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Abstract

In this paper, we introduce the notion of symmetric bi-generalized
derivation of incline algebras and investigated some related properties.
Also, we introduce the notion of joinitive symmetric mapping and obtain
some interesting results.
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1 Introduction

Z. Q. Cao, K. H. Kim and F. W. Roush [2] introduced the notion of incline
algebras in their book. Some authors studied incline algebras and application.
N. O. Alshehri [1] introduced the notion of derivation in incline algebras. In
this paper, we introduce the concept of a symmetric bi-generalized derivation
in incline algebras and give some properties of incline algebras. Also, In this
paper, we introduce the notion of symmetric bi-generalized derivation of incline
algebras and investigated some related properties. Also, we introduce the
notion of joinitive symmetric mapping and obtain some interesting results.
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2  Preliminary

An incline algebra is a set K with two binary operations denoted by “+” and

(13 7

x 7 satisfying the following axioms, for all z,y, z € K,

For convenience, we pronounce “+ " (resp. “x”) as addition (resp. multi-
plication). Every distributive lattice is an incline algebra. An incline algebra
is a distributive lattice if and only if x x x = x for all x € K. Note that
r<y<r+y=uyforall z,y € K. It is easy to see that “ <7 is a partial
order on K and that for any z,y € K, the element x + y is the least upper
bound of {z,y}. We say that < is induced by operation +.

In an incline algebra K, the following properties hold, for all x,y,a,b € K,
(K9) zxy <zandyxz <z forall z,y € K,

(K10) y < zimplies zxy < x*z and y xx < zx x, for all z,y, 2z € K,
(K11) If s <y and a < b, then x +a <y +b, and x xa < y x b.

Furthermore, an incline algebra K is said to be commutative if xxy = y=*x for
all z,y € K. A map f is isotone if © < y implies f(x) < f(y) for all z,y € K.

A subincline of an incline algebra K is a non-empty subset M of K which is
closed under the addition and multiplication. A subincline M is said to be an
ideal if x € M and y < x then y € M. An element “0” in an incline algebra K
is a zero elementif r+0 =2 =0+zand x %0 =0 = 0%z for any v € K.
An non-zero element “1” is called a multiplicative identity if tx 1 =1xz ==z
for any z € K. A non-zero element a € K is said to be a left (resp. right) zero
divisor if there exists a non-zero b € K such hat a b =0 (resp. bxa =0) A
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zero divisor is an element of K which is both a left zero divisor and a right zero
divisor. An incline algebra K with multiplicative identity 1 and zero element
0 is called an integral incline if it has no zero divisors. By a homomorphism
of inclines, we mean a mapping f from an incline algebra K into an incline

algebra L such that f(z +vy) = f(x) + f(y) and f(z *xy) = f(z) * f(y) for
all z,y € K. Amap f: K — K is reqular if f(0) = 0. A subincline [ of an

incline algebra K is said to be k-ideal if x +y € I and y € I, then x € I. Let
K be an incline algebra. An element a € K is called a additively cancellative
if for all a,b € K, a+b=a+c= b= c. If every element of K is additively
cancellative, it is called additively cancellative.

Definition 2.1. Let K be an incline algebra. A mapping D(.,.) : K x K — K
is called symmetric if D(z,y) = D(y,x) holds for all z,y € K.

Definition 2.2. Let K be an incline algebra and v € K. A mapping d(z) =
D(z,z) is called trace of D(.,.), where D(.,.) : K x K — K is a symmetric
mapping.

Definition 2.3. Let K be an incline algebra and let D : K x K — K be a
symmetric mapping. We call D a symmetric bi-derivation on K if it satisfies
the following condition

D(x*xy,z)=D(x,z) xy+x* Dy, z)
forall z,y,z € K.

Lemma 2.4. Let K be an incline algebra and let D : K x K — K be a
symmetric bi-derivation of K. Then D(0,x) = D(x,0) =0 for all x € K.

3 Symmetric bi-generalized derivations of in-
cline algebras

In what follows, let K denote an incline algebra with a zero element 0 unless
otherwise specified.

Definition 3.1. Let K be an incline algebra. A symmetric map F : K X
K — K is called a symmetric bi-generalized derivation of K if there exists a
symmetric bi-derivation D such that

Flzxy,2) = F(z,2) xy + 2% D(y,2)
forall x,y,z € K.

