International Mathematical Forum, Vol. 14, 2019, no. 3, 133 - 138 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2019.9421

Generalization of Rodrigues' Formula in Weyl Space

Nil Kofoglu

Beykent University
Faculty of Science and Letters
Department of Mathematics
Ayazaga-Maslak, Istanbul, Turkey

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2019 Hikari Ltd.

Abstract

In this paper, a generalization of Rodrigues's Formula in Weyl space is expressed.

Mathematics Subject Classification: 53B25

Keywords: Weyl space, intersector net, Rodrigues' Formula

1 Introduction

A manifold with a conformal metric g_{ij} and a symmetric connection ∇_k satisfying the compatibility condition

$$\nabla_k g_{ij} - 2T_k g_{ij} = 0 \tag{1}$$

is called a Weyl space that will be denoted by $W_n(g_{ij}, T_k)$. The vector field T_k is named the complementary vector field.

The prolonged derivative and prolonged covariant derivative of A are, respectively defined by ([1,5])

$$\dot{\partial}_k A = \partial_k A - pT_k A \tag{2}$$

and

$$\dot{\nabla}_k A = \nabla_k A - p T_k A \tag{3}$$

where A is a satellite of g_{ij} with weight $\{p\}$.

Nil Kofoglu

2 Generalization of Rodrigues' Formula

Let us take a point on the line v. Let us denote its coordinates by $x^a + tv^a$ where $v^a = t^i x_i^a + rn^a$ and $g_{ab}v^av^b = 1$. Let $x^a + tv^a$ be describe a curve which is tangent to the line v. Then the prolonged covariant derivative of $x^a + tv^a$ in the direction of v^k , which is tangent vector field of a curve C at a point on W_2 , satisfies the following condition:

$$v_1^a + v_1^k (\dot{\nabla}_k t) v^a + t v_1^k \dot{\nabla}_k v^a = m v^a \quad (a = 1, 2, 3; k = 1, 2)$$
 (4)

where m is to be determined.

Multiplying (4) by $g_{ab}v^b$, we get

$$g_{ab}v^av^b + v^k_1\dot{\nabla}_k t + tg_{ab}(v^k_1\dot{\nabla}_k v^a)v^b = m \quad (b = 1, 2, 3)$$
 (5)

or

$$g_{ab} v^a v^b + v^k \dot{\nabla}_k t = m \tag{6}$$

where $g_{ab}v^av^b = 1$ and $(v_1^k \dot{\nabla}_k v^a)v^b = 0$.

Using (6) in (4), we have

$$v_1^a + v_1^k (\dot{\nabla}_k t) v^a + t v_1^k \dot{\nabla}_k v^a = (g_{cb} v^c v^b + v_1^k \dot{\nabla}_k t) v^a \quad (c = 1, 2, 3)$$
 (7)

or

$$v^{k}(x_{k}^{a} + t\dot{\nabla}_{k}v^{a} - g_{cb}x_{k}^{c}v^{b}v^{a}) = 0$$
(8)

where $v_1^c = v_1^k x_k^c$ [7].

We know that:

1)
$$g_{ab}v^a x_i^b = g_{ab}(t^j x_i^a + rn^a) x_i^b = g_{ij}t^j = t_i \quad (i, j = 1, 2).$$
 (9)

2)

$$g_{ab}(\dot{\nabla}_{k}v^{a})(\dot{\nabla}_{l}v^{b}) = g_{ab}(D_{k}^{i}x_{i}^{a} + D_{k}n^{a})(D_{l}^{j}x_{j}^{b} + D_{l}n^{b})$$

$$= g_{ij}D_{k}^{i}D_{l}^{j} + D_{k}D_{l}$$

$$= D_{k}^{i}D_{l}^{j}(g_{ij} + h_{i}h_{l})$$

$$= G_{kl} \qquad (l = 1, 2)$$
(10)

where $D_k = -h_i D_k^i$ [7].

