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Abstract

Let k ≥ 3 an arbitrary but fixed positive integer. In this note we
examine the number of composite numbers not exceeding x such that
all their prime factors are large, for example, greater than x1/k.
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1 Preliminary Notes and Main Results

We shall see that the numbers such that all their prime factors are ”large”
have zero density. That is, the number of these numbers not exceeding x is
o(x). Therefore, we are interested in to obtain more precise formulae.

We need the following well-known Mertens’s theorem.

Lemma 1.1 The following asymptotic formula holds

∏
p≤x

(
1− 1

p

)
=

e−γ

log x
+O

(
1

log2 x

)

Proof. See, for example, [1].

Let f(x) be a positive, continuous, strictly increasing function such that

lim
x→∞

f(x) =∞
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and f(x) ≤ log x. Now, let A(x) be the number of positive integers not
exceeding x such that all their prime factors are greater than f(x). We have
the following theorem.

Theorem 1.2 The following asymptotic formula holds.

A(x) = e−γ
x

log(f(x))
+O

(
x

log2(f(x))

)

Therefore A(x) = o(x).

Proof. It is an immediate consequence of the inclusion-exclusion principle and
Lemma 1.1.

A(x) = bxc −
∑

p≤f(x)

⌊
x

p

⌋
+ · · · = x

∏
p≤f(x)

(
1− 1

p

)
+ E(x) = e−γ

x

log(f(x))

+ O

(
x

log2(f(x))

)

Since

|E(x)| ≤
(
bf(x)c

0

)
+

(
bf(x)c

1

)
+ · · ·+

(
bf(x)c
bf(x)c

)
= 2bf(x)c

≤ 2f(x) ≤ 2log x = xlog 2

The theorem is proved.

If we put f(x) = log x then we obtain the following corollary.

Corollary 1.3 The following asymptotic formula holds.

A(x) = e−γ
x

log log x
+O

(
x

(log log x)2

)

Let π1(x) = π(x) be the number of primes not exceeding x. It is well-known
the following equation (prime number theorem)

π1(x) = π(x) =
x

log x
+ f(x)

x

log x
(1)

where limx→∞ f(x) = 0.
Let πm(x) be the number of numbers not exceeding x with exactly m ≥

1 prime factors in their prime factorization. It is well-known the following
equation (Landau’s theorem)

πm(x) ∼ x(log log x)m−1

(m− 1)! log x
(2)



Composite numbers with large prime factors 29

If m = 1 then equation (2) becomes equation (1).
The following equation is well-known (Mertens’s theorem)

∑
p≤x

1

p
= log log x+M + o(1) (3)

where M is Mertens’s constant.

Lemma 1.4 If 0 < α < β < 1 then the following limit holds.

lim
x→∞

 ∑
xα<p<xβ

1

p

1

1− log p
log x

 = log

(
β

1− β

)
− log

(
α

1− α

)
(4)

Proof. Let us consider the partition α = α0 < α1 < α2 < · · · < αn = β, where

cn = αi+1 − αi =
β − α
n

(i = 0, 1, . . . , n− 1) (5)

Equation (3) gives

∑
xαi<p<xαi+1

1

p
= logαi+1 − logαi + o(1) (i = 0, 1, . . . , n− 1) (6)

Now, the function log x has strictly decreasing derivative 1
x
, consequently by

the mean value theorem we have the inequality

αi+1 − αi
αi+1

< logαi+1 − logαi <
αi+1 − αi

αi
(i = 0, 1, . . . , n− 1) (7)

Let us consider the inequality

xαi < p < xαi+1 (i = 0, 1, . . . , n− 1). (8)

This inequality implies the inequality

1

1− αi
<

1

1− log p
log x

<
1

1− αi+1

(i = 0, 1, . . . , n− 1) (9)

By integration theory we have

lim
n→∞

n−1∑
i=0

1

αi

1

1− αi
(αi+1 − αi) = lim

n→∞

n−1∑
i=0

1

αi+1

1

1− αi+1

(αi+1 − αi)

