International Mathematical Forum, Vol. 14, 2019, no. 3, 107 - 115 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2019.9210

On Right f-Derivations of Γ -Incline Algebras

Kyung Ho Kim

Department of Mathematics Korea National University of Transportation Chungju 27469, Korea

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2019 Hikari Ltd.

Abstract

In this paper, we introduce the concept of a right f-derivation associated with a function f in Γ -incline algebras and give some properties of Γ -incline algebras. Also, the concept of k-ideal is introduced in a Γ -incline algebra with respect to right f-derivations.

Mathematics Subject Classification: 06F35, 03G25, 08A30

Keywords: Incline algebra, Γ-incline algebra, right f-derivation, isotone, d-ideal, k-ideal

1 Introduction

Incline algebra is a generalization of both Boolean and fuzzy algebra and it is a special type of semiring. It has both a semiring structure and a poset structure. It can also be used to represent automata and other mathematical systems, to study inequalities for non-negative matrices of polynomials. Z. Q. Cao, K. H. Kim and F. W. Roush [4] introduced the notion of incline algebras in their book and later it was developed by some authors [1, 2, 3, 5]. Ahn et al. [1] introduced the notion of quotient incline and obtained the structure of incline algebras. N. O. Alshehri [3] introduced the notion of derivation in incline algebra. Kim [5, 6] studied right derivation and generalized derivation of incline algebras and obtained some results. M. K. Rao etc introduced the concept of generalized right derivation of Γ -incline and obtain some results. In this paper, we introduce the concept of a right f-derivation associated with a function f in Γ -incline algebras and give some properties of Γ -incline algebras.

Also, the concept of k-ideal is introduced in a Γ -incline algebra with respect to right f-derivations.

2 Preliminaries

An *incline algebra* is a set K with two binary operations denoted by "+" and "*" satisfying the following axioms, for all $x, y, z \in K$,

$$(K1) x+y=y+x,$$

(K2)
$$x + (y + z) = (x + y) + z$$
,

(K3)
$$x * (y * z) = (x * y) * z$$
,

(K4)
$$x * (y + z) = (x * y) + (x * z),$$

(K5)
$$(y+z)*x = (y*x) + (z*x),$$

(K6)
$$x + x = x$$
,

$$(K7) x + (x * y) = x,$$

(K8)
$$y + (x * y) = y$$
.

Definition 2.1. Let (K, +) and $(\Gamma, +)$ be commutative semigroups. If there exists a mapping $K \times \Gamma \times K \to K((x, \alpha, y) = x\alpha y)$ such that it satisfies the following axioms, for all $x, y \in K$ and $\alpha, \beta \in \Gamma$,

(K9)
$$x\alpha(y+z) = x\alpha y + x\alpha z$$

(K10)
$$(x+y)\alpha z = x\alpha z + y\alpha z$$

(K11)
$$x(\alpha + \beta)y = x\alpha y + x\beta y$$

(K12)
$$x\alpha(y\beta z) = (x\alpha y)\beta z$$

(K13)
$$x + x = x$$

(K14)
$$x + x\alpha y = x$$

(K15)
$$y + x\alpha y = y$$

Then K is called a Γ -incline algebra (see [7]).

Example 2.2. Let K = [0,1] and $\Gamma = N$. Define + by $x + y = \max\{x,y\}$ and ternary operation is defined as $x\alpha y = \min\{x,\alpha,y\}$ for all $x,y \in K$ and $\alpha \in \Gamma$. Then K is an Γ -incline algebra (see [7]).

Note that $x \leq y \Leftrightarrow x+y=y$ for all $x,y \in K$. It is easy to see that " \leq " is a partial order on K and that for any $x,y \in K$, the element x+y is the least upper bound of $\{x,y\}$. We say that \leq is induced by operation +.

In an Γ -incline algebra K, the following properties hold.

- (K16) $x\alpha y \leq x$ and $y\alpha x \leq x$ for all $x, y \in K$ and $\alpha \in \Gamma$
- (K17) $y \leq z$ implies $x\alpha y \leq x\alpha z$ and $y\alpha x \leq z\alpha x$, for all $x, y, z \in K$ and $\alpha \in \Gamma$
- (K18) If $x \leq y$ and $a \leq b$, then $x+a \leq y+b$, and $x\alpha a \leq y\alpha b$ for all $x, y, a, b \in K$ and $\alpha \in \Gamma$.

Furthermore, an Γ -incline algebra K is said to be *commutative* if $x\alpha y = y\alpha x$ for all $x, y \in K$ for all $\alpha \in \Gamma$.