 $\mathbf{3})$

$$g_{ab}(\dot{\nabla}_{k}v^{a})x_{j}^{b} = g_{ab}(D_{k}^{i}x_{i}^{a} + D_{k}n^{a})x_{j}^{b}$$

$$= g_{ij}D_{k}^{i}$$

$$= D_{jk} \quad [4].$$
(11)

Multiplying (8) by $g_{ad}(\dot{\nabla}_l v^d)$ (d=1,2,3) and using (9), (10) and (11), we obtain

$$v_1^k(D_{kl} + tG_{kl}) = 0. (12)$$

Eliminating the parameter t in (12), we have

$$(D_{11}G_{12} - D_{12}G_{11})v_1^1v_1^1 + + (D_{11}G_{22} - D_{22}G_{11})v_1^1v_2^2 + + (D_{21}G_{22} - D_{22}G_{21})v_1^2v_2^2 = 0$$
(13)

or implicitly

$$\varepsilon^{jl} D_{ij} G_{kl} v_1^i v_1^k = 0 \tag{14}$$

or

$$e^{jl}D_{ij}G_{kl}v^i_1v^k = 0 (15)$$

where $\varepsilon^{jl} = e^{jl}/\sqrt{g}$, $e^{12} = 1$, $e^{21} = -1$, and $e^{11} = e^{22} = 0$.

The curves satisfying the equation (15) on W_2 constitute the net of curves. This net is named as the intersector net.

Using (10) and (11), we get from (15)

$$e^{jl}g_{hi}D_j^hD_k^mD_l^s(g_{ms} + h_mh_s)v_1^iv_1^k = 0 \quad (m, s = 1, 2)$$
 (16)

or

$$(De^{hs}g_{hi}g_{ms}D_k^m - De^{hs}g_{hi}D_kg_{sq}h^q)v_1^iv_2^k = 0 \quad (q = 1, 2)$$
(17)

where $e^{jl}D_s^hD_l^s = De^{hs}$, $D = |D_j^h|$ and $-D_k = D_k^m h_m$ or

$$(Dge_{im}D_k^m - Dge_{iq}D_kh^q)v_1^iv_1^k = 0 (18)$$

where $e^{hs}g_{hi}g_{ms} = ge_{im}$ [7], $g = |g_{ij}|$.

Taking m instead of q in the second term of (18), we get

$$e_{im}(D_k^m - D_k h^m) v_1^i v_1^k = 0 (19)$$

where D and g are nonvanishing.

(19) is equivalent to (15).

On the other hand, the prolonged covariant derivative of Y: $v^a=t^ix_i^a+rn^a$ in the direction of v^k is

$$v_1^k \dot{\nabla}_k v^a = v_1^k (\dot{\nabla}_k t^i - r\omega_{kl} g^{il}) x_i^a + v_1^k (t^i \omega_{ik} + \dot{\nabla}_k r) n^a$$
(20)

136 Nil Kofoglu

or

$$v_{1}^{k}\dot{\nabla}_{k}v^{a} = v_{1}^{k}(\dot{\nabla}_{k}t^{i} - r\omega_{kl}g^{il} - t^{j}\omega_{jk}\frac{t^{i}}{r} - \frac{1}{r}t^{i}\dot{\nabla}_{k}r)x_{i}^{a} + v_{1}^{k}(\frac{t^{i}}{r}\omega_{ik} + \frac{1}{r}\dot{\nabla}_{k}r)v^{a}$$
(21)

where $n^a = \frac{1}{r}(v^a - t^i x_i^a)$.

Let us denote the tangential component of (21) by -DY:

$$DY = v_1^k (-\dot{\nabla}_k t^i + r\omega_{kl} g^{il} + t^j \omega_{jk} \frac{t^i}{r} + \frac{1}{r} t^i \dot{\nabla}_k r) x_i^a.$$
 (22)

DY is tangent to C if and only if the following equation is satisfied for some scalar q:

$$v_{1}^{k}(\dot{\nabla}_{k}t^{i} - r\omega_{kl}g^{il} - t^{j}\omega_{jk}\frac{t^{i}}{r} - \frac{1}{r}t^{i}\dot{\nabla}_{k}r)x_{i}^{a} = qx_{k}^{a}v_{1}^{k}.$$
 (23)

Multiplying (23) by $g_{ab}x_m^b$, we have

$$v_1^k(\dot{\nabla}_k t_m - r\omega_{km} - t^j \omega_{jk} \frac{t_m}{r} - \frac{1}{r} t_m \dot{\nabla}_k r) = q g_{km} v_1^k$$
(24)

where $g_{ab}x_i^a x_m^b = g_{im}$, $g_{im}g^{il} = \delta_m^l$ and $g_{im}t^i = t_m$. Multiplying (24) by g^{ms} , we get

$$g^{ms}v_1^k(\dot{\nabla}_k t_m - r\omega_{km} - t^j\omega_{jk}\frac{t_m}{r} - \frac{1}{r}t_m\dot{\nabla}_k r) = qv_1^s$$
(25)

where $g_{km}g^{ms} = \delta_k^s$.

