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Abstract

Shannon introduced error detection and correction codes to address
the growing need of efficiency and reliability of code vectors. One of
the structures that can generate these codes is a set of ideals of the
candidate polynomial ring. Generators of codes of ideals of polynomial
rings have not been fully characterized. In this research the generators
of codes of the candidate polynomial ring F3' [z]/(z™ — 1) have been
investigated and characterized using lattices, simplex Hamming codes
and isometries.
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1 Introduction

1.1 Background information

Definition 1.1. /5] Let A be a finite set. A code is a non-empty subset of the
set A™ of n-tuples of elements from A. Let C' be a code constructed by elements

of A. If C is a code of length n and size |C|, then C is an (n,|C|) code.
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Members of the code space are words, those belonging to C' being codewords. If
A has m elements, then C' is said to be an m-ary code. If |A| =2, then C is a
binary code and the set A={0,1}.

1.2 Types of Computer Errors

According to Williams [9] in digital transmission systems, an error occurs
when a bit is altered between transmission and reception, that is a binary 1 is
transmitted and a binary 0 is received or a binary 0 is transmitted and a binary
1 is received. Two general types of errors can occur; single bit (random) errors
and burst (compound) errors. A single bit error is an isolated error condition
that alters one bit but does not affect nearby bits. A burst error of length b is
a continuous sequence of b - bits in which the first and the last bits and any
number of intermediate bits are received in error.

1.3 Error detection, correction and control

Definition 1.2. /4] Error detection is the ability to identify presence of errors
caused by noise or other impairments during transmission from the transmaitter
to the receiver.
Error correction is the ability to reconstruct the original, error free data.
Error control is the ability to detect and correct errors using a given code.

The tools we have used to characterize our results include kissing numbers,
lattices and isometries.

Definition 1.3. Wheeler [8] Kissing number is the number of n— spheres
which can be arranged so that they all touch another central sphere of the same
size. It is given by:

TA) =[{z e A [lz]] = dmin (M)} |-

A kissing number determines the maximum number of nearest neighbors a
given code is likely to have. In error control coding a higher kissing number
means a code has very many useful neighbors and can be easily decoded using
minimum distance decoding.

According to Wheeler [8] the hyper volume and hyper surface area of sphere
packing reduces significantly as n increases. Thus for the candidate poly-
nomial ring FJ [z]/(z™ — 1), we have lim.,_chyper surface area — 0 and
lim.,_ohyper volume — 0. In such a case the kissing numbers become very
large. Hence too much kissing goes on as n approaches infinity. Therefore as
n — 00, we are bound to get better codes for the purpose of error control.
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1.4 Ideals in a commutative ring

Definition 1.4. /6]

A non-empty subset I of a ring Fy' [x] /(x™—1) is an ideal of F3 [z] /(" —1)
if and only if:

(i)0el

(ii))VYa,be I, atbel

(1)) Ya € I and r € Fy [z] /(" — 1), rae I .

The ring F3' [z]/{xz™ — 1) itself and the subset consisting of 0 alone, denoted
by {0}, are ideals in this ring called trivial or improper ideals. An ideal I #
F} [x]/{z™ — 1) is a proper ideal (see Olege, etal [2]).

Since F§ [z]/(z" — 1) is commutative then ar = ra. An ideal I has closure
ifatbel, foralla,b e . Anideal I absorbs elements from Fj' [x]/(z" — 1),
if ra,ar € I for all a € I and for all r € F} [z]/(z" — 1).

The left principal ideal of a ring R is a subset of R of the form RI={al:
a€R}. The right principal ideal of a ring R is a subset of the form IR={Ila:
a€R}. A two-sided principal ideal is a subset of the form RIR = {ala : a €
R}. In a commutative ring, these three types of ideals coincide.

2 Results

Theorem 2.1. Let g(z) € F [x] /(™ — 1) be an irreducible and monic factor
of ™ — 1. The following statements are equivalent:

(1) g(z) is a generator polynomial of Fy' [x]/(x™ — 1).

(11) {g(x)) is a generator of the set of ideals I(C') € Fy [z] /(a™ — 1).

