International Mathematical Forum, Vol. 14, 2019, no. 1, 1 - 9 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2019.81163

On Symmetric Bi-Generalized Derivations of Incline Algebras

Kyung Ho Kim

Department of Mathematics Korea National University of Transportation Chungju 380-702, Korea

Copyright © 2019 Kyung Ho Kim. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce the notion of symmetric bi-generalized derivation of incline algebras and investigated some related properties. Also, we introduce the notion of joinitive symmetric mapping and obtain some interesting results.

Mathematics Subject Classification: Primary 16Y30

Keywords: Incline algebra, symmetric bi-derivation, symmetric bi-generalized derivation, joinitive symmetric mapping

1 Introduction

Z. Q. Cao, K. H. Kim and F. W. Roush [2] introduced the notion of incline algebras in their book. Some authors studied incline algebras and application. N. O. Alshehri [1] introduced the notion of derivation in incline algebras. In this paper, we introduce the concept of a symmetric bi-generalized derivation in incline algebras and give some properties of incline algebras. Also, In this paper, we introduce the notion of symmetric bi-generalized derivation of incline algebras and investigated some related properties. Also, we introduce the notion of joinitive symmetric mapping and obtain some interesting results.

2 Preliminary

An *incline algebra* is a set K with two binary operations denoted by "+" and "*" satisfying the following axioms, for all $x, y, z \in K$,

(K1)
$$x + y = y + x$$
,

(K2)
$$x + (y + z) = (x + y) + z$$
,

(K3)
$$x * (y * z) = (x * y) * z$$
,

(K4)
$$x * (y + z) = (x * y) + (x * z),$$

(K5)
$$(y+z)*x = (y*x) + (z*x),$$

(K6)
$$x + x = x$$
,

(K7)
$$x + (x * y) = x$$
,

(K8)
$$y + (x * y) = y$$
.

For convenience, we pronounce "+" (resp. "*") as addition (resp. multiplication). Every distributive lattice is an incline algebra. An incline algebra is a distributive lattice if and only if x * x = x for all $x \in K$. Note that $x \leq y \Leftrightarrow x + y = y$ for all $x, y \in K$. It is easy to see that " \leq " is a partial order on K and that for any $x, y \in K$, the element x + y is the least upper bound of $\{x, y\}$. We say that \leq is induced by operation +.

In an incline algebra K, the following properties hold, for all $x, y, a, b \in K$,

(K9)
$$x * y \le x$$
 and $y * x \le x$ for all $x, y \in K$,

(K10)
$$y \le z$$
 implies $x * y \le x * z$ and $y * x \le z * x$, for all $x, y, z \in K$,

(K11) If
$$x \leq y$$
 and $a \leq b$, then $x + a \leq y + b$, and $x * a \leq y * b$.

Furthermore, an incline algebra K is said to be *commutative* if x*y = y*x for all $x, y \in K$. A map f is *isotone* if $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in K$.

A subincline of an incline algebra K is a non-empty subset M of K which is closed under the addition and multiplication. A subincline M is said to be an ideal if $x \in M$ and $y \le x$ then $y \in M$. An element "0" in an incline algebra K is a zero element if x + 0 = x = 0 + x and x * 0 = 0 = 0 * x for any $x \in K$. An non-zero element "1" is called a multiplicative identity if x * 1 = 1 * x = x for any $x \in K$. A non-zero element $a \in K$ is said to be a left (resp. right) zero divisor if there exists a non-zero $b \in K$ such hat a * b = 0 (resp. b * a = 0) A

zero divisor is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra K with multiplicative identity 1 and zero element 0 is called an *integral incline* if it has no zero divisors. By a *homomorphism* of inclines, we mean a mapping f from an incline algebra K into an incline algebra L such that f(x+y)=f(x)+f(y) and f(x*y)=f(x)*f(y) for all $x,y\in K$. A map $f:K\to K$ is regular if f(0)=0. A subincline I of an incline algebra K is said to be k-ideal if $x+y\in I$ and $y\in I$, then $x\in I$. Let K be an incline algebra. An element $a\in K$ is called a additively cancellative if for all $a,b\in K$, $a+b=a+c\Rightarrow b=c$. If every element of K is additively cancellative, it is called additively cancellative.

Definition 2.1. Let K be an incline algebra. A mapping $D(.,.): K \times K \to K$ is called symmetric if D(x,y) = D(y,x) holds for all $x,y \in K$.

Definition 2.2. Let K be an incline algebra and $x \in K$. A mapping d(x) = D(x,x) is called trace of D(.,.), where $D(.,.) : K \times K \to K$ is a symmetric mapping.

Definition 2.3. Let K be an incline algebra and let $D: K \times K \to K$ be a symmetric mapping. We call D a symmetric bi-derivation on K if it satisfies the following condition

$$D(x * y, z) = D(x, z) * y + x * D(y, z)$$

for all $x, y, z \in K$.

Lemma 2.4. Let K be an incline algebra and let $D: K \times K \to K$ be a symmetric bi-derivation of K. Then D(0,x) = D(x,0) = 0 for all $x \in K$.