Example 3.2. Let K = {0,a,b,1} be a set in which “+” and “*” is defined
by
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+10 a b 1 *x|0 a b 1
0[0 a b 1 0/0 0 0 O
ala a b 1 al0 a a a
blb b b 1 b|0 a b b
111 1 1 1 110 a b 1

Then it is easy to check that (K,+,x*) is an incline algebra. Define a map
D:KxK—K by

0 if (z,y) =(0,0),(0,a),(a,0),(0,b), (b,0), (0,1), (1,0)
D(z,y) =Sa if (z,y) = (a,a),(a,), (b,a),(a,1),(1,a)
b if (l’,y) = <b7b)7<171>7(b7 1)7(17b)

Then it is easy to prove that D is a symmetric bi-derivation of K. Also, define
F:K— Kby

a), (a,b),(b,a),(a,1),(1,a)

F(z,y) = b,b), (b,1), (1,b)
1

_ S O
<
/N TN N
\'H
L=
S— N
I
N TN TN TN
8

Then it is easily checked that F' is a symmetric bi-generalized derivation asso-
ciated with D of K.

Proposition 3.3. Let D be a symmetric bi-derivation of K. If F is a sym-
metric bi-generalized derivation associated with D of K, then F'(0,0) = 0.

Proof. Let F' be a symmetric bi-generalized derivation associated with D of

K. Then we have
F(0,0) = F(0%0,0)

= F(0,0) %0+ 0% D(0,0)
—04+0=0
0

Proposition 3.4. Let D be a symmetric bi-derivation of K. If F is a sym-
metric bi-generalized derivation associated with D of K, then Then F(0,z) =
F(z,0) =0 forallz € K.

Proof. Let F be a symmetric bi-generalized derivation associated with D of
K. Then we have
F(0,z) = F(0*0,x)
=F(0,2) * 0+ 0% D(0,x)
=04+0=0
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for every x € K. Similarly, F'(z,0) = 0 for every x € K.
0

Proposition 3.5. Let D be a symmetric bi-derivation of K and let F be a
symmetric bi-generalized derivation associated with D of K. If d is a trace of
F, then d is regular.

Proof. Let d be a trace of F. Then
d(0) = F(0,0) = F(z*0,0)
= F(z,0) %0+ 2% D(0,2)
=0+0=0
for every x € K.

This completes the proof.
]

Proposition 3.6. Let D be a symmetric bi-derivation of K and let F' be a
symmetric bi-generalized derivation associated with D of K. Then F(xxy, z) <
F(x,z)+ D(y,2) for all x,y,z € K.

Proof. Let F be a symmetric bi-generalized derivation associated with D of
K. Then by (K9), we have F(z,2) xy < F(z,z) and z *x D(y, z) < D(y, z) for
all z,y,z € K. Hence we obtain, by (K11)

Fzxy,z)=F(z,2)xy +x* D(y, 2)
< F(z,2) + D(y, 2)

for all z,y, z € K. This completes the proof.
]

Proposition 3.7. Let D be a symmetric bi-derivation of integral incline K
and let F' be a symmetric bi-generalized derivation associated with D of K.
Then for all x,y,z € K,
(1) a* F(z,y) = 0 implies that a = 0 or D = 0.
(2) F(x,y)*a =0 implies that a =0 or D = 0.
Proof. (1) Let a * F(z,y) = 0 for every z,y € K. Replacing x by z * z in this
relation, we get
0=axF(rxzy) =ax((F(z,z)xy)+ (z*D(y,2)))
=ax(F(x,z)xy)+ax*x(zxD(y,z2))
=ax(x*D(y,z)).
By putting z = 1, we have axD(y, z) = 0 for all y, z € K. Since K is an integral
incline, i.e., it has no zero divisors, a = 0 or D(y, z) = 0 for all y, z € K. Hence
a=0or D=0.
(2) Similarly, we can prove (2).
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Let K be an incline algebra and let F' be a symmetric bi-generalized deriva-
tion associated with symmetric bi-derivation D of K. For a fixed element
a € K, let us define a map d, : K — K such that d,(z) = F(z,a) for ev-
ery x € K.

Proposition 3.8. Let D be a symmetric bi-deriwation of K and let F be a
symmetric bi-generalized derivation associated with D of K. Then d, is reqular.

Proof. Let D be a symmetric bi-derivation of K and let F' be a symmetric
bi-generalized derivation associated with D of K. Then

da(0) = F(0,a) = F(0%0,a) = F(0,a) 0+ 0% D(0,a) =0+ 0=0

This completes the proof.
O

Proposition 3.9. Let D be a symmetric bi-derivation of K and let F be a
symmetric bi-generalized derivation associated with D of K. Then d,(x *y) =
do() *y 4+ % D(y,a) for al z,y € K.

