the contravariant components of the vector field v relative
T T '

to Wit1(gap, T) and W, (gs5, Tx), respectively. Denoting the components of v
relative to W41(gas, Tc) and W, (gi;, T) by v, and v;, we have 3]

vt =, v, = T, (10)
T T
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2 Preliminaries

A hyper-asymptotic curve in an Euclidean space of three dimensions was de-
fined by Mishra [4, 5], who also studied the hyper-asymptotic curves in a hy-
persurface of a Riemannian space [6]. Mishra defined hyper-asymptotic curve
as: A hyper-asymptotic curve is a curve on a surface which has the property
that its rectifying plane at all points contain a line of a specified rectilinear
congruence through that point. Rastogi [7] obtained the differential equation
of hyper-asymptotic curves in a hypersurface of a Riemannian space by using
different method from Mishra’s method. For this, Rastogi used definition of
an asymptotic curve of order p of Hayden [8] and definition of a geodesic of
order p of Srivastava [9)].

3 Hyper-Asymptotic Curves

Let v be a vector field of a rectilinear congruence in W, ;. Let v* be the
contravariant components of v relative to W,,,1. Then we have

V=t 4 (i=1,2,...,n;a=1,2,...,n+1) (11)

where t* are the contravariant components of the vector field ¢ in the hyper-
surface W, and r is a parameter.
Let v* be normalized by the condition

gabvavb =L (12)
Hence
cosf = gpv'n’ =1 (13)
where 6 is the angle between v* and n’.
Using (12), we get
Japv" 0" =1 = git't! +r? (14)
1—7r? =sin0 = g,;t't. (15)
Let C' be a curve with equations z* = z'(s) in W, (s is the arc length of
C).

We know that if C' is a curve in W,,, C' is also a curve in W, ;.
Let v be the tangent vector field of C'. Let us denote the contravariant

components of v relative to W,, and W, by 1111 and '11)“, respectively. There are

(n — 1) normal vector fields of C' relative to I, in the form Uiy, (r=
n T

2,3,...,n). There are (n—1) curvatures of C' in the form K (r =1,2,...,n—1)
relative to W,,. Besides C' has got n normal vector fields v (r = 2,3,...,n+1)

and n curvatures K, (r = 1,2,...,n) relative to W, ;.
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Definition 3.1 Geodesic surface is introduced as an analogue to the recti-
fying plane. It is defined by the tangent vector ﬁeldzl) of C'" and by the second

normal vector ﬁeldg of Cin Wy .

If the vector field v lies in geodesic surface, it can be expressed as a linear

combination of 111 and g:

v“:oml)“—l—ﬁg“(a:1,2,...,n—|—1) (16)

where o and 3 are to be determined, 21;“ and 13)”‘ are the contravariant compo-
nents of v and v relative to Wy,11.
Usmg (12) and (16), we have

t'ad +rn® = oal)“ + ﬁ’g“ (1=1,2,...,n). (17)

We know that

where 12) and v are the contravariant components of the first normal vector

field v relatlve to W, and W, 1, respectively.

Wlth the help of Frenet’s Formulae, the prolonged covariant derivative of
v® in the direction of v is

VPV = vF2b Vo = vV (v'a?) = R (V') 28 + wiv'vFn® (19)
121 2 1 2 1 2 2 1
—K111)a + KQg“ = (—Kﬂlﬁ + Kgg’)a:? + wikg’tlfkn“ (20)

where w;;, are the coefficients of the second fundamental form. Let us denote
wlkglgjk by 7 Then we have

—Kﬂl)a + Kgga = (—Kﬂl)i + KQ?{)%? —+ 27'171“. (21)

Using definition of hyper-asymptotic curve of Mishra [6] for Weyl space,
we have K; = 0 and K; = 0. Therefore, from (21)

Kgg = Kgg xi+1n (22)

is obtained.
Using (22), 13)“ is obtained as follows:

a 1 i,.a a
v = K—Z(Kgg wj+ 1 ). (23)
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From (17) and (23), we have

1.4 a __ a 1 i..a a
taf +rnt = av +6K—2(Kgg T+ ).
Multiplying (24) by gabx? and summing on a and b, we get

i i 1 i .
tgij:ail)gij+ﬁf—(—2§gij (j=1,2,...,n)

where 111“ = zlﬂxf, gabxgx;’- = g;; and gabnax? =0(0b=12,...,n+1).

Multiplying (25) by 11Jj and summing on ¢ and j, we obtain
CHiayd —
9ijt 11} «
Caybyd — Caybyd —
where 9ij V" 1 and 9ijy"v 0.