3 Symmetric bi-generalized derivations of incline algebras

In what follows, let K denote an incline algebra with a zero element 0 unless otherwise specified.

Definition 3.1. Let K be an incline algebra. A symmetric map $F: K \times K \to K$ is called a symmetric bi-generalized derivation of K if there exists a symmetric bi-derivation D such that

$$F(x * y, z) = F(x, z) * y + x * D(y, z)$$

for all $x, y, z \in K$.

Example 3.2. Let $K = \{0, a, b, 1\}$ be a set in which "+" and "*" is defined by

Then it is easy to check that (K, +, *) is an incline algebra. Define a map $D: K \times K \to K$ by

$$D(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0), (0,a), (a,0), (0,b), (b,0), (0,1), (1,0) \\ a & \text{if } (x,y) = (a,a), (a,b), (b,a), (a,1), (1,a) \\ b & \text{if } (x,y) = (b,b), (1,1), (b,1), (1,b) \end{cases}$$

Then it is easy to prove that D is a symmetric bi-derivation of K. Also, define $F: K \to K$ by

$$F(x,y) = \begin{cases} 0 & if (x,y) = (0,0), (0,a), (a,0,(0,b),(b,0),(0,1),(1,0) \\ a & if (x,y) = (a,a), (a,b), (b,a), (a,1), (1,a) \\ b & if (x,y) = (b,b), (b,1), (1,b) \\ 1 & if (x,y) = (1,1) \end{cases}$$

Then it is easily checked that F is a symmetric bi-generalized derivation associated with D of K.

Proposition 3.3. Let D be a symmetric bi-derivation of K. If F is a symmetric bi-generalized derivation associated with D of K, then F(0,0) = 0.

Proof. Let F be a symmetric bi-generalized derivation associated with D of K. Then we have

$$F(0,0) = F(0*0,0)$$

= $F(0,0)*0+0*D(0,0)$
= $0+0=0$

Proposition 3.4. Let D be a symmetric bi-derivation of K. If F is a symmetric bi-generalized derivation associated with D of K, then Then F(0,x) = F(x,0) = 0 for all $x \in K$.

Proof. Let F be a symmetric bi-generalized derivation associated with D of K. Then we have

$$F(0,x) = F(0*0,x)$$

= $F(0,x)*0+0*D(0,x)$
= $0+0=0$

for every $x \in K$. Similarly, F(x,0) = 0 for every $x \in K$.

Proposition 3.5. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. If d is a trace of F, then d is regular.

Proof. Let d be a trace of F. Then

$$d(0) = F(0,0) = F(x*0,0)$$

= $F(x,0)*0 + x*D(0,x)$
= $0 + 0 = 0$

for every $x \in K$.

This completes the proof.

Proposition 3.6. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. Then $F(x*y,z) \le F(x,z) + D(y,z)$ for all $x,y,z \in K$.

Proof. Let F be a symmetric bi-generalized derivation associated with D of K. Then by (K9), we have $F(x,z)*y \leq F(x,z)$ and $x*D(y,z) \leq D(y,z)$ for all $x,y,z \in K$. Hence we obtain, by (K11)

$$F(x * y, z) = F(x, z) * y + x * D(y, z)$$

$$\leq F(x, z) + D(y, z)$$

for all $x, y, z \in K$. This completes the proof.

Proposition 3.7. Let D be a symmetric bi-derivation of integral incline K and let F be a symmetric bi-generalized derivation associated with D of K. Then for all $x, y, z \in K$,

- (1) a * F(x, y) = 0 implies that a = 0 or D = 0.
- (2) F(x, y) * a = 0 implies that a = 0 or D = 0.

Proof. (1) Let a * F(x, y) = 0 for every $x, y \in K$. Replacing x by x * z in this relation, we get

$$0 = a * F(x * z, y) = a * ((F(x, z) * y) + (x * D(y, z)))$$

= $a * (F(x, z) * y) + a * (x * D(y, z))$
= $a * (x * D(y, z)).$

By putting x = 1, we have a*D(y, z) = 0 for all $y, z \in K$. Since K is an integral incline, i.e., it has no zero divisors, a = 0 or D(y, z) = 0 for all $y, z \in K$. Hence a = 0 or D = 0.

(2) Similarly, we can prove (2).

П

Let K be an incline algebra and let F be a symmetric bi-generalized derivation associated with symmetric bi-derivation D of K. For a fixed element $a \in K$, let us define a map $d_a : K \to K$ such that $d_a(x) = F(x, a)$ for every $x \in K$.

Proposition 3.8. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. Then d_a is regular.

Proof. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. Then

$$d_a(0) = F(0, a) = F(0 * 0, a) = F(0, a) * 0 + 0 * D(0, a) = 0 + 0 = 0$$

This completes the proof.

Proposition 3.9. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. Then $d_a(x * y) = d_a(x) * y + x * D(y, a)$ for all $x, y \in K$.

Proof. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. Then

$$d_a(x * y) = F(x * y, a) = F(x, a) * y + x * D(y, a) = d_a(x) * y + x * D(y, a)$$

for all $x, y \in K$. This completes the proof.

