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Abstract

In this paper, firstly, we obtained the differential equation of the
hyper-asymptotic curves in Wn with respect to a rectilinear congruence.
With the help of it, we defined the hyper-asymptotic curvature vector
field and the hyper-asymptotic curve in Wn. Secondly, we described an
asymptotic line of order p in Wn in Wn+1 and a geodesic of order p in
Wn+1. We gave necessary and sufficient condition to be an asymptotic
line of a curve in Wn. And then we expressed the relation between
geodesics in Wn and in Wn+1. Thirdly, we stated the relations among
a hyper-asymptotic curve, an asymptotic line of second order and a
geodesic of second order in Wn. Finally, we expressed the condition to
be a geodesic of second order of a hyper-asymptotic curve.
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1 Introduction

A manifold with a conformal metric gij and a symmetric connection ∇k satis-
fying the compatibility condition

∇kgij − 2Tkgij = 0 (1)

is called a Weyl space, which will be denoted by Wn(gijTk). The vector field
Tk is named the complementary vector field. Under a renormalization of the
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metric tensor gij in the form
g̃ij = λ2gij (2)

the complementary vector field Tk is transformed by the law

T̃k = Tk + ∂k lnλ (3)

where λ is a scalar function [1].
If, under the transformation (2), the quantity A is changed according to

the rule

Ã = λpA (4)

then A is called a satellite of gij with weight {p}.
The prolonged covariant derivative of A is defined by [2]

∇̇kA = ∇kA− pTkA. (5)

Let Wn(gij, Tk) be n-dimensional Weyl space and Wn+1(gab, Tc) be (n+ 1)-
dimensional Weyl space (i, j, k = 1, 2, . . . , n; a, b, c = 1, 2, . . . , n + 1). Let xa

and ui be the coordinates of Wn+1(gab, Tc) and Wn(gij, Tk), respectively. The
metrics of Wn(gij, Tk) and Wn+1(gab, Tc) are connected by the relations

gij = gabx
a
i x

b
j (6)

where xai is the covariant derivative of xa with respect to ui.
The prolonged covariant derivative of A with respect to uk and xc are ∇̇kA

and ∇̇cA, respectively. These are related by the conditions

∇̇kA = xck∇̇cA. (7)

Let the normal vector field na of Wn(gij, Tk) be normalized by the condi-
tion gabn

anb = 1. The moving frame {xai , na} and its reciprocal {xia, na} are
connected by the relations [1]

nana = 1, nax
a
i = 0, naxia = 0, xai x

j
a = δji . (8)

Since the weight of xai is {0}, the prolonged covariant derivative of xai
relative to uk is given by [1]

∇̇kx
a
i = ∇kx

a
i = wikn

a (9)

where wik are the coefficients of the second fundamental form of Wn(gij, Tk).
Let v

r

a and v
r

i be the contravariant components of the vector field v
r

relative

to Wn+1(gab, Tc) and Wn(gij, Tk), respectively. Denoting the components of
r
v

relative to Wn+1(gab, Tc) and Wn(gij, Tk) by
r
va and

r
vi, we have [3]

v
r

a = xai v
r

i,
r
va = xia

r
vi. (10)
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2 Preliminaries

A hyper-asymptotic curve in an Euclidean space of three dimensions was de-
fined by Mishra [4, 5], who also studied the hyper-asymptotic curves in a hy-
persurface of a Riemannian space [6]. Mishra defined hyper-asymptotic curve
as: A hyper-asymptotic curve is a curve on a surface which has the property
that its rectifying plane at all points contain a line of a specified rectilinear
congruence through that point. Rastogi [7] obtained the differential equation
of hyper-asymptotic curves in a hypersurface of a Riemannian space by using
different method from Mishra’s method. For this, Rastogi used definition of
an asymptotic curve of order p of Hayden [8] and definition of a geodesic of
order p of Srivastava [9].

3 Hyper-Asymptotic Curves

Let v be a vector field of a rectilinear congruence in Wn+1. Let va be the
contravariant components of v relative to Wn+1. Then we have

va = tixai + rna (i = 1, 2, . . . , n; a = 1, 2, . . . , n+ 1) (11)

where ti are the contravariant components of the vector field t in the hyper-
surface Wn and r is a parameter.