=
∫ β

α

1

(1− x)x
dx = A (10)
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Let ε > 0. There exists n, sufficiently large and depending of ε, such that

1 +
cn
β
<
αi+1

αi
=
αi + cn
αi

= 1 +
cn
αi

< 1 +
cn
α
< 1 + ε (11)

1− ε < 1

1 + cn
α

<
αi
αi+1

<
1

1 + cn
β

(12)

n−1∑
i=0

1

αi

1

1− αi
(αi+1 − αi) = A+ b (13)

where |b| < ε

n−1∑
i=0

1

αi+1

1

1− αi+1

(αi+1 − αi) = A+ a (14)

where |a| < ε.
Equations (9), (6) and (7) give

1

1− αi
1

αi+1

(αi+1 − αi) + o(1)

<
∑

xαi<p<xαi+1

1

p

1

1− log p
log x

<
1

1− αi+1

1

αi
(αi+1 − αi) + o(1) (15)

Equations (15) and (11) give

∑
xαi<p<xαi+1

1

p

1

1− log p
log x

<
1

1− αi+1

1

αi
(αi+1 − αi) + o(1)

=
1

1− αi+1

1

αi+1

αi+1

αi
(αi+1 − αi) + o(1) ≤ (1 + ε)

1

1− αi+1

1

αi+1

(αi+1 − αi)

+ o(1) (16)

and equations (15) and (12) give

∑
xαi<p<xαi+1

1

p

1

1− log p
log x

> (1− ε) 1

1− αi
1

αi
(αi+1 − αi) + o(1) (17)

For sake of simplicity we put

A(x) =
∑

xα<p<xβ

1

p

1

1− log p
log x

(18)
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Therefore

A(x) =
∑

xα<p<xβ

1

p

1

1− log p
log x

=
n−1∑
i=0

 ∑
xαi<p<xαi+1

1

p

1

1− log p
log x

 (19)

From a certain value of x we have (see below) |o(1)| < ε. Equations (19), (16)
and (14) give

A(x) ≤ (1 + ε)
n−1∑
i=0

1

αi+1

1

1− αi+1

(αi+1 − αi) + o(1) ≤ (1 + ε)(A+ a)

+ o(1) ≤ (1 + ε)(A+ ε) + ε = A+ ε(A+ 1) + ε(ε+ 1)

≤ A+ 2ε(A+ 1) (20)

Equations (19), (17) and (13) give

A(x) ≥ (1− ε)
n−1∑
i=0

1

αi

1

1− αi
(αi+1 − αi) + o(1) ≥ (1− ε)(A+ b)

+ o(1) ≥ (1− ε)(A− ε)− ε = A− ε(A+ 1)− ε(1− ε)
≥ A− 2ε(A+ 1) (21)

Therefore, since ε can be arbitrarily small, equations (18), (20) and (21) give
equation (4). Note that

A =
∫ β

α

1

(1− x)x
dx =

[
log

(
x

1− x

)]β
α

= log

(
β

1− β

)
− log

(
α

1− α

)

The theorem is proved.

Lemma 1.5 Let us consider the composite numbers not exceeding x with
exactly t ≥ 2 prime factors in their prime factorization such that each prime
factor is greater than x

1
k and such that there is in the prime factorization

some prime repeated, that is, some prime has multiplicity greater than 1. The
number of these composite numbers not exceeding x we denote λt,k(x). The
following formula holds.