A Γ-subincline of an Γ-incline algebra K is a non-empty subset I of K which is closed under the addition and multiplication. An Γ-subincline I is called an ideal if $x \in I$ and $y \leq x$ then $y \in I$. An element "0" in an Γ-incline algebra K is a zero element if x + 0 = x = 0 + x and $x\alpha 0 = 0 = 0\alpha x$ for any $x \in K$ and $\alpha \in \Gamma$. An non-zero element "1" is called a multiplicative identity if $x\alpha 1 = 1\alpha x = x$ for any $x \in K$ and $\alpha \in \Gamma$. A non-zero element $a \in K$ is said to be a left (resp. right) zero divisor if there exists a non-zero $b \in K$ such hat $a\alpha b = 0$ (resp. $b\alpha a = 0$) for all $\alpha \in \Gamma$. A zero divisor is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra K with multiplicative identity 1 and zero element 0 is called an integral incline if it has no zero divisors. By a homomorphism of Γ-incline algebras, we mean a mapping f from an Γ-incline algebra K into an Γ-incline algebra K such that f(x+y) = f(x) + f(y) and $f(x\alpha y) = f(x)\alpha f(y)$ for all $x, y \in K$ for all $\alpha \in \Gamma$.

Definition 2.3. Let K be an Γ -incline algebra. An element $a \in K$ is said to be idempotent of K if there exists $\alpha \in \Gamma$ such that $a = a\alpha a$.

Let K be an Γ -incline algebra. If every element of K is idempotent, then K is said to be *idempotent* Γ -*incline algebra*. An Γ -incline algebra K with unity 1 and zero element 0 is called an *integral* Γ -*incline* if it has no zero divisors.

Definition 2.4. Let K be an Γ -incline algebra. By a right derivation of K, we mean a self map d of K satisfying the identities

$$d(x+y) = d(x) + d(y)$$
 and $d(x\alpha y) = (d(x)\alpha y) + (d(y)\alpha x)$

for all $x, y \in K$ and $\alpha \in \Gamma$.

3 Right f-derivations of Γ -incline algebras

In what follows, let K denote an Γ -incline algebra with a zero-element unless otherwise specified.

Definition 3.1. Let K be a Γ -incline algebra and let $f: K \to K$ be a function. By a right f-derivation of K, we mean a self map d of K satisfying the identities

$$d(x+y) = d(x) + d(y)$$
 and $d(x\alpha y) = (d(x)\alpha f(y)) + (d(y)\alpha f(x))$

for all $x, y \in K$ and $\alpha \in \Gamma$.

Example 3.2. Let $K = \{0, a, b, 1\}$ be a set in which "+" and " α " is defined by

Then it is easy to check that $(K, +, \alpha)$ is a Γ -incline algebra. Define a map $d, f: K \to K$ by

$$d(x) = \begin{cases} a & \text{if } x = a, b, 1 \\ 0 & \text{if } x = 0 \end{cases} \qquad f(x) = \begin{cases} b & \text{if } x = a, b \\ 1 & \text{if } x = 1 \\ 0 & \text{if } x = 0. \end{cases}$$

Then we can see that d is a right f-derivation associated with a function f of K.

Proposition 3.3. Let K be a commutative Γ -incline algebra and let f be a endomorphism on K. Then for a fixed $a \in K$, the mapping $d_a : K \to K$ given by $d_a(x) = f(x)\alpha a$, for every $x \in K$ and $\alpha \in \Gamma$, is a right f-derivation of K.

Proof. Let K be a commutative Γ -incline algebra. Then for a fixed element $a \in K$ and $\alpha \in \Gamma$, we have

$$d_a(x\alpha y) = f(x\alpha y)\alpha a = (f(x\alpha y)\alpha a) + (f(x\alpha y)\alpha a)$$

$$= ((f(x)\alpha f(y))\alpha a) + ((f(x)\alpha f(y))\alpha a)$$

$$= ((f(x)\alpha a)\alpha f(y)) + ((f(y)\alpha a)\alpha f(x))$$

$$= d_a(x)\alpha f(y) + d_a(y)\alpha f(x)$$

for all $x, y \in K$ and $\alpha \in \Gamma$. This completes the proof.

Proposition 3.4. Let K be a commutative Γ -incline algebra and f be a function of K. Then $d_{a+b} = d_a + d_b$ for all $a, b \in K$.