Proof. Let D be a symmetric bi-derivation of K and let F' be a symmetric
bi-generalized derivation associated with D of K. Then

do(xxy) = F(z*xy,a) = F(z,a) *y+x* D(y,a) = d,(z) xy + x x D(y,a)

for all x,y € K. This completes the proof.
m

Proposition 3.10. Let D be a symmetric bi-derivation of K and let F' be a
symmetric bi-generalized derivation associated with D of K. Then do(z) = 0
forall x € K.

Proof. Let D be a symmetric bi-derivation of K and let F' be a symmetric
bi-generalized derivation associated with D of K. Then

do(z) = F(z,0) = F(0%0,2) = F(0,2) *0+ 0% D(0,2) =04+ 0=0

for all x € K. This completes the proof.
m

Let K be an incline algebra and let F' : K x K — K be a symmetric
mapping. We call F' a joinitive mapping if it satisfies

Flzx+y,z)=F(x,z) + F(y, 2)

for all z,y, 2 € K.
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Proposition 3.11. Let K be an incline algebra and let F be a joinitive sym-

metric bi-generalized derivation associated with symmetric bi-derivation D of
K. Then F(xxy,z) < F(x,z) for all z,y,z € K.

Proof. Let D be a symmetric bi-derivation of K and let F' be a joinitive sym-
metric bi-generalized derivation associated with D of K. Then

Fa,z) = Fle+xxy,2z) = F(z,2) + F(z xy, 2),

which implies that F(x %y, z) < F(x, z) for all z,y, 2 € K. This completes the
proof.
]

Proposition 3.12. Let K be an incline algebra and let d be a trace of joinitive

symmetric bi-generalized derivation F' associated with symmetric bi-derivation
D of K. Then x * D(x,y) < d(z) for all z,y € K.

Proof. Let d be a trace of joinitive symmetric bi-generalized derivation F' as-
sociated with symmetric bi-derivation D of K. Then

d(z) = F(z,z) = F(x + z x y,x)
F(z,z)+ F(z,x)xy +x* D(x,y)
x)+d(z)*xy+x* D(x,y)
)+

d(
d(x x D(x,y)

_|_
+

for all z,y € K. This implies that z* D(z,y) < d(z). This completes the proof.
0

Proposition 3.13. Let K be an incline algebra and let F be a joinitive sym-
metric bi-generalized derivation associated with symmetric bi-derivation D of
K. Then F is an isotone symmetric bi-generalized derivation of K.

Proof. Let (x,y) < (z,t) for z,y, z,t € K. Then we have x+2 = z and y+t = t,
and so (z,y) + (2,t) = (z,t). Hence we obtain

F(z,t) = F((z,y) + (2,1)) = F(z,y) + F(2,1)

for all ,y,z,t € K. This implies that F(x,y) < F(z,t) for all z,y,z2,t € K.
This completes the proof.
O

Proposition 3.14. Let K be an incline algebra and let F' be a joinitive sym-
metric bi-generalized derivation associated with symmetric bi-derivation D of

K. Then d(x +y) = d(z) + d(y) + F(x,y) for all z,y € K.
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Proof. Let x,y € K.

dz+y)=Flx+yrz+y) =Fle,x+y)+ Fly,x +vy)
F(z,2) + F(x,y) + F(y,x) + F(y,y)
=d(z) +d(y) + F(z,y).

This completes the proof.
m

Proposition 3.15. Let D be a symmetric bi-derivation of K and let F be a
joinitive symmetric bi-generalized derivation associated with D of K. If x < vy,
then F(z,z) < F(y, z) for all z € K.

Proof. Let x <y. Then we have x + y = y and
Fly,z) = F(z+y,2) = Fz,2) + F(y, 2),

which implies that F(z,z) < F(y, z) for all z € K. This completes the proof.
[l

Let F' be a symmetric bi-generalized bi-derivation associated with sym-
metric bi-derivation D of K. For fixed element a € K, define a set Fiz,(K)
by

Fiz,(K)={rx € K | F(z,a) = z}.

Proposition 3.16. Let D be a symmetric bi-derivation of K and let F' be
a joinitive symmetric bi-generalized derivation associated with D of K. Then
Fiz,(K) is a subalgebra of K.

Proof. Let x,y € Fiz,(K). Then Then

F(x+y,a) = F(r,a) + F(y,a)
=z+y,

which implies that x + y € Fiz,(K). This completes the proof.
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