Let va be normalized by the condition

gabv
avb = 1. (12)

Hence
cos θ = gabv

anb = r (13)

where θ is the angle between va and nb.
Using (12), we get

gabv
avb = 1 = gijt

itj + r2 (14)

1− r2 = sin2 θ = gijt
itj. (15)

Let C be a curve with equations xi = xi(s) in Wn (s is the arc length of
C).

We know that if C is a curve in Wn, C is also a curve in Wn+1.
Let v

1
be the tangent vector field of C. Let us denote the contravariant

components of v
1

relative to Wn and Wn+1 by v
1

i and v
1

a, respectively. There are

(n− 1) normal vector fields of C relative to Wn in the form v
2
, v
3
, . . . , v

n
: v
r

(r =

2, 3, . . . , n). There are (n−1) curvatures of C in the form K
r

(r = 1, 2, . . . , n−1)

relative to Wn. Besides C has got n normal vector fields v
r

(r = 2, 3, . . . , n+ 1)

and n curvatures K̄r (r = 1, 2, . . . , n) relative to Wn+1.
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Definition 3.1 Geodesic surface is introduced as an analogue to the recti-
fying plane. It is defined by the tangent vector field v

1
of C and by the second

normal vector field v
3

of C in Wn+1.

If the vector field v lies in geodesic surface, it can be expressed as a linear
combination of v

1
and v

3
:

va = αv
1

a + βv
3

a (a = 1, 2, . . . , n+ 1) (16)

where α and β are to be determined, v
1

a and v
3

a are the contravariant compo-

nents of v
1

and v
3

relative to Wn+1.

Using (12) and (16), we have

tixai + rna = αv
1

a + βv
3

a (i = 1, 2, . . . , n). (17)

We know that
v
2

a = v
2

ixai (18)

where v
2

i and v
2

a are the contravariant components of the first normal vector

field v
2

relative to Wn and Wn+1, respectively.

With the help of Frenet’s Formulae, the prolonged covariant derivative of
v
2

a in the direction of v
1

is

v
1

b∇̇bv
2

a = v
1

kxbk∇̇bv
2

a = v
1

k∇̇k(v
2

ixai ) = v
1

k(∇̇kv
2

i)xai + wikv
2

iv
1

kna (19)

−K̄1v
1

a + K̄2v
3

a = (−K1v
1

i +K2v
3

i)xai + wikv
2

iv
1

kna (20)

where wik are the coefficients of the second fundamental form. Let us denote
wikv

2

iv
1

k by τ
21

. Then we have

−K̄1v
1

a + K̄2v
3

a = (−K1v
1

i +K2v
3

i)xai + τ
21
na. (21)

Using definition of hyper-asymptotic curve of Mishra [6] for Weyl space,
we have K̄1 = 0 and K1 = 0. Therefore, from (21)

K̄2v
3

a = K2v
3

ixai + τ
21
na (22)

is obtained.
Using (22), v

3

a is obtained as follows:

v
3

a =
1

K̄2

(K2v
3

ixai + τ
21
na). (23)
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From (17) and (23), we have

tixai + rna = αv
1

a + β
1

K̄2

(K2v
3

ixai + τ
21
na). (24)

Multiplying (24) by gabx
b
j and summing on a and b, we get

tigij = αv
1

igij + β
1

K̄2

v
3

igij (j = 1, 2, . . . , n) (25)

where v
1

a = v
1

ixai , gabx
a
i x

b
j = gij and gabn

axbj = 0 (b = 1, 2, . . . , n+ 1).

Multiplying (25) by v
1

j and summing on i and j, we obtain

gijt
iv
1

j = α (26)

where gijv
1

iv
1

j = 1 and gijv
3

iv
1

j = 0.

Multiplying (24) by gabn
b and summing on a and b, we find

r = β
1

K̄2

τ
21

(27)

where gabn
anb = 1.