Multiplying (25) by $\varepsilon_{sh}v^h$, we obtain

$$\varepsilon_{sh}g^{ms}v_1^k(\dot{\nabla}_k t_m - r\omega_{km} - t^j\omega_{jk}\frac{t_m}{r} - \frac{1}{r}t_m\dot{\nabla}_k r)v_1^h = 0$$
 (26)

where $\varepsilon_{sh}v_1^sv_1^h=0$ (the directions coincide), or

$$\varepsilon_{sh} v^k (\dot{\nabla}_k t^s - r\omega_{km} g^{ms} - t^j \omega_{jk} \frac{t^s}{r} - \frac{1}{r} t^s \dot{\nabla}_k r) v^h = 0$$
 (27)

or

$$\varepsilon_{sh} v^k (D^s_k - h^s D_k) v^h = 0 \tag{28}$$

where $D_k^s = \dot{\nabla}_k t^s - r\omega_{km} g^{ms}$, $D_k = t^j \omega_{jk} + \dot{\nabla}_k r$ [2] and $h_j^s = t^s/r$.

(26) is equivalent to (28). From here, we have seen that C is a curve of the intersector net.

Let κ denote the magnitude (signed magnitude) of DY in the direction of v which is the tangent vector field of the curve C of the intersector net. Then, we have

$$\kappa v_1^i = v_1^k \left(-\dot{\nabla}_k t^i + r\omega_{kl} g^{il} + t^j \omega_{jk} \frac{t^i}{r} + \frac{1}{r} t^i \dot{\nabla}_k r \right). \tag{29}$$

Using (29) in (22), we have

$$DY + \kappa v_1^i x_i^a = DY + \kappa v_1^a = 0 \tag{30}$$

(30) is a generalization of Rodrigues's formula.

Remark: Generalization of Rodrigues' formula in E^3 was obtained by Pan [6].

If $Z: v^a = n^a$, then $v^k \dot{\nabla}_k v^a = v^k \dot{\nabla}_k n^a$. Using (20) and (23), we have

 $DZ = v_1^k \dot{\nabla}_k n^a = -v_1^k \omega_{kl} g^{il} x_i^a$ and $-v_1^k \omega_{kl} g^{il} x_i^a = q v_1^i x_i^a$. From here, we get $v_1^k (w_{kl} - \kappa g_{kl}) = 0$ where $-\kappa = q$, $\kappa = \omega_{ij} v_1^i v_2^j$ and $\kappa = \kappa$ is the normal curvature of W_2 . This is the equation of lines of curvature [3] i.e. The net of lines of curvature is the intersector net of the normal congruence. Let $\kappa = v_1^k \omega_{kl} g^{il} = \kappa v_1^i$, we have $DZ = \kappa v_1^a$ or $DZ + \kappa v_1^a = 0$ or $v_1^k \dot{\nabla}_k n^a + \kappa v_1^a = 0$. This is a special case of (30).

Theorem 2.1 If the tangential component of the prolonged covariant derivative of a congruence along a curve C is tangent to the curve C then C is a curve of the intersector net of the congruence.

References

- [1] V. Hlavaty, Les Courbes de la Variete W_n , Memory. Sci. Math., Paris, 1934.
- [2] N. Kofoglu, Torsion of a union curve and union torsion of a curve in a Weyl space, *International Mathematical Forum*, **9** (2014), no.15, 713-724. https://doi.org/10.12988/imf.2014.4463
- [3] N. Kofoglu and A. Özdeger, Some special nets of curves in a Weyl hypersurface, Webs & Quasigroups, (2000), 104-113.
- [4] R.S. Mishra, A problem in rectilinear congruences using tensor calculus, *Bull. Cal. Math. Soc.*, **42** (1950), 118-122.
- [5] A. Norden and S. Yafarov, Theory of non geodesic vector fields in two dimensional affinely connected spaces, *Izv. Vuzov. Matem.*, 12 (1974), 29-34.
- [6] T.K. Pan, On generalizations of Rodrigues' Formula, The American Mathematical Monthly, 73 (1966), no.6, 622-625.
 https://doi.org/10.2307/2314797

Nil Kofoğlu

[7] C.E. Springer, Rectilinear congruences whose developables intersect a surface in its lines of curvature, *Bulletin of the American Mathematical Society*, **51** (1945), no.12, 990-996. https://doi.org/10.1090/s0002-9904-1945-08489-4

[8] S.A. Uysal and A. Özdeger, On the Chebyshev nets in a hypersurface of a Weyl space, *Journal of Geometry*, **51** (1994), 171-177. https://doi.org/10.1007/bf01226866

Received: May 12, 2019; Published: June 8, 2019