Proof. Let K be a commutative Γ -incline algebra and $a, b \in K$. Then for all $c \in K$, we have

$$d_{a+b}(c) = f(c)\alpha(a+b) = (f(c)\alpha a) + (f(c)\alpha b) = d_a(c) + d_b(c) = (d_a + d_b)(c).$$

Proposition 3.5. Let d be a right f-derivation associated with a function f of K. If f(0) = 0, then we have d(0) = 0.

Proof. Let d be a right f-derivation associated with a function f of K. Then we have

$$d(0) = d(0\alpha 0) = d(0)\alpha f(0) + d(0)\alpha f(0)$$

= $d(0)\alpha 0 + d(0)\alpha 0 = 0 + 0 = 0$.

for all $\alpha \in \Gamma$.

Proposition 3.6. Let K be an idempotent Γ -incline algebra and let d be a right f-derivation associated with a function f of K. Then $d(x) \leq f(x)$ for all $x \in K$ and $\alpha \in \Gamma$.

Proof. Let K be an idempotent Γ -incline algebra and let d be a right f-derivation associated with a function f of K. Then

$$d(x) = d(x\alpha x) = d(x)\alpha f(x) + d(x)\alpha f(x)$$
$$= d(x)\alpha f(x) \le f(x)$$

from (K16) for all $x \in K$ and $\alpha \in \Gamma$.

Proposition 3.7. Let K be an Γ -incline algebra and let d be a right f-derivation associated with a function f of K. Then we have $d(x\alpha y) \leq d(x+y)$ for all $x, y \in K$ and $\alpha \in \Gamma$.

Proof. Let $x, y \in K$ and $\alpha \in \Gamma$. By using (K16), we get $d(x)\alpha f(y) \leq d(x)$ and $d(y)\alpha f(x) \leq d(y)$. Thus we get $d(x\alpha y) = (d(x)\alpha f(y)) + (d(y)\alpha f(x)) \leq d(x) + d(y) = d(x+y)$.

Proposition 3.8. Let K be an idempotent Γ -incline algebra and let d be a right f-derivation of associated with a function f of K. Define $d^2(x) = d(d(x))$ for all $x \in K$. If $d^2 = d$ and $f \circ d = f$, then $d(x\alpha d(x)) = d(x)$ for all $x \in K$ and $\alpha \in \Gamma$.

Proof. Let K be an idempotent Γ -incline algebra and d be a right f-derivation of associated with a function f of K.

$$d(x\alpha d(x)) = (d(x)\alpha f(d(x))) + (d^2(x)\alpha f(x))$$
$$= (d(x)\alpha f(x)) + (d^2(x)\alpha f(x))$$
$$= d(x) + (d(x)\alpha f(x)) = d(x)$$

for all $x \in K$ and $\alpha \in \Gamma$.

Proposition 3.9. Let K be an Γ -incline algebra and let d be a right f-derivation associated with a function f of K. Then for all $x, y \in K$ and $\alpha \in \Gamma$, we have $d(x\alpha y) \leq d(x)$ and $d(x\alpha y) \leq d(y)$.

Proof. Let $x, y \in K$. Then by using (K14), we obtain

$$d(x) = d(x + x\alpha y) = d(x) + d(x\alpha y).$$

Hence we get $d(x\alpha y) \leq d(x)$. Also, $d(y) = d(y + (x\alpha y)) = d(y) + d(x\alpha y)$, and so $d(x\alpha y) \leq d(y)$.

Definition 3.10. Let K be an Γ -incline algebra. A mapping f is isotone if $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in K$.

Proposition 3.11. Let d be a right f-derivation of an Γ -incline algebra K. Then d is isotone.

Proof. Let $x, y \in K$ be such that $x \leq y$. Then x + y = y. Hence we have d(y) = d(x + y) = d(x) + d(y), which implies $d(x) \leq d(y)$. This completes the proof.

Proposition 3.12. A sum of two f-right derivations associated with a function f of K is again a right f-derivation associated with a function f of K.

Proof. Let d_1 and d_2 be two right f-derivations associated with a function f of K, respectively. Then we have for all $a, b \in K$ and $\alpha \in \Gamma$,

$$(d_1 + d_2)(a\alpha b) = d_1(a\alpha b) + d_2(a\alpha b)$$

$$= d_1(a)\alpha f(b) + d_1(b)\alpha f(a) + d_2(a)\alpha f(b) + d_2(b)\alpha f(a)$$

$$= d_1(a)\alpha f(b) + d_2(a)\alpha f(b) + d_1(b)\alpha f(a) + d_2(b)\alpha f(a)$$

$$= (d_1 + d_2)(a)\alpha f(b) + (d_1 + d_2)(b)\alpha f(a).$$

Clearly, $(d_1+d_2)(a+b)=(d_1+d_2)(a)+(d_1+d_2)(b)$ for all $a,b\in K$ and $\alpha\in\Gamma$. This completes the proof.