Proposition 3.10. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. Then $d_0(x) = 0$ for all $x \in K$.

Proof. Let D be a symmetric bi-derivation of K and let F be a symmetric bi-generalized derivation associated with D of K. Then

$$d_0(x) = F(x,0) = F(0*0,x) = F(0,x)*0 + 0*D(0,x) = 0 + 0 = 0$$

for all $x \in K$. This completes the proof.

Let K be an incline algebra and let $F: K \times K \to K$ be a symmetric mapping. We call F a *joinitive mapping* if it satisfies

$$F(x+y,z) = F(x,z) + F(y,z)$$

for all $x, y, z \in K$.

Proposition 3.11. Let K be an incline algebra and let F be a joinitive symmetric bi-generalized derivation associated with symmetric bi-derivation D of K. Then $F(x * y, z) \leq F(x, z)$ for all $x, y, z \in K$.

Proof. Let D be a symmetric bi-derivation of K and let F be a joinitive symmetric bi-generalized derivation associated with D of K. Then

$$F(x,z) = F(x + x * y, z) = F(x,z) + F(x * y, z),$$

which implies that $F(x * y, z) \le F(x, z)$ for all $x, y, z \in K$. This completes the proof.

Proposition 3.12. Let K be an incline algebra and let d be a trace of joinitive symmetric bi-generalized derivation F associated with symmetric bi-derivation D of K. Then $x * D(x, y) \le d(x)$ for all $x, y \in K$.

Proof. Let d be a trace of joinitive symmetric bi-generalized derivation F associated with symmetric bi-derivation D of K. Then

$$d(x) = F(x, x) = F(x + x * y, x)$$

$$= F(x, x) + F(x, x) * y + x * D(x, y)$$

$$= d(x) + d(x) * y + x * D(x, y)$$

$$= d(x) + x * D(x, y)$$

for all $x, y \in K$. This implies that $x * D(x, y) \le d(x)$. This completes the proof.

Proposition 3.13. Let K be an incline algebra and let F be a joinitive symmetric bi-generalized derivation associated with symmetric bi-derivation D of K. Then F is an isotone symmetric bi-generalized derivation of K.

Proof. Let $(x, y) \le (z, t)$ for $x, y, z, t \in K$. Then we have x + z = z and y + t = t, and so (x, y) + (z, t) = (z, t). Hence we obtain

$$F(z,t) = F((x,y) + (z,t)) = F(x,y) + F(z,t)$$

for all $x, y, z, t \in K$. This implies that $F(x, y) \leq F(z, t)$ for all $x, y, z, t \in K$. This completes the proof.

Proposition 3.14. Let K be an incline algebra and let F be a joinitive symmetric bi-generalized derivation associated with symmetric bi-derivation D of K. Then d(x + y) = d(x) + d(y) + F(x, y) for all $x, y \in K$.

Proof. Let $x, y \in K$.

$$d(x + y) = F(x + y, x + y) = F(x, x + y) + F(y, x + y)$$

= $F(x, x) + F(x, y) + F(y, x) + F(y, y)$
= $d(x) + d(y) + F(x, y)$.

This completes the proof.

Proposition 3.15. Let D be a symmetric bi-derivation of K and let F be a joinitive symmetric bi-generalized derivation associated with D of K. If $x \leq y$, then $F(x, z) \leq F(y, z)$ for all $z \in K$.

Proof. Let $x \leq y$. Then we have x + y = y and

$$F(y,z) = F(x + y, z) = F(x, z) + F(y, z),$$

which implies that $F(x,z) \leq F(y,z)$ for all $z \in K$. This completes the proof.

Let F be a symmetric bi-generalized bi-derivation associated with symmetric bi-derivation D of K. For fixed element $a \in K$, define a set $Fix_a(K)$ by

$$Fix_a(K) = \{x \in K \mid F(x, a) = x\}.$$

Proposition 3.16. Let D be a symmetric bi-derivation of K and let F be a joinitive symmetric bi-generalized derivation associated with D of K. Then $Fix_a(K)$ is a subalgebra of K.

Proof. Let $x, y \in Fix_a(K)$. Then Then

$$F(x + y, a) = F(x, a) + F(y, a)$$
$$= x + y,$$

which implies that $x + y \in Fix_a(K)$. This completes the proof.

References

- [1] N. O. Alshehri, On derivations of incline algebras, *Scientiae Mathematicae Japonicae*, **e-2010** (2010), 199-205.
- [2] Z. Q. Cao, K. H. Kim and F. W. Roush, *Incline Algebra and Applications*, John Wiley and Sons, New York, 1984.
- [3] K. H. Kim, On right derivations of incline algebras, *Journal of The Chung Cheong Mathematical Society*, **26** (2013), no. 4, 683-690. https://doi.org/10.14403/jcms.2013.26.4.683
- [4] W. Yao and S. Han, On ideals, filters, and congruences in inclines, Bull. Korean Math., 46 (2009), no. 3, 591-598.
 https://doi.org/10.4134/bkms.2009.46.3.591

Received: December 7, 2018; Published: January 11, 2019