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Abstract

Shannon introduced error detection and correction codes to address
the growing need of efficiency and reliability of code vectors. One of
the structures that can generate these codes is a set of ideals of the
candidate polynomial ring. Generators of codes of ideals of polynomial
rings have not been fully characterized. In this research the generators
of codes of the candidate polynomial ring Fn

2 [x]/〈xn − 1〉 have been
investigated and characterized using lattices, simplex Hamming codes
and isometries.
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1 Introduction

1.1 Background information

Definition 1.1. [5] Let A be a finite set. A code is a non-empty subset of the
set An of n-tuples of elements from A. Let C be a code constructed by elements
of A. If C is a code of length n and size |C|, then C is an (n, |C|) code.



190 On the generators of codes of ideals

Members of the code space are words, those belonging to C being codewords. If
A has m elements, then C is said to be an m-ary code. If |A| =2, then C is a
binary code and the set A={0, 1}.

1.2 Types of Computer Errors

According to Williams [9] in digital transmission systems, an error occurs
when a bit is altered between transmission and reception, that is a binary 1 is
transmitted and a binary 0 is received or a binary 0 is transmitted and a binary
1 is received. Two general types of errors can occur; single bit (random) errors
and burst (compound) errors. A single bit error is an isolated error condition
that alters one bit but does not affect nearby bits. A burst error of length b is
a continuous sequence of b - bits in which the first and the last bits and any
number of intermediate bits are received in error.

1.3 Error detection, correction and control

Definition 1.2. [4] Error detection is the ability to identify presence of errors
caused by noise or other impairments during transmission from the transmitter
to the receiver.

Error correction is the ability to reconstruct the original, error free data.

Error control is the ability to detect and correct errors using a given code.

The tools we have used to characterize our results include kissing numbers,
lattices and isometries.

Definition 1.3. Wheeler [8] Kissing number is the number of n− spheres
which can be arranged so that they all touch another central sphere of the same
size. It is given by:
T (Λ) =| {x ∈ Λ : ‖x‖ = dmin(Λ)} |.

A kissing number determines the maximum number of nearest neighbors a
given code is likely to have. In error control coding a higher kissing number
means a code has very many useful neighbors and can be easily decoded using
minimum distance decoding.

According to Wheeler [8] the hyper volume and hyper surface area of sphere
packing reduces significantly as n increases. Thus for the candidate poly-
nomial ring F n

2 [x]/〈xn − 1〉, we have lim.n→∞hyper surface area → 0 and
lim.n→∞hyper volume → 0. In such a case the kissing numbers become very
large. Hence too much kissing goes on as n approaches infinity. Therefore as
n→∞, we are bound to get better codes for the purpose of error control.
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1.4 Ideals in a commutative ring

Definition 1.4. [6]
A non-empty subset I of a ring F n

2 [x]/〈xn−1〉 is an ideal of F n
2 [x]/〈xn−1〉

if and only if:
(i ) 0 ∈ I
(ii) ∀a, b ∈ I, a± b ∈ I
(iii) ∀a ∈ I and r ∈ F n

2 [x]/〈xn − 1〉, ra ∈ I .

The ring F n
2 [x]/〈xn−1〉 itself and the subset consisting of 0 alone, denoted

by {0}, are ideals in this ring called trivial or improper ideals. An ideal I 6=
F n
2 [x]/〈xn − 1〉 is a proper ideal (see Olege, etal [2]).

Since F n
2 [x]/〈xn− 1〉 is commutative then ar = ra. An ideal I has closure

if a± b ∈ I, for all a, b ∈ I. An ideal I absorbs elements from F n
2 [x]/〈xn− 1〉,

if ra, ar ∈ I for all a ∈ I and for all r ∈ F n
2 [x]/〈xn − 1〉.

The left principal ideal of a ring R is a subset of R of the form RI={aI:
a∈R}. The right principal ideal of a ring R is a subset of the form IR={Ia:
a∈R}. A two-sided principal ideal is a subset of the form RIR = {aIa : a ∈
R}. In a commutative ring, these three types of ideals coincide.

2 Results

Theorem 2.1. Let g(x) ∈ F n
2 [x]/〈xn − 1〉 be an irreducible and monic factor

of xn − 1. The following statements are equivalent:
(i) g(x) is a generator polynomial of F n

2 [x]/〈xn − 1〉.
(ii) 〈g(x)〉 is a generator of the set of ideals I(C) ∈ F n

2 [x]/〈xn − 1〉.