Proof

(i) = (ii). Suppose g(z) is a generator polynomial of F}' [z]|/{z™ — 1) and
is a factor of 2™ — 1. Then p(x)g(x) = 2™ — 1 for some p(x) € F3' [z]/(z" — 1).
Hence (g(x)) is a generator of the set of ideals I(C) € FJ' [x]/(z™ — 1).

(ii) = (i). Suppose that (g(z)) is a generator of the set of ideals I(C) €
F} [x]/(z™ — 1). Then any element of I(C') would be given by p(x)g(x) for
some p(x) € FJ [z]/{(x™ — 1). Hence there exists some h(z) € F3' [z]/(z" — 1)
such that any element of I(C') is given by p(z)h(z) = 2™ — 1. Hence g(z) is
the generator polynomial of Fy' [x]/{z™ — 1). O

Proposition 2.1. For a given polynomial code P. € Fy x| /(x™ — 1) the gen-
erator polynomial g(x) is unique.

Proof
Assume the polynomial code P. € Fy' [x]/(z"™ — 1) has two generator poly-
nomials g(x) and g(z)’. Since g(z)" is the other generator polynomial then
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g(x) is a multiple of g(x)". This means g(x) = h(z)g(x)" is a multiple of g(z),
for some h(z) € FJ [z]/{z™ — 1). We can also write g(z)" = r(x)g(z) for some
r(z) € Fy [x] /(" — 1). Hence h(x)r(z) =1 = h(z) = r(z) = 1 (since r(z)
and h(x) are monic). Equivalently g(x) = g(z)’. O

Theorem 2.2. Let a polynomial o(x) € F3'[x] be irreducible. Then the poly-
nomial ring F3[z]/{o(x)) is a field.

Proof

Let r(z) be a non-zero element of F}'[z]/(o(x)). If r(z) is co-prime to o(x)
then we can find polynomials «(x) and B(x) such that r(z)a(z)+o(x)5(z) = 1.
But r(x)a(x) = 1 mod o(z) implies that r(z) has a multiplicative inverse

a(z)/o(x). O

Proposition 2.2. A polynomial code P. € Fy [z]/(x"™ — 1) can control up to e
errors if and only if dper > 2 + 1.

Proof

Suppose P, cannot control up to e errors. Then there exists a pattern of
at most e errors which changes the code vector u into a code vector v for all
u,v € P.. Since we can change u into v using a maximum of e errors, we
have dy4.(u,v) < e. Suppose it was not possible to change v then we have
a code vector w # u with dpee(w,v) < dpes(u,v) for some w € P.. Hence
Amaz(w,v) < e. By triangle inequality dpee (U, V) + dpae(v,w) < e+ e = 2e
which contradicts d,,q, > 2¢ + 1. O

Proposition 2.3. A polynomial ring Fy' [x] /{x™—1) generates an error control
code forn > 3.

Proof

Assume the contrary that the polynomial ring F3' [z]/{z™ — 1) does not
generate error control codes. Then F}' [x|/{xz™ — 1) has a maximum Hamming
distance d,,,, < 3 for all the codewords it generates. But the most optimal
codeword generated by F} [z]/(x™ —1) has dya, = n > 3. This contradicts the
original assumption. Hence FJ' [z]/(z™ — 1) generates an error control code.
(]

Suppose we want to show the maximum number of errors the code gener-
ated by F}'[z]/(z" — 1) can control. Then;
2¢ + 1 = dppae (where e is the maximum number of errors this code can

control)
=2e+1=11
=e=95H

Table 1: Generator Polynomials of F}![z]/{z'! — 1)
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Generator Polynomial Corresponding Codeword, C
0 00000000000

1 00000000001

r+1 00000000011

2!+ 2% + 2%+ aT 2+ 2 ot

+2° +2? +x+1 11111111111

From Table 1 the codewords in C' are ideals of the polynomial ring Fy ! [z]/(z!!—
1). Here m = 4,n = 11 (which is a safe prime), W, = 11,
e = 11, (0, m, dypas) = (11,4, 11).

By Proposition 2.2 this code can control up to five errors.

Definition 2.1. [7]

A lattice )\ is a discrete additive subgroup of R™. That is /\ C R satisfying
the following properties:

(i) \ is closed under addition and subtraction.

(11) There exists an € > 0 such that any two distinct lattice points x # y
are at a distance at least | x — y |> €.