Using (26) and (27) in (25), we get

tigij = gklt
kv
1

lv
1

igij + r
K2

τ
21

v
3

igij (k, l = 1, 2, . . . , n). (28)

Multiplying (28) by gjm and summing on j, we get

tm = gklt
kv
1

lv
1

m + r
K2

τ
21

v
3

m (m = 1, 2, . . . , n) (29)

or
tm

r
= gkl

tk

r
v
1

lv
1

m +
K2

τ
21

v
3

m. (30)

Taking hm instead of tm

r
, we obtain

hm = gklh
kv
1

lv
1

m +
K2

τ
21

v
3

m (31)

or

K2v
3

m − τ
21

(hm − gklhkv
1

lv
1

m) = 0. (32)
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We shall call the differential equation of hyper-asymptotic curves for (32).
For a congruence specified by the parameters hm, solutions of the n equations
(32) determine the hyper-asymptotic curves in Wn relative to that congruence.

Let us denote the left hand side of equation (32) by Γm which we shall call
the contravariant components of the hyper-asymptotic curvature vector field:

Γm = K2v
3

m − τ
21
ym = 0 (33)

where ym = hm − gklhkv
1

lv
1

m.

Definition 3.2 A hyper-asymptotic curve of Wn with respect to a congru-
ence can be defined as a curve whose hyper-asymptotic curvature vector field
is a null vector field.

4 An Asymptotic Line of Order p and A Geodesic

of Order p

Definition 4.1 We shall call an asymptotic line of order p (p < n) for a
curve in Wn in Wn+1 if K̄r = Kr (r = 1, 2, . . . , p).

Theorem 4.2 If C is an asymptotic line of order p in Wn in Wn+1, then
wikv

r

iv
1

k = 0 (r = 1, 2, . . . , p). The converse of this is also true.

Proof:
Let C be an asymptotic line of order p in Wn in Wn+1. Therefore K̄r = Kr

where K̄r and Kr are r-th curvatures of C relative to Wn+1 and Wn, respec-
tively.

From Frenet’s Formulae,

v
1

b∇̇bv
r

a = −K̄r−1 v
r−1

a + K̄r v
r+1

a (K̄0 = K̄n+1 = 0) (in Wn+1) (34)

v
1

k∇̇kv
r

i = −Kr−1 v
r−1

i +Kr v
r+1

i (K0 = Kn = 0) (in Wn) (35)

are satisfied. Here, v
1

is the tangent vector field of C.

We know that v
1

a = v
1

ixai .

Taking prolonged covariant derivative of v
1

a in the direction of v
1

and using

(34) and (35), we get

v
1

b∇̇bv
1

a = (v
1

k∇̇kv
1

i)xai + wikv
1

iv
1

kna

−K̄0v
0

a + K̄1v
2

a = (−K0v
0

i +K1v
2

i)xai + wikv
1

iv
1

kna

K̄1v
2

a = K1v
2

ixai + wikv
1

iv
1

kna

(K̄1 −K1)v
2

a = wikv
1

iv
1

kna. (36)



Hyper-asymptotic curves of a Weyl hypersurface 231

Since C is an asymptotic line of order p, K̄1 = K1 or K̄1 − K1 = 0 i.e.
wikv

1

iv
1

k = 0 where v
2

ixai = v
2

a and xbk∇̇b = ∇̇k.

Taking prolonged covariant derivative of v
2

a = v
2

ixai in the direction of v
1

and

using Frenet Formulae, we get

v
1

b∇̇bv
2

a = (v
1

k∇̇kv
2

i)xai + wikv
2

iv
1

kna

−K̄1v
1

a + K̄2v
3

a = (−K1v
1

i +K2v
3

i)xai + wikv
2

iv
1

kna

(−K̄1 +K1)v
1

a + (K̄2 −K2)v
3

a = wikv
2

iv
1

kna. (37)

Since −K̄1 +K1 = 0 and K̄2 −K2 = 0, we have wikv
2

iv
1

k = 0 where v
3

ixai = v
3

a.