Proof
(i) ⇒ (ii). Suppose g(x) is a generator polynomial of F n

2 [x]/〈xn − 1〉 and
is a factor of xn− 1. Then p(x)g(x) = xn− 1 for some p(x) ∈ F n

2 [x]/〈xn− 1〉.
Hence 〈g(x)〉 is a generator of the set of ideals I(C) ∈ F n

2 [x]/〈xn − 1〉.
(ii) ⇒ (i). Suppose that 〈g(x)〉 is a generator of the set of ideals I(C) ∈

F n
2 [x]/〈xn − 1〉. Then any element of I(C) would be given by p(x)g(x) for

some p(x) ∈ F n
2 [x]/〈xn − 1〉. Hence there exists some h(x) ∈ F n

2 [x]/〈xn − 1〉
such that any element of I(C) is given by p(x)h(x) = xn − 1. Hence g(x) is
the generator polynomial of F n

2 [x]/〈xn − 1〉. 2

Proposition 2.1. For a given polynomial code Pc ∈ F n
2 [x]/〈xn − 1〉 the gen-

erator polynomial g(x) is unique.

Proof
Assume the polynomial code Pc ∈ F n

2 [x]/〈xn − 1〉 has two generator poly-
nomials g(x) and g(x)′. Since g(x)′ is the other generator polynomial then
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g(x) is a multiple of g(x)′. This means g(x)′ = h(x)g(x)′ is a multiple of g(x),
for some h(x) ∈ F n

2 [x]/〈xn − 1〉. We can also write g(x)′ = r(x)g(x) for some
r(x) ∈ F n

2 [x] /〈xn − 1〉. Hence h(x)r(x) = 1 ⇒ h(x) = r(x) = 1 (since r(x)
and h(x) are monic). Equivalently g(x) = g(x)′. 2

Theorem 2.2. Let a polynomial σ(x) ∈ F n
2 [x] be irreducible. Then the poly-

nomial ring F n
2 [x]/〈σ(x)〉 is a field.

Proof
Let r(x) be a non-zero element of F n

2 [x]/〈σ(x)〉. If r(x) is co-prime to σ(x)
then we can find polynomials α(x) and β(x) such that r(x)α(x)+σ(x)β(x) = 1.
But r(x)α(x) ≡ 1 mod σ(x) implies that r(x) has a multiplicative inverse
α(x)/σ(x). 2

Proposition 2.2. A polynomial code Pc ∈ F n
2 [x]/〈xn− 1〉 can control up to e

errors if and only if dmax ≥ 2e+ 1.

Proof
Suppose Pc cannot control up to e errors. Then there exists a pattern of

at most e errors which changes the code vector u into a code vector v for all
u, v ∈ Pc. Since we can change u into v using a maximum of e errors, we
have dmax(u, v) ≤ e. Suppose it was not possible to change v then we have
a code vector w 6= u with dmax(w, v) ≤ dmax(u, v) for some w ∈ Pc. Hence
dmax(w, v) ≤ e. By triangle inequality dmax(u, v) + dmax(v, w) ≤ e + e = 2e
which contradicts dmax ≥ 2e+ 1. 2

Proposition 2.3. A polynomial ring F n
2 [x]/〈xn−1〉 generates an error control

code for n ≥ 3.

Proof
Assume the contrary that the polynomial ring F n

2 [x]/〈xn − 1〉 does not
generate error control codes. Then F n

2 [x]/〈xn − 1〉 has a maximum Hamming
distance dmax < 3 for all the codewords it generates. But the most optimal
codeword generated by F n

2 [x]/〈xn−1〉 has dmax = n ≥ 3. This contradicts the
original assumption. Hence F n

2 [x]/〈xn − 1〉 generates an error control code.
2

Suppose we want to show the maximum number of errors the code gener-
ated by F 11

2 [x]/〈x11 − 1〉 can control. Then;
2e + 1 = dmax (where e is the maximum number of errors this code can

control)
⇒ 2e+ 1 = 11
⇒ e = 5
Table 1: Generator Polynomials of F 11

2 [x]/〈x11 − 1〉
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Generator Polynomial Corresponding Codeword, C

0 00000000000

1 00000000001

x+ 1 00000000011

x10 + x9 + x8 + x7 + x6 + x5 + x4

+x3 + x2 + x+ 1 11111111111

From Table 1 the codewords in C are ideals of the polynomial ring F 11
2 [x]/〈x11−

1〉. Here m = 4, n = 11 (which is a safe prime), Wmax = 11,
dmax = 11, (n,m, dmax) = (11, 4, 11).