In order to study their lattice properties we shall treat polynomial codes as
spheres. Let a packing P C R" contain spheres centered at v and v. Suppose
this is true, then there is also a sphere centered at either u + v or u — v.

Claim 2.1. We claim that the minimum Hamming distance d. induces a met-
ric in the code space.

Proposition 2.4. Suppose 1 < ¢ < oo and d. is the minimum Hamming
distance of polynomial codes u,v € Fy' [x] /(™ — 1) given by d.(u,v) = (3 1, |
U — V; |C)% for u = (uy,ug,...,u,) and v = (vy, vy, ...,v,). Then, the induced

n

metric in the code space is given by d.(u,v) = (D, d(u;, v;)%)<.

Proof
Suppose u = (U1, Usg, ..., u,) and v = (vy, Ve, ..., v,) for all u,v € Fy [x]/{z"—
1). The metric induced by d. is given by d.(u,v)= inf.d(u/,v"); where ' =
u+tqe, v =v+gqzforalle, z € Fy [x]/(z"—1) =(inf {d " | | u;—v;—q(zi—e;) |°
1 1

ve,z € Fy[a] /(" =1)})e = (3000, [wi—vi—q(M) [9) 7o, (i)

Equation (i) is minimum when = (31", | w;—v; —qA; )z, for A; =| e
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U; —Vy

Suppose «; = (T) for i =1,2,3,...,n. Since 0 <| u; —v; |< g, it follows
that —1 < % and o; € {—1,0,1}. If o’ = 0 for some i then _7‘1 <u—v; < %.
In such a case min {| u; — v; |, q— | w; —v; |} =] uy — vy |.

If a; = 1 for some i then 5 < w; —v; < ¢ and min {| u; — v; |,¢— |
w— v |} =q—|w—v; | and | u; — v; |= u; — v;. If @y = —1 for some i then
—q < u; —v; < 5 and min {| w; —v; |,q— | w; — v |} = q¢— | u; —v; | and
| u; —v; |= u; — v; and hence

de(u,v) = (X0, d(us, v,)°)* 0

Proposition 2.5. Suppose A\, is a q— array lattice and v = (v1, v, ..., v,)° €
R™ is the received vector. Let v € R, C' € Fy[z]/(2" — 1) and ¢ € C,c =
(€1,€y.0y00)%, 0 < ¢; < q, a neighbor codeword to w. Considering the induced
metric d. € F} [x] /("™ —1) another neighbor z € N\, is given by (21, 22, ..., 2n)°
where z; = ¢; + qA; for A; =| % | fori=1,2,3,...,n.

Proof

We should show that if u € €' and z = u + ¢4, for 4; =| “* |, then
d(v,z) = d.(v, z). We know that ¢ € C satisfies d.(v, ¢)=min{d.(v,u),u € C}.
For A; =| =4 | it follows that d(v, ¢+ qA;) = dc(v, ¢) < min{d(v,u +qe),u €
C,e € F} [z]/(z™ — 1). Hence c + ¢A; is the neighbor of A, that minimizes
the distance d.(v, u). O

Our next problem is the characterization of perfect codes generated by the
candidate ring.

We already know that perfect codes satisfy the sphere packing bound with
equality, (see Hall [5]).

Proposition 2.6. Given the range 1 < n < oo perfect codes exist in the
polynomial ring Fy' [x] /{(z™ — 1) induced by the metric d, for k. = 1 and any
{=2n+1.

Proof

If n = 1 the result is clear. Suppose 1 < n < oo. The inequality | u; |”
+---4 | u, |"< 1 has 2n + 1 integer solutions namely u; = £1 and u; = 0 for
all j # i and u; = 0 for all . Define W, (n,1) to be the number of points in
F3r[x] /(2™ —1) inside a sphere centered at the origin. Then N, (n,1) = 2n+1 =
N;(n,1). But there exists at least one perfect code C' C Fj [x]/(z"™ — 1) in the
metric d, satisfying the proposition. It follows that this code must also be
perfect in the metric d. for any 1 < n < oo, because | C' | N,(n,1) =| C |
Ny (n,1) =2" O

The perfect codes characterized by Proposition 2.6 are trivial. The next
problem is to characterize non- trivial perfect codes of the candidate polyno-
mial ring.
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Proposition 2.7. For an odd integer « > 1 € Fy' [z] /(" — 1) and any integer
B >1¢€ F}z]/(x™—1), there exists a non-trivial perfect code C' C Fy [x] /{a"—
1) in the metric d(u,v) if and only if ¢ = af5.