Multiplying (24) by gun® and summing on a and b, we find

T—Bl

=p=r
Ky21
where ggn®n® = 1.
Using (26) and (27) in (25), we get
i i KQ i
t'gij = gkltk?{l?f 9ii + 1 Y'gis (k,1=1,2,...,n).
21

Multiplying (28) by ¢’™ and summing on j, we get

K.
m k,l, m 2 m
= — =1,2,...
t gkltqu'll) +TTg (m 727 7n)
21
or .
EEREAE S
21
Taking h"™ instead of g, we obtain
K.
hm = gklhkvlvm + _QUm
11 T 3
21
or

Kng o 27_l(hm o gklhkqulqum) =0.
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We shall call the differential equation of hyper-asymptotic curves for (32).
For a congruence specified by the parameters h", solutions of the n equations
(32) determine the hyper-asymptotic curves in W, relative to that congruence.

Let us denote the left hand side of equation (32) by I'™ which we shall call
the contravariant components of the hyper-asymptotic curvature vector field:

r :Kgg -1y =0 (33)
where y™ = A" — gklhkql)l'zljm.

Definition 3.2 A hyper-asymptotic curve of W, with respect to a congru-
ence can be defined as a curve whose hyper-asymptotic curvature vector field
1s a null vector field.

4 An Asymptotic Line of Order p and A Geodesic
of Order p

Definition 4.1 We shall call an asymptotic line of order p (p < n) for a
curve in Wy, in Wy if K, = K, (r=1,2,...,p).

Theorem 4.2 If C is an asymptotic line of order p in W, in W, 1, then
wikvill)k =0(r=1,2,...,p). The converse of this is also true.

Proof:
Let C' be an asymptotic line of order p in W, in W,.;. Therefore K, = K,
where K, and K, are r-th curvatures of C relative to W, and W,,, respec-
tively.

From Frenet’s Formulae,

zljbvbva =—K,_, gla + K, gla (Ko = Kn—i—l =0) (in Wyy1) (34)

V'Vl =~ K v+ K, ?ﬁf (Ko =K, =0) (inW,) (35
are satisfied. Here, v is the tangent vector field of C.

We know that v* = 11;’95?

Taking prolonged covariant derivative of 11)“ in the direction of v and using

(34) and (35), we get
WVt = (vkvkvi)xq + wivtvFn®
1 1 1 177 11
— Ko + K = (—Kov' + K"z} + wipv'vFn®
0 2 0 2 11
[~ ..Q i_.a i,k _a
Klg = Klg r; + wikzl) 111 n

(K, — Kl)g“ = wikzljig)kn“. (36)
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Smce C is an asymptotic line of order p, K; = K; or K; — K; = 0 i.e.
w,kzl) ipF = 0 where v = v and xkvb Vk

Taking prolonged covarlant derivative of 12) = gzxf in the direction of v and
using Frenet Formulae, we get
PVt = (0FV ')zt + wiv'vtn®
172 1 2 2 1
—f(ﬂf“ + Kﬂg)a = (—Kﬂlji + Kzgi)x? + wikgiiljkn“

(—Ki + Kl>71]a + (Ky — Kz)ga = wikgiillkna- (37)

Since —K; + K; = 0 and Ky — K5 = 0, we have w,kglgfk = 0 where g%? = g“.

Similarly, for v * = v ‘z¢
p—1 p—1

g]bvb vla ( v Ul Nl —|—wlk v wFne
P

-11
— _p,g 1_)2“ + I_(p,lva = (K, 1_)2 + K,_v )w + wlk v, 11)kn

p p P

(—Kp_g —|— Kp_2>py2a + (Kp—l - Kp_l)'g = wikp?jl’b,lljk (38)

Since —Kp, 5 + K,_» = 0 and l_(p_l — K,_1 =0, we get wy, vliil)k = 0 where
—

a

vizd = v
P
Flnally for v* = vix?
P
WPVt = (v kvkv ) + wgv'vFn®
1 p 1 p1
7 o i k,a
o) R = (B 1 0 g
(—Kp_l + K, ) v+ (K, — K,) v *=wgv'vn® (39)
p—1 p+1 p 1

Since —K, 1 + K, = 0 and K, — K, = 0, we have wikviql)k = 0 where
p

vizt = v

p+1 b ptl

Hence, while C' is an asymptotic line of order p in W,, in W, 1, wikvill)
'
0(r=1,2,...,p) is obtained. )
Conversely, suppose that wlkzlﬂgjk = 0. From here, we get K1 — K1 =0

k:

or Ki = K, Le. C is an asymptotic line of order 1 in W, in Wy Let

wzkg%fk = 0. —Kl +K1 = 0 and K2 — K2 =0 or Kl = Kl and K2 = K2

i,e. C is an asymptotic line of order 2 in W, in W, 1. If wy v/t gk =0,
—

- 7p_2 + Kp_g =0 and Kp—l - Kp_1 =0 or Kp_g = Kp_Q and Kp—l = Kp_1
i.e. C is an asymptotic line of order (p — 1) in W, in W,,4q. If wikviil)k =0,
P
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— _p—l + K, =0 and }_(p —K,=0or I_(p_l = K,_; and l_(p = Kpie Cis
an asymptotic line of order p in W,, in W,,;1. The proof is completed.
Definition 4.3 A curve in W, 1 is called a geodesic of order p of W11 if

at every point of the curve, its first p curvatures relative to Wy,11 are all zero
ie. K, =0(r=1,2,...,p).