By Proposition 2.2 this code can control up to five errors.

Definition 2.1. [7]
A lattice

∧
is a discrete additive subgroup of Rn. That is

∧
⊆ R satisfying

the following properties:
(i)
∧

is closed under addition and subtraction.
(ii) There exists an ε > 0 such that any two distinct lattice points x 6= y

are at a distance at least | x− y |≥ ε.

In order to study their lattice properties we shall treat polynomial codes as
spheres. Let a packing P ⊂ Rn contain spheres centered at u and v. Suppose
this is true, then there is also a sphere centered at either u+ v or u− v.

Claim 2.1. We claim that the minimum Hamming distance dc induces a met-
ric in the code space.

Proposition 2.4. Suppose 1 ≤ c < ∞ and dc is the minimum Hamming
distance of polynomial codes u, v ∈ F n

2 [x]/〈xn− 1〉 given by dc(u, v) = (
∑n

i=1 |
ui − vi |c)

1
c for u = (u1, u2, ..., un) and v = (v1, v2, ..., vn). Then, the induced

metric in the code space is given by dc(u, v) = (
∑n

i=1 d(ui, vi)
c)

1
c .

Proof
Suppose u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) for all u, v ∈ F n

2 [x]/〈xn−
1〉. The metric induced by dc is given by dc(u, v)= inf.d(u′, v′); where u′ =
u+qe, v′ = v+qz for all e, z ∈ F n

2 [x]/〈xn−1〉 =(inf {
∑n

i=1 | ui−vi−q(zi−ei) |c
, e, z ∈ F n

2 [x]/〈xn−1〉}) 1
c = (

∑n
i=1 | ui−vi−q(

ui−vi
q

) |c) 1
c ..............................(i)

Equation (i) is minimum when = (
∑n

i=1 | ui−vi−qAi |c)
1
c , for Ai =| ui−vi

q
|.
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Suppose αi = (ui−vi
q

) for i = 1, 2, 3, ..., n. Since 0 ≤| ui − vi |≤ q, it follows

that −1 ≤ ui−vi
q

and αi ∈ {−1, 0, 1}. If αi = 0 for some i then −q
2
≤ ui−vi ≤ q

2
.

In such a case min {| ui − vi |, q− | ui − vi |} =| ui − vi |.
If αi = 1 for some i then −q

2
≤ ui − vi ≤ q and min {| ui − vi |, q− |

ui − vi |} = q− | ui − vi | and | ui − vi |= ui − vi. If αi = −1 for some i then
−q ≤ ui − vi ≤ −q

2
and min {| ui − vi |, q− | ui − vi |} = q− | ui − vi | and

| ui − vi |= ui − vi and hence

dc(u, v) = (
∑n

i=1 d(ui, vi)
c)

1
c . 2

Proposition 2.5. Suppose
∧
C is a q− array lattice and v = (v1, v2, ..., vn)e ∈

Rn is the received vector. Let v ∈ Rn, C ∈ F n
2 [x]/〈xn − 1〉 and c ∈ C, c =

(c1, c2, ..., cn)e, 0 ≤ ci < q, a neighbor codeword to u. Considering the induced
metric dc ∈ F n

2 [x]/〈xn−1〉 another neighbor z ∈
∧
C is given by (z1, z2, ..., zn)e

where zi = ci + qAi for Ai =| vi−ui
q
| for i = 1, 2, 3, ..., n.

Proof

We should show that if u ∈ C and z = u + qA, for Ai =| vi−ui
q
|, then

d(v, z) = dc(v, z). We know that c ∈ C satisfies dc(v, c)=min{dc(v, u), u ∈ C}.
For Ai =| vi−ui

q
| it follows that d(v, c+ qAi) = dc(v, c) ≤ min{d(v, u+ qe), u ∈

C, e ∈ F n
2 [x]/〈xn − 1〉. Hence c + qAi is the neighbor of

∧
C that minimizes

the distance dc(v, u). 2

Our next problem is the characterization of perfect codes generated by the
candidate ring.

We already know that perfect codes satisfy the sphere packing bound with
equality, (see Hall [5]).