Proof

By the sphere packing bound [1] we know that a code C' C F3' [z]/(z" — 1)
with minimum distance 2x + 1 is perfect if and only if:

| C'| (26 4+ 1)" = ¢™. This implies that | C' |= %. This means g must
have an odd factor and so ¢ # 2". If ¢ is prime then 2x 4+ 1 = ¢ which gives a
perfect trivial code. Thus there is no perfect code for prime ¢ or composite ¢,
a power of 2.

Suppose ¢ = af. Let the code C' be generated by the vectors
{(,0...,0),(0,,0,0,...,0),...,(0,...,0,a) } € C C Fy [x]/{z™ — 1). Therefore
| C'|= ™. Suppose e € F3' [z]/{(z™ —1). If e = fn + v, for 0 < v < (3 then
e(0,...,,0,...,0) = v(0, ..., , ...0). In this case the minimum distance
de=min{dw(u,v),u,v € C,u # v} = o. This implies that s, = 2;*. Since
Noo(n, k) = (26 + 1) = o™, it follows that | C' | R (n, k) = " = ¢" for
1 <| C'|< ¢". This code is perfect and non-trivial. O

Remark 2.1. There are no perfect codes of length n € N and k. > 1.
Let Wi, denote a polynomial code generated by b(x) = 1%+ 2% + 28+ 27 +

2ttt 4+ L
Its generator matrix is

(111 11111111]

and hence (11, 1) is a repetition code.

The cyclic code Cy; with generator polynomial a(z) = = + 1 is (11,10)
code. From the generator polynomial we obtain a generator matrix which can
be transformed into a systematic generator matrix

10000000001
01000000001
00100000001
00010000001
00001000001
00000100001
00000010001
00000001001
00000000101

(00000000011

Hence C}; is isometric to a parity check code. It consists of all even weight
vectors in Fl.
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Figure 1: Lattice diagram of the generators of z!! — 1

xt1-1

a(x) b(x)

a(x)b(x)

Definition 2.2. [7] A geometric lattice is a regular arrangement of points in
an n-dimensional Fuclidean space. A polyhedron is a solid in three dimensions
whose surface is made up of a number of polygonal surfaces.

Geometrically Figure 1 is a lattice diagram with 4 lattice points. In this
research each lattice point is a codeword. The shape of this geometric lattice
is a rhombus.

Let Wy5 denote a cyclic code which is generated by dy(z)ds(z)ds(z)ds(z) =
P +z+ D@t +z+ D@+ 22+ D@t + 22+ 22+ +1) = 2 + 28 +
22 4ot 20 4 S T a4 a® 42t 4+ 23+ 2? + 2+ 1. Its genera-
tormatrixis [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] andhence Wy;
is a (15, 1) repetition code. The cyclic code S; with generator polynomial
a(z)dy (z)do(x)dy(z) = 2™ + 20 + 2% + 2% + 25 + 2 + 23 + 1 is a (15, 4) code
with generator matrix

10011010111 1000¢O0
01 0011010111100
001001101 11T1O0T1F®0
0001001101 01T1T1T1

which is the check matrix of the fourth order binary Hamming-code and so
Sy is a binary simplex code. The cyclic code S} with generator polynomial
a(z)dy(z)ds(x)dy(r) = ' +28 42"+ 2P+ 23 +a2 +x+1is also (15, 4) code which
is isometric to Sy. The cyclic code Cy5 with generator polynomial a(x) = x+1 is
(15, 14) code. From its generator polynomial we obtain a generator matrix that
can be transformed using elementary row transformations into the systematic
generator matrix