From Frenet’s Formulae, we write
WVt = —K,_1 v+ K, v “(r=1,2,...,n+1), Koy=Kn1=0.
1 r r—1 r—+1

Using definition of a geodesic of order p of W, and from above equation, we
get .
g)bvbv“ =0(r=1,2,...,p).

From here:
Corollary 4.4 Let C be a geodesic of order p of W, 11 a,ndzl) be the tangent
vector field of C'. Then tangent vector ﬁeldzl) and (p — 1) normal vector fields

V2,3, ...,vp are undergo parallel displacement along the curve C.

Theorem 4.5 If a curve (which lies in W, ) is a geodesic of order p (p < n)
of W41 then it is both a geodesic of order p and an asymptotic line of order p
in W,,. The converse of this is also true.

Proof: B
Let C' (which lies in W,,) be a geodesic of order p of W, ;. Then K, =
0(r=1,2,...,p). We know that 11)“ = 7111.:1:? From Frenet’s Formulae, Klg“ =

Klqimg + wikql)izljkn“. Since K; = 0, we get K; = 0 and wzkzlﬂifk = (. Since

K, =0, C'is a geodesic of order 1 in W,,. Furthermore, since K, = K; (besides
wzkzlﬂzljk = 0), C is an asymptotic line of order 1 in W,,.

k k

From 12;“ = gix? and 0 = Kggix? + wzkgzzlj n® we get Ky = 0 and wzkéﬂzl) =
0. Since Ky = 0, C is a geodesic of order 2 of W,. Since K» = K, and
wlkg%l)k =0, C is an asymptotic of order 2 of W,,.

Repeating the above procedure, from K, = 0 (r = 1,2,...,p), we obtain
K, = 0 and wikvig)"’ =0 (r=12,...,p). Since K, = 0, C' is a geodesic of
order p of W,,. Since K, = K, and wikvi?k = 0, C' is an asymptotic line of
order p of W,,.

Conversely, if C' is a geodesic of order p and an asymptotic line of order p
in W, then K, = 0 and wikvizljk =0(r=1,2,...,p). From here, K, =0 (r =
1,2,...,p) is obtained i.e. C is a geodesic of order p in W, ;. The proof is

completed.
With the help of (33), Theorem 4.2 and Definition 4.3:
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Theorem 4.6 If C' is a hyper-asymptotic curve and an asymptotic line of
order 2 in W, then C' is a geodesic of order 2 in W, or v™ is a null vector
field.

Proof:
If C is a hyper-asymptotic curve, from (33) ' = Kggm — 27'1ym = 0 is valid.
Since C' is also an asymptotic line of order 2 in W,,, using Theorem 4.2, T =
wzkg%l)k = (0 is obtained. Since both I' = 0 and 7= 0, we have Ky = 0ie. C

is a geodesic of order 2 of W,, or gm is a null vector field.

Theorem 4.7 If C is a hyper-asymptotic curve and a geodesic of order 2
m W, then C is an asymptotic line of order 2 in W,, or y™ is a null vector
field.

Proof:
Let C' be a hyper-asymptotic curve and a geodesic of order 2 in W,,. Then,
with the help of (33), I = 0 and Ky = 0 are valid. Thus 7= wmglil)k =0

i.e. C' is an asymptotic line of order 2 in W,, or y™ is a null vector field.

Corollary 4.8 Let us denote the magnitude of vector field T by K, : K} =
gi; 1TV

Let us calculate it:

2 _ i ) J _ J
Ky = gi(Ky" = 1y") (K0" — 14/7)
Ky = K5 = 2K 7950y + 72097 (40)

is obtained where gijgigj =1.
Using y* = b — gklhkll)lzlﬁ, we get
9i¥'y = gis(h' — gklhk?iflll)i)(hj - gklhk?iflll)j)
gijyiyj = gijhihj - (gijhi?j)Q (41)
where gij?izljj = 0.
Using A' = £, (13) and (15), we have

a1 . sin®0
gijh h = ﬁg’]t t = 00529 = tg20 (42)
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Let a be the angle between h* and 11)j. Then
cos o tgh = gl-jhig)j. (43)
Using (41), (42) and (43), we have
9iy'y’ = tg?0 — cos® a tg?d = tg?fsin” a. (44)

Since <I(hi,13)j) = 5 — a, we get

Cos(g — a)tgh = sinatgh = gijhigj. (45)
Using (45), we obtain
gz'jgiyj = gijgi(hj - gkzhk?lfl?{j)
gijgiyj = gmgzhj = sinatg@ (46)
where gijgizljj = 0.
Using (44) and (46) in (40), we get
K} =Kj;— 2K, 7 sinartgl) + 2712(tg29 sin? @)
K} = (K, — 27'11:g0rsilr1a)2
K, = Ky — 27'1tg(9 sin c. (47)

Corollary 4.9 If 0 = 0, the hyper-asymptotic curve is a geodesic of order
2 i W,.
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