Proposition 2.6. Given the range 1 ≤ n < ∞ perfect codes exist in the
polynomial ring F n

2 [x]/〈xn − 1〉 induced by the metric dc for κc = 1 and any
` = 2n+ 1.

Proof

If n = 1 the result is clear. Suppose 1 < n < ∞. The inequality | u1 |n
+ · · ·+ | un |n≤ 1 has 2n+ 1 integer solutions namely ui = ±1 and uj = 0 for
all j 6= i and ui = 0 for all i. Define ℵn(n, 1) to be the number of points in
F n
2 [x]/〈xn−1〉 inside a sphere centered at the origin. Then ℵn(n, 1) = 2n+1 =
ℵ1(n, 1). But there exists at least one perfect code C ⊆ F n

2 [x]/〈xn − 1〉 in the
metric dc satisfying the proposition. It follows that this code must also be
perfect in the metric dc for any 1 < n < ∞, because | C | ℵn(n, 1) =| C |
ℵ1(n, 1) = 2n. 2

The perfect codes characterized by Proposition 2.6 are trivial. The next
problem is to characterize non- trivial perfect codes of the candidate polyno-
mial ring.
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Proposition 2.7. For an odd integer α > 1 ∈ F n
2 [x]/〈xn−1〉 and any integer

β > 1 ∈ F n
2 [x]/〈xn−1〉, there exists a non-trivial perfect code C ⊆ F n

2 [x]/〈xn−
1〉 in the metric d∞(u, v) if and only if q = αβ.

Proof
By the sphere packing bound [1] we know that a code C ⊆ F n

2 [x]/〈xn− 1〉
with minimum distance 2κ+ 1 is perfect if and only if:
| C | (2κ + 1)n = qn. This implies that | C |= qn

(2κ+1)n
. This means q must

have an odd factor and so q 6= 2n. If q is prime then 2κ+ 1 = q which gives a
perfect trivial code. Thus there is no perfect code for prime q or composite q,
a power of 2.

Suppose q = αβ. Let the code C be generated by the vectors
{(α, 0..., 0), (0, α, 0, 0, ..., 0), ..., (0, ..., 0, α)} ∈ C ⊆ F n

2 [x]/〈xn − 1〉. Therefore
| C |= βn. Suppose e ∈ F n

2 [x]/〈xn − 1〉. If e = βn+ v, for 0 ≤ v < β then
e(0, ..., α, 0, ..., 0) = v(0, ..., α, ...0). In this case the minimum distance
dc=min{d∞(u, v), u, v ∈ C, u 6= v} = α. This implies that κc = α−1

2
. Since

ℵ∞(n, κc) = (2κ + 1)n = αn, it follows that | C | ℵ∞(n, κc) = αnβn = qn for
1 <| C |< qn. This code is perfect and non-trivial. 2

Remark 2.1. There are no perfect codes of length n ∈ N and κc > 1.

Let W11 denote a polynomial code generated by b(x) = x10 +x9 +x8 +x7 +
x6 + x5 + x4 + x3 + x2 + x+ 1.

Its generator matrix is[
1 1 1 1 1 1 1 1 1 1 1

]
and hence (11, 1) is a repetition code.

The cyclic code C11 with generator polynomial a(x) = x + 1 is (11, 10)
code. From the generator polynomial we obtain a generator matrix which can
be transformed into a systematic generator matrix

1 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1


Hence C11 is isometric to a parity check code. It consists of all even weight

vectors in F11
2 .
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Figure 1: Lattice diagram of the generators of x11 − 1

b(x)

X11−1

a(x)b(x)

a(x)

Definition 2.2. [7] A geometric lattice is a regular arrangement of points in
an n-dimensional Euclidean space. A polyhedron is a solid in three dimensions
whose surface is made up of a number of polygonal surfaces.

Geometrically Figure 1 is a lattice diagram with 4 lattice points. In this
research each lattice point is a codeword. The shape of this geometric lattice
is a rhombus.

Let W15 denote a cyclic code which is generated by d1(x)d2(x)d3(x)d4(x) =
(x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1) = x14 + x13 +
x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1. Its genera-
tor matrix is

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]
and hence W15

is a (15, 1) repetition code. The cyclic code S4 with generator polynomial
a(x)d1(x)d2(x)d4(x) = x11 + x10 + x9 + x8 + x6 + x4 + x3 + 1 is a (15, 4) code
with generator matrix

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 1 1 1 0 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1


which is the check matrix of the fourth order binary Hamming-code and so

S4 is a binary simplex code. The cyclic code S ′4 with generator polynomial
a(x)d1(x)d3(x)d4(x) = x11+x8+x7+x5+x3+x2+x+1 is also (15, 4) code which
is isometric to S4. The cyclic code C15 with generator polynomial a(x) = x+1 is
(15, 14) code. From its generator polynomial we obtain a generator matrix that
can be transformed using elementary row transformations into the systematic
generator matrix



Olege Fanuel 197



1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1


Hence C15 is isometric to a parity check code. It consists of all even weight

vectors in F15
2 .