Theorem 3.13. Let K be a commutative Γ -incline algebra and let d_1, d_2 be right f-derivations associated with a function f of K, respectively. Define $(d_1d_2)(x) = d_1(d_2(x))$ for all $x \in K$. If $d_1d_2 = 0$, $d_1 \circ f = f \circ d_1$ and $d_2 \circ f = f \circ d_2$ and $f^2 = f$, then d_2d_1 is a right f-derivation of K.

Proof. Let K be a commutative Γ -incline algebra and $x, y \in K$ and $\alpha \in \Gamma$. Then we have

$$0 = d_1 d_2(x \alpha y) = d_1(d_2(x) \alpha f(y) + d_2(y) \alpha f(x))$$

$$= d_1 d_2(x) \alpha f^2(y) + d_1(f(y)) \alpha f(d_2(x)) + d_1 d_2(y) \alpha f^2(x) + d_1(f(x)) \alpha f(d_2(y))$$

$$= d_1(f(y)) \alpha f(d_2(x)) + d_1(f(x)) \alpha f(d_2(y)) = f(d_1(y)) \alpha d_2(f(x)) + f(d_1(x)) \alpha d_2(f(y))$$

$$= d_2(f(y)) \alpha f(d_1(x)) + d_2(f(x)) \alpha f(d_1(y))$$

Then

$$d_2d_1(x\alpha y) = d_2(d_1(x)\alpha f(y) + d_1(y)\alpha f(x))$$

= $d_2d_1(x)\alpha f^2(y) + d_2(f(y))\alpha f(d_1(x)) + d_2d_1(y)\alpha f^2(x) + d_2(f(x))\alpha f(d_1(y))$
= $d_2d_1(x)\alpha f(y) + d_2d_1(y)\alpha f(x)$.

Finally, for all $x, y \in K$, we get

$$d_2d_1(x+y) = d_2(d_1(x) + d_1(y)) = d_2d_1(x) + d_2d_1(y).$$

This implies that d_2d_1 is a right f derivation associated with a function f of K.

Theorem 3.14. Let K be an integral Γ -incline K and let I be a nonzero ideal of K. If d is a nonzero right f-derivation associated with a function f of K, then d is nonzero on I.

Proof. Suppose that d is a nonzero right f-derivation associated with a function f but d is zero right f-derivation associated with a function f on I. Let $x \in I$. Then d(x) = 0. Also, let $y \in K$ and $\alpha \in \Gamma$. By (K16), we have $x\alpha y \leq x$, which implies $x\alpha y \in I$. Hence $d(x\alpha y) = 0$, which means

$$0 = d(x\alpha y) = (d(x)\alpha f(y)) + (d(y)\alpha f(x)).$$

By hypothesis, K has no nonzero divisors. So, we have f(x) = 0 for all $x \in I$ or d(y) = 0 for all $y \in K$. Since f(x) is a nonzero function, we get d(y) = 0 for all $y \in K$. This contradicts our assumption, that is, d is a nonzero right derivation associated with a function f of K. Hence d is nonzero on I.

Theorem 3.15. Let K be an integral Γ -incline K and let d be a nonzero right f-derivation associated with a function f of K. If I is a nonzero ideal of K and $a \in K$ and $\alpha \in \Gamma$ such that $a\alpha d(I) = 0$, then a = 0.

Proof. By Theorem 3.14, we know that there is an element $m \in K$ such that $d(m) \neq 0$. Let I be a nonzero ideal of K such that $a\alpha d(I) = 0$, for $a \in K$ and $\alpha \in \Gamma$. Hence for $n \in I$, we have

$$0 = a\alpha d(m\alpha n) = a\alpha(d(m)\alpha f(n) + d(n)\alpha f(m))$$

= $a\alpha d(m)\alpha f(n) + a\alpha d(n)\alpha f(m) = a\alpha d(m)\alpha f(m)$.

Since K is an integral Γ -incline, d is a nonzero right f-derivation associated with a function f on K and f is a nonzero function on I, we have a = 0.