197

Olege Fanuel

10000O0O0O0OO0O0OO0OO0O0O0T1
01 0000O0OO0OO0OO0OO0O0OO0©O0T1
0010O0O0O0OO0OO0OO0OO0O0OO0©O0T1
0001O0O0O0OO0OO0O0OO0OO0O®O0®O0OT1
0000100O0O0O0OO0O0O0©O0T1
0000O0O1O0O0OO0OO0OO0O0OO0O®O0T1
0000O0OO0O1O0O0O0OO0O0O0©O0T1
0000O0OO0OO0O1O0O0OO0OO0OO0©O0T1
0000O0OO0OO0OO0O1TO0OO0OO0OO0O©O0T1
0000O0OO0OO0OO0OO0O1O0O0®O0®O0T1
0000O0OO0OO0OO0OO0OO0O1O0O0©O0T1
0000O0OO0OO0OO0OO0OO0OO0OTITO0®O0T1
0000O0OO0OO0OO0OO0OO0OO0OO0OT1O0T1
0000O0O0OO0OO0OO0OOO0OO0OO0T1T1

Hence (5 is isometric to a parity check code. It consists of all even weight

vectors in F2°.

22+ a5+ a3+ 1is (15, 7)

The cyclic code Hg generated by ds(z)dy(z)

code with generator matrix

1001010010O0O0O0O0O0
0601 00101001O0O0O0O00O0
001001010O01O0O0O00O0
0001001O0O1O0O0T1O0O0O0
060000100101 O0O01O0060
0000O0O1O0O0O1O0O1O0O0OT1F@ 0
0000O0OO0O1O0O01O0T1O0G©O0T1

x4+ x3+r+1so

g is the simplex code Sg, hence Hg is a Hamming code.

Now Hg has the generator polynomial a(z)d;(x)ds(z)

that

Generator matrix for a(z)

(1 1]

Generator matrix for d; ()

[1 1 1]
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Generator matrix for ds(x)

10011
11001
11100
01110
00111
Generator matrix for ds(z)
11001
11100
01110
00111
10011

Generator matrix for dy(z)

(1111 1]
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x1o-1

a) 4,0
a(x)d, (x) d,(0d,()
a(x)d; (x)d,(x d,(9d,()d, (x)

a(x)dl(x)dz(x)d3 X

a()d,()d,x)d (), ()
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Geometrically this is a closed lattice diagram with 57 lattice points. It is
a polyhedron with 57 vertices.

Theorem 2.3. Let W, denote a code with generator polynomial g(x) = go(z)+
1(z) + ga(2?) + ... + go_r(z"7F), the generator matrix is given by

(90 1 - - . gux 0 0.0
0 g0 o1 - - . In—r 0..0
a=|"
L 0 0 0 In—k ]

Proof

We should show that:

(i) go(x) + g1(x) + g2(z?) + ... + gn_r(2"7F) forms a basis of W,,.

(i)dim.(W,,) = k.

For part (i) the vectors go(), g1(x), g2(22), ..., gn_i(x are linearly inde-
pendent. If not we must have a set of coefficients {a;} such that a,go(z) +
a191(z) + azga(2?) + ... + argn_r(x™ %) = 0. But this product has degree
k—14+n—k=n—1<n, which cannot be = 0 mod(z" — 1) unless all the
a; = 0. Suppose we have w(z) in W,,, then w(z) = a(z)g(x). Assume a(z) has
degree < k — 1. Then w(z) can be written as a linear combination of x'g(x)
for 0 < i < k—1. The set of all the linear combinations {z’g(x)} is a basis for
W,.

For part (ii) suppose we have two polynomials p;(x) # pa(x) with degree
pi(x) < k—1 (for i = 1,2) and g(x)pi(x) # g(x)p2(x). The set 7 = {g(z)p(x) :
p(z) € F'[z]/(z" — 1), degree p(x) < k —1} has ¢" elements and is a subset
of the ideal (g(z)).

Conversely for any codeword g(z)r(x) (for some r(x) € F'[z]/(z" — 1) ),
we have g(z)r(z) = y(z)(2" — 1) + z(z) (for some z(x) € F}'[z]/(z" — 1) ).
This means
z(x) = g(z)r(x) — y(x)(a™ — 1). Therefore g(z) divides z(x). Let z(x) =
g(x)t(z) for some polynomial ¢(x) € F'[x]/(x™ —1). This implies that degree
t(z) < k and hence z(z) € 7. Equivalently, 7 = (g(x)). Hence the dimension of
the code is given by log,|7| = k.

nfk:)

Proposition 2.8. Let Si(q) be a simplex code. Then Si(q) is a constant weight
code with parameters [(¢" —1)/q — 1, k,¢"71].