The cyclic code H8 generated by d3(x)d4(x) = x8 + x5 + x3 + 1 is (15, 7)
code with generator matrix



1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 0 0 1


Now H⊥8 has the generator polynomial a(x)d1(x)d2(x) = x7 + x3 + x+ 1 so

that H⊥8 is the simplex code S8, hence H8 is a Hamming code.

Generator matrix for a(x)

[
1 1

]
Generator matrix for d1(x)

[
1 1 1

]
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Generator matrix for d2(x) 
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1



Generator matrix for d3(x)
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1


Generator matrix for d4(x)

[
1 1 1 1 1

]

Figure 2: Lattice diagram of the generators of x15 − 1
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Geometrically this is a closed lattice diagram with 57 lattice points. It is
a polyhedron with 57 vertices.

Theorem 2.3. Let Wn denote a code with generator polynomial g(x) = g0(x)+
g1(x) + g2(x

2) + ...+ gn−k(x
n−k), the generator matrix is given by

G =


g0 g1 . . . gn−k 0 0...0
0 g0 g1 . . . gn−k 0...0
0 . . . . . .
. . . . . . .
. . . . . .
0 0 0 . . . . gn−k


Proof
We should show that:
(i) g0(x) + g1(x) + g2(x

2) + ...+ gn−k(x
n−k) forms a basis of Wn.

(ii)dim.(Wn) = k.
For part (i) the vectors g0(x), g1(x), g2(x

2), ..., gn−k(x
n−k) are linearly inde-

pendent. If not we must have a set of coefficients {αi} such that αog0(x) +
α1g1(x) + α2g2(x

2) + ... + αkgn−k(x
n−k) = 0. But this product has degree

k − 1 + n − k = n − 1 < n, which cannot be = 0 mod(xn − 1) unless all the
αi = 0. Suppose we have w(x) in Wn, then w(x) = α(x)g(x). Assume α(x) has
degree < k − 1. Then w(x) can be written as a linear combination of xig(x)
for 0 < i < k− 1. The set of all the linear combinations {xig(x)} is a basis for
Wn.

For part (ii) suppose we have two polynomials p1(x) 6= p2(x) with degree
pi(x) ≤ k−1 (for i = 1, 2) and g(x)p1(x) 6= g(x)p2(x). The set τ = {g(x)p(x) :
p(x) ∈ F n

q [x]/〈xn − 1〉, degree p(x) ≤ k − 1} has qk elements and is a subset
of the ideal 〈g(x)〉.

Conversely for any codeword g(x)r(x) (for some r(x) ∈ F n
q [x]/〈xn − 1〉 ),

we have g(x)r(x) = y(x)(xn − 1) + z(x) (for some z(x) ∈ F n
q [x]/〈xn − 1〉 ).

This means
z(x) = g(x)r(x) − y(x)(xn − 1). Therefore g(x) divides z(x). Let z(x) =
g(x)t(x) for some polynomial t(x) ∈ F n

q [x]/〈xn− 1〉. This implies that degree
t(x) < k and hence z(x) ∈ τ . Equivalently, τ = 〈g(x)〉. Hence the dimension of
the code is given by logq|τ | = k. 2

Proposition 2.8. Let Sk(q) be a simplex code. Then Sk(q) is a constant weight
code with parameters [(qk − 1)/q − 1, k, qk−1].