Theorem 3.16. Let K be an integral Γ -incline and d be a right f-derivation associated with a function f of K and $a \in K$. If f(1) = 1, then we have, for all $x \in K$ and $\alpha \in \Gamma$, $a\alpha d(x) = 0$ implies a = 0 or d = 0

Proof. Let $a\alpha d(x) = 0$ for all $x \in K$. If we replace x by $x\alpha y$ for all $y \in K$, we get

$$0 = a\alpha d(x) = a\alpha d(x\alpha y) = a\alpha [(d(x)\alpha f(y)) + (d(y)\alpha f(x))]$$

= $(a\alpha (d(x)\alpha f(y))) + (a\alpha (d(y)\alpha f(x))) = a\alpha (d(y)\alpha f(x)).$

In this equation, by taking x = 1, we get $a\alpha d(y) = 0$. Since K is an integral Γ -incline algebra, we have a = 0 or d = 0.

Let d be a right f-derivation associated with a function f of K. Define a set Kerd by

$$Kerd := \{ x \in K \mid d(x) = 0 \}$$

for all $x \in K$.

Proposition 3.17. Let d be a right f-derivation associated with a function f of K. Then Kerd is a subincline of K.

Proof. Let $x, y \in Kerd$ and $\alpha \in \Gamma$. Then d(x) = 0, d(y) = 0 and

$$d(x\alpha y) = (d(x)\alpha f(y)) + (d(y)\alpha f(x))$$

= $(0\alpha f(y)) + (0\alpha f(x)) = 0 + 0 = 0,$

and

$$d(x + y) = d(x) + d(y) = 0 + 0 = 0.$$

Therefore, $x\alpha y, x + y \in Kerd$. This completes the proof.

Proposition 3.18. Let K be an integral Γ -incline algebra K and let d be a right f-derivation associated with a function f of K. If f is an one to one function, then K erd is an ideal of K.

Proof. By Proposition 3.17, Kerd is a subincline of K. Now let $x \in K$ and $y \in Kerd$ such that $x \leq y$. Then d(y) = 0 and

$$0 = d(y) = d(y + x\alpha y) = d(y) + d(x\alpha y) = 0 + d(x\alpha y),$$

which $d(x\alpha y) = 0$ for all $\alpha \in \Gamma$. Hence we have

$$0 = d(x\alpha y) = (d(x)\alpha f(y)) + (d(y)\alpha f(x)) = d(x)\alpha f(y).$$

Since K has no zero divisors, either d(x) = 0 or f(y) = 0. If d(x) = 0, then $x \in Kerd$. If f(y) = 0, then y = 0 and so $x \le y = 0$, i.e., x = 0, which implies $x \in Kerd$.

Definition 3.19. A subincline I of an Γ -incline algebra K is called a k-ideal if $x + y \in I$ and $y \in I$, then $x \in I$.

Example 3.20. *In Example 3.2,* $I = \{0, a, b\}$ *is an* k-*ideal of* K.

Proposition 3.21. Let K be an Γ -incline algebra and let d be a right f-derivation associated with a function f of K. Then K erd is a k-ideal of K.

Proof. From Proposition 3.17, Kerd is a subincline of K. Let $x + y \in K$ and $y \in Kerd$. Then we have d(x + y) = 0 and d(y) = 0, and so

$$0 = d(x + y) = d(x) + d(y) = d(x) + 0 = d(x).$$

This implies $x \in Kerd$.

Acknowledgements. This was supported by Korea National University of Transportation in 2019.

References

- [1] S. S. Ahn, Y. B. Jun and H. S. Kim, Ideals and quotients of incline algebras, *Commun. Korean Math. Soc.*, **16** (2001), 573-583.
- [2] S. S. Ahn and H. S. Kim, On r-ideals in incline algebras, Commun. Korean Math. Soc., 17 (2002), 229-235.
 https://doi.org/10.4134/ckms.2002.17.2.229
- [3] N. O. Alshehri, On derivations of incline algebras, *Scientiae Mathematicae Japonicae online*, **e-2010** (2010), 199-205.
- [4] Z. Q. Cao, K. H. Kim and F. W. Roush, *Incline Algebra and Applications*, John Wiley and Sons, New York, 1984.
- [5] K. H. Kim On right derivations of incline algebras, *J. Chungcheong Math. Soc.*, **26**, 2013, 683-690. https://doi.org/10.14403/jcms.2013.26.4.683
- [6] K. H. Kim, On generalized right derivations of incline algebras, Gulf J. Math., 3, 2015, 127-132.
- [7] M. M. K. Rao and B. Venkateswarlu, On generalized right derivations of Γ-incline, Journal of the International Mathematical Virtual Institute, 6, 2016, 31-47.
- [8] W. Yao and S. Han, On ideals, filters, and congruences in inclines, Bull. Korean Math. Soc., 46 (2009), no. 3, 591-598. https://doi.org/10.4134/bkms.2009.46.3.591

Received: March 4, 2019; Published: April 23, 2019