Proof

Let Hi"(¢) be a Hamming code. We know that the simplex code Si,(q) and
the Hamming code Hj-(q) are dual codes. Hy(q) is a parity check matrix of
Hit(q) and the generator matrix of Sy(q).
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Consider a parity check matrix Hy(q) with redundancy k. The rank of this
matrix = dimension =k. Let u be a non zero codeword of the simplex code
Sk(q). We have u — mHy(q) for some non-zero m € F'[x]/(z" — 1) . Let
hi-(q) be the i column of Hy(q) (for i = 1,2,3,...). Then Yu; = 0 if and
only if mh; = 0. Let mv = 0 for some v € F'[z]/(z" — 1) be a non-trivial
homogeneous linear equation. This equation has ¢"*~! solutions. The solutions
(¢"1)/q — 1 such that vT is a column of H(q) is a non-zero multiple of v”.
Hence the number of zeros of u is (¢*~* —1)/q— 1. Therefore the weight of u is

the number of non-zeros which is ¢*~1.

Proposition 2.9. For a polynomial code P. € F}[x]/(z"—1) the the following
statements are equivalent

(1) Hamming weight of P, is isomorphic to the homogeneous weight.

(11) Homogeneous weight of P. is isomorphic to the Hamming weight .

Proof
(i)= (ii) Let f™(u) = f(z1) + ... + f(xy) for all f*(u) € I where I is an
ideal in Fy'[z|/{x™ — 1) . Then;
XM = Rl Yver, [Mv for all f*(v) € R, and R,, = F}'[z](z" — 1)
U
1

= @EueRn E?:lfn (Uz)
1

= E?ﬂﬂ&e&f”%)

N () (ui)
(Xf)"(u)

(i)= (i) Let f*(v) = f(x1) + ... + f(z,) for all f(v) € I where I is an
ideal in F}'[z]/(z™ — 1) . Then;

1
(M = R—nvEUeRnf"u for all f"(u) € R, and R,, = F}'[z]/{z" — 1)
1

= an EUERn Z?Zlfn (Uz)
1

- Z?:IHEUERTL J"(vi)

= XL (Ef)(v)
= (E)"(v)

Proposition 2.10. Let W,, be a cyclic code with a check polynomial h(z) =
ho+hi(z) + ...+ hpx®. Then W, has dimension k with the parity check matriz

O
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given by:
H= _ -
he hxe1 . . hg .0 O .. .0
0  hr g ho 0O 0
hy
ho
| 0 0 .. .0 h hgy . . ho |
Proof

Let the degree of the generator matrix = n — k. The dimension of this code
is k. Let u = co 4 c1() + c2(2?) + ... + cp(a" 1) for some u € FM[z]/(z" — 1) .
Then u(z)h(z) = 0. For d = k,k+1,...,n—1 we have X¢;h; = 0 (for i+j = d).
These code-vectors are orthogonal to the linear combinations of the rows of
H. Hence C* contains the span of the rows of H. Since hk = 1, the rank of
h = n — k. This generates a linear subspace of C, implying that H is the
parity check matrix for the check polynomial hA(z). a

2.1 Syndromes of the simplex codes in the candidate
ring

Definition 2.3. [1] Let C' be an (n, k,d) code over Fy'|x]/(z" —1) and let H
be a parity check matriz for C. For any w € Fy'lx]/{x™ — 1) the syndrome of
w is the codeword S(w) = wHT € Fy *[x]/{z™ — 1) .

Proposition 2.11. [1] Let u,v € C, where C is a codeword generated by
FEy[x] /(x™ — 1). The following statements are equivalent.

(1) w and v are in the same coset.

(11) w and v have the same syndrome

Proof

(i)==(ii). Suppose u and v belong to the same coset. Then u = z; + e and
v=zy+eforz,z € Candee F}x]/(z" —1). The syndrome corresponding
to u is given by Hu® = H(z, + )T = HeT.

The syndrome corresponding to v is given by Hv! = H(zy +¢)T = He™.
Hence the syndrome of u and v are the same.

(il)==(i). Suppose u and v have the same syndrome. Then
Hu® = Hv" = H(u—v)" =0 = (u—v) € C. Since u—v is a codeword then u
and v must belong to the same coset.
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