Proof
Let H⊥k (q) be a Hamming code. We know that the simplex code Sk(q) and

the Hamming code H⊥k (q) are dual codes. Hk(q) is a parity check matrix of
H⊥k (q) and the generator matrix of Sk(q).
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Consider a parity check matrix Hk(q) with redundancy k. The rank of this
matrix = dimension =k. Let u be a non zero codeword of the simplex code
Sk(q). We have u − mHk(q) for some non-zero m ∈ F n

q [x]/〈xn − 1〉 . Let
h⊥i (q) be the ith column of Hk(q) (for i = 1, 2, 3, ...). Then Σui = 0 if and
only if mhi = 0. Let mv = 0 for some v ∈ F n

q [x]/〈xn − 1〉 be a non-trivial
homogeneous linear equation. This equation has qk−1 solutions. The solutions
(qk−1)/q − 1 such that vT is a column of Hk(q) is a non-zero multiple of vT .
Hence the number of zeros of u is (qk−1−1)/q−1. Therefore the weight of u is
the number of non-zeros which is qk−1. 2

Proposition 2.9. For a polynomial code Pc ∈ F n
2 [x]/〈xn−1〉 the the following

statements are equivalent
(i) Hamming weight of Pc is isomorphic to the homogeneous weight.
(ii) Homogeneous weight of Pc is isomorphic to the Hamming weight .

Proof
(i)⇒ (ii) Let fn(u) = f(x1) + ... + f(xn) for all fn(u) ∈ I where I is an

ideal in F n
2 [x]/〈xn − 1〉 . Then;

(Σfn)u =
1

Rnu
Σv∈Rnf

nv for all fn(v) ∈ Rn and Rn = F n
2 [x]〈xn − 1〉

=
1

Rnu
Σv∈RnΣn

i=1f
n(vi)

= Σn
i=1

1

Rnui
Σv∈Rnf

n(ui)

= Σn
i=1(Σf)(ui)

= (Σf)n(u)

(ii)⇒ (i) Let fn(v) = f(x1) + ... + f(xn) for all fn(v) ∈ I where I is an
ideal in F n

2 [x]/〈xn − 1〉 . Then;

(Σfn)v =
1

Rnv
Σv∈Rnf

nu for all fn(u) ∈ Rn and Rn = F n
2 [x]/〈xn − 1〉

=
1

Rnv
Σu∈RnΣn

i=1f
n(ui)

= Σn
i=1

1

Rnvi
Σu∈Rnf

n(vi)

= Σn
i=1(Σf)(vi)

= (Σf)n(v)

2

Proposition 2.10. Let Wn be a cyclic code with a check polynomial h(x) =
h0 +h1(x) + ...+hkx

k. Then Wn has dimension k with the parity check matrix
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given by:
H= 

hk hk−1 . . .h0 .0 0 . . . 0
0 hk hk−1 . . h0 0 . . . 0
. . . . . . .h0 . . .
. . . . . . h0 . . .
. . . . . . . . .
0 0 . . . 0 hk hk−1 . . .h0


Proof
Let the degree of the generator matrix = n−k. The dimension of this code

is k. Let u = c0 + c1(x) + c2(x
2) + ...+ cn(xn−1) for some u ∈ F n

q [x]/〈xn − 1〉 .
Then u(x)h(x) = 0. For d = k, k+1, ..., n−1 we have Σcihj = 0 (for i+j = d).
These code-vectors are orthogonal to the linear combinations of the rows of
H. Hence C⊥ contains the span of the rows of H. Since hk = 1, the rank of
h = n − k. This generates a linear subspace of C⊥, implying that H is the
parity check matrix for the check polynomial h(x). 2

2.1 Syndromes of the simplex codes in the candidate
ring

Definition 2.3. [1] Let C be an (n, κ, d) code over F n
2 [x]/〈xn − 1〉 and let H

be a parity check matrix for C. For any w ∈ F n
2 [x]/〈xn − 1〉 the syndrome of

w is the codeword S(w) = wHT ∈ F n−k
2 [x]/〈xn − 1〉 .

Proposition 2.11. [1] Let u, v ∈ C, where C is a codeword generated by
F n
2 [x]/〈xn − 1〉. The following statements are equivalent.

(i) u and v are in the same coset.
(ii) u and v have the same syndrome

Proof
(i)=⇒(ii). Suppose u and v belong to the same coset. Then u = z1 + e and

v = z2 +e for z1, z2 ∈ C and e ∈ F n
2 [x]/〈xn−1〉. The syndrome corresponding

to u is given by HuT = H(z1 + e)T = HeT .
The syndrome corresponding to v is given by HvT = H(z2 + e)T = HeT .

Hence the syndrome of u and v are the same.
(ii)=⇒(i). Suppose u and v have the same syndrome. Then

HuT = HvT = H(u−v)T = 0 =⇒ (u−v) ∈ C. Since u−v is a codeword then u
and v must belong to the same coset. 2
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