Similarly, for v
p−1

a = v
p−1

ixai

v
1

b∇̇b v
p−1

a = (v
1

k∇̇k v
p−1

i)xai + wik v
p−1

iv
1

kna

−K̄p−2 v
p−2

a + K̄p−1v
p

a = (−Kp−2 v
p−2

i +Kp−1v
p

i)xai + wik v
p−1

iv
1

kna

(−K̄p−2 +Kp−2) v
p−2

a + (K̄p−1 −Kp−1)v
p

a = wik v
p−1

iv
1

kna. (38)

Since −K̄p−2 + Kp−2 = 0 and K̄p−1 − Kp−1 = 0, we get wik v
p−1

iv
1

k = 0 where

v
p

ixai = v
p

a.

Finally for v
p

a = v
p

ixai

v
1

b∇̇bv
p

a = (v
1

k∇̇kv
p

i)xai + wikv
p

iv
1

kna

−K̄p−1 v
p−1

a + K̄p v
p+1

a = (−Kp−1 v
p−1

i +Kp v
p+1

i)xai + wikv
p

iv
1

kna

(−K̄p−1 +Kp−1) v
p−1

a + (K̄p −Kp) v
p+1

a = wikv
p

iv
1

kna (39)

Since −K̄p−1 + Kp−1 = 0 and K̄p − Kp = 0, we have wikv
p

iv
1

k = 0 where

v
p+1

ixai = v
p+1

a.

Hence, while C is an asymptotic line of order p in Wn in Wn+1, wikv
r

iv
1

k =

0 (r = 1, 2, . . . , p) is obtained.
Conversely, suppose that wikv

1

iv
1

k = 0. From here, we get K̄1 − K1 = 0

or K̄1 = K1 i.e. C is an asymptotic line of order 1 in Wn in Wn+1. Let
wikv

2

iv
1

k = 0. −K̄1 + K1 = 0 and K̄2 − K2 = 0 or K̄1 = K1 and K̄2 = K2

i.e. C is an asymptotic line of order 2 in Wn in Wn+1. If wik v
p−1

iv
1

k = 0,

−K̄p−2 + Kp−2 = 0 and K̄p−1 −Kp−1 = 0 or K̄p−2 = Kp−2 and K̄p−1 = Kp−1

i.e. C is an asymptotic line of order (p − 1) in Wn in Wn+1. If wikv
p

iv
1

k = 0,
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−K̄p−1 + Kp−1 = 0 and K̄p −Kp = 0 or K̄p−1 = Kp−1 and K̄p = Kp i.e. C is
an asymptotic line of order p in Wn in Wn+1. The proof is completed.

Definition 4.3 A curve in Wn+1 is called a geodesic of order p of Wn+1 if
at every point of the curve, its first p curvatures relative to Wn+1 are all zero
i.e. K̄r = 0 (r = 1, 2, . . . , p).

From Frenet’s Formulae, we write

v
1

b∇̇bv
r

a = −K̄r−1 v
r−1

a + K̄r v
r+1

a(r = 1, 2, . . . , n+ 1), K̄0 = K̄n+1 = 0.

Using definition of a geodesic of order p of Wn+1 and from above equation, we
get

v
1

b∇̇bv
r

a = 0 (r = 1, 2, . . . , p).

From here:

Corollary 4.4 Let C be a geodesic of order p of Wn+1 and v
1

be the tangent

vector field of C. Then tangent vector field v
1

and (p− 1) normal vector fields

v2, v3, . . . , vp are undergo parallel displacement along the curve C.

Theorem 4.5 If a curve (which lies in Wn) is a geodesic of order p (p < n)
of Wn+1 then it is both a geodesic of order p and an asymptotic line of order p
in Wn. The converse of this is also true.

Proof:
Let C (which lies in Wn) be a geodesic of order p of Wn+1. Then K̄r =
0 (r = 1, 2, . . . , p). We know that v

1

a = v
1

ixai . From Frenet’s Formulae, K̄1v
2

a =

K1v
1

ixai + wikv
1

iv
1

kna. Since K̄1 = 0, we get K1 = 0 and wikv
1

iv
1

k = 0. Since

K1 = 0, C is a geodesic of order 1 in Wn. Furthermore, since K̄1 = K1 (besides
wikv

1

iv
1

k = 0), C is an asymptotic line of order 1 in Wn.

From v
2

a = v
2

ixai and 0 = K2v
3

ixai +wikv
2

iv
1

kna, we get K2 = 0 and wikv
2

iv
1

k =

0. Since K2 = 0, C is a geodesic of order 2 of Wn. Since K̄2 = K2 and
wikv

2

iv
1

k = 0, C is an asymptotic of order 2 of Wn.

Repeating the above procedure, from K̄r = 0 (r = 1, 2, . . . , p), we obtain
Kr = 0 and wikv

r

iv
1

k = 0 (r = 1, 2, . . . , p). Since Kr = 0, C is a geodesic of

order p of Wn. Since K̄r = Kr and wikv
r

iv
1

k = 0, C is an asymptotic line of

order p of Wn.
Conversely, if C is a geodesic of order p and an asymptotic line of order p

in Wn, then Kr = 0 and wikv
r

iv
1

k = 0 (r = 1, 2, . . . , p). From here, K̄r = 0 (r =

1, 2, . . . , p) is obtained i.e. C is a geodesic of order p in Wn+1. The proof is
completed.

With the help of (33), Theorem 4.2 and Definition 4.3:
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Theorem 4.6 If C is a hyper-asymptotic curve and an asymptotic line of
order 2 in Wn, then C is a geodesic of order 2 in Wn or vm is a null vector
field.

Proof:
If C is a hyper-asymptotic curve, from (33) Γm = K2v

3

m − τ
21
ym = 0 is valid.

Since C is also an asymptotic line of order 2 in Wn, using Theorem 4.2, τ
21

=

wikv
2

iv
1

k = 0 is obtained. Since both Γm = 0 and τ
21

= 0, we have K2 = 0 i.e. C

is a geodesic of order 2 of Wn or v
3

m is a null vector field.

Theorem 4.7 If C is a hyper-asymptotic curve and a geodesic of order 2
in Wn, then C is an asymptotic line of order 2 in Wn or ym is a null vector
field.

Proof:
Let C be a hyper-asymptotic curve and a geodesic of order 2 in Wn. Then,
with the help of (33), Γm = 0 and K2 = 0 are valid. Thus τ

21
= wikv

2

iv
1

k = 0

i.e. C is an asymptotic line of order 2 in Wn or ym is a null vector field.

Corollary 4.8 Let us denote the magnitude of vector field Γ by Kh : K2
h =

gijΓ
iΓj

Let us calculate it:

K2
h = gijΓ

iΓj

K2
h = gij(K2v

3

i − τ
21
yi)(K2v

3

j − τ
21
yj)

K2
h = K2

2 − 2K2τ
21
gijv

3

iyj + τ
21

2gijy
ijj (40)

is obtained where gijv
3

iv
3

j = 1.

Using yi = hi − gklhkv
1

lv
1

i, we get

gijy
iyj = gij(h

i − gklhkv
1

lv
1

i)(hj − gklhkv
1

lv
1

j)

gijy
iyj = gijh

ihj − (gijh
iv
1

j)2 (41)

where gijv
1

iv
1

j = 0.

Using hi = ti

r
, (13) and (15), we have

gijh
ihj =

1

r2
gijt

itj =
sin2 θ

cos2 θ
= tg2θ. (42)
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Let α be the angle between hi and v
1

j. Then

cosα tgθ = gijh
iv
1

j. (43)

Using (41), (42) and (43), we have

gijy
iyj = tg2θ − cos2 α tg2θ = tg2θ sin2 α. (44)

Since ^(hi, v
3

j) = π
2
− α, we get

cos(
π

2
− α) tgθ = sinα tgθ = gijh

iv
3

j. (45)

Using (45), we obtain

gijv
3

iyj = gijv
3

i(hj − gklhkv
1

lv
1

j)

gijv
3

iyj = gijv
3

ihj = sinα tgθ (46)

where gijv
3

iv
1

j = 0.

Using (44) and (46) in (40), we get

K2
h = K2

2 − 2K2τ
21

sinα tgθ + τ
21

2(tg2θ sin2 α)

K2
h = (K2 − τ

21
tgθ sinα)2

Kh = K2 − τ
21

tgθ sinα. (47)

Corollary 4.9 If θ = 0, the hyper-asymptotic curve is a geodesic of order
2 in Wn.
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