λt,k(x) = o

(
x

log x

)
(22)

Proof. If t = 2 the proof is trivial since p2 ≤ x implies p ≤
√
x and consequently

λ2,k(x) ≤ π
(√

x
)

=

√
x

log
√
x

(1 + o(1)) = o

(
x

log x

)
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If t ≥ 3 we can choose a repeated prime p an therefore we have

p1 . . . psp
2 ≤ x

where s = t−2 ≥ 1 and the pi (i = 1, . . . , s) are prime numbers. Consequently

p ≤
√
x

√
p1 . . . ps

(23)

Note that since the pi (i = 1, . . . , s) and p are greater than x
1
k we have

x
s
k < p1 . . . ps < x1−

2
k (24)

and consequently

x
2
k <

x

p1 . . . ps
< x1−

s
k (25)

and

1

1− s
k

<
1

1− log(p1...ps)
log x

<
k

2
(26)

Therefore (see (23), (24), (25), (1) and (26))

λs,k(x) ≤
∑

x
s
k<p1...ps<x

1− 2
k

π

( √
x

√
p1 . . . ps

)

≤
∑

x
s
k<p1...ps<x

1− 2
k

C

√
x

√
p1 . . . ps

1

log
( √

x√
p1...ps

)
≤ Ck

√
x

log x

∑
x
s
k<p1...ps<x

1− 2
k

1
√
p1 . . . ps

≤ Ck

√
x

log x

∑
p1...ps≤x

1
√
p1 . . . ps

(27)

If we put f(x) = 1√
x

then we have (see equation (2) and [1])

∑
p1...ps≤x

1
√
p1 . . . ps

=

√
x(log log x)s−1

(s− 1)! log x
+ o

(√
x(log log x)s−1

(s− 1)! log x

)

+
1

2

∫ x

2s

(log log t)s−1

(s− 1)!
√
t log t

dt+ o

(∫ x

2s

(log log t)s−1√
t log t

dt

)

=
2
√
x(log log x)s−1

(s− 1)! log x
(1 + o(1)) (28)
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Since (L’Hospital’s rule)

lim
x→∞

1
2

∫ x
2s

(log log t)s−1
√
t log t

dt
√
x(log log x)s−1

log x

= 1

Equations (27) and (28) give equation (22). The theorem is proved.

Now, we can prove our main theorems.

Theorem 1.6 Let s + 1 ≥ 2 an arbitrary but fixed positive integer. Let us
consider the composite numbers not exceeding x with exactly s + 1 different
prime factors and such that each prime factor is greater than x

1
k . The number

of these composite numbers not exceeding x we denote δs+1,k(x). The following
formulae hold. If s+ 1 = 2 then

δs+1,k(x) ∼ Cs+1,k
x

log x
(29)

where Cs+1,k = log(k − 1)
If s+ 1 ≥ 3 then there exist two positive constants C1 and C2 depending of

s+ 1 and k such that

C1
x

log x
< δs+1,k(x) < C2

x

log x
(30)

Proof. Note that k > s+ 1. Let us consider a composite number p1 · · · psps+1

not exceeding x with s + 1 different prime factors pi (i = 1, . . . , s + 1) such

that each prime factor is greater than x
1
k . That is,

p1 · · · psps+1 ≤ x (pi > x
1
k ) (i = 1, . . . , s+ 1) (31)

Equation (31) gives

x
1
k < ps+1 ≤

x

p1 · · · ps
(32)

Note that

x
s
k < p1 · · · ps < x1−

1
k (33)

Equation (33) gives us

x
1
k <

x

p1 · · · ps
< x1−

s
k (34)

and

1

1− s
k

<
1

1− log(p1···ps)
log x

< k (35)
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Equation (35) and equation (3) give

∑
x
s
k<p1···ps<x1−

1
k

1

p1 · · · ps
1

1− log(p1···ps)
log x

≤ k
∑

x
s
k<p1···ps<x1−

1
k

1

p1 · · · ps

≤ k

 ∑
x

1
k<p<x

1− 1
k

1

p


s

≤ B (36)

where B is a positive constant.
We can choose two finite sequences α1, α2, . . . , αs and β1, β2, . . . , βs such

that

1

k
< α1 < β1 < α2 < β2 < · · · < αs < βs

s

k
< α1 + α2 + · · ·+ αs < β1 + β2 + · · ·+ βs < 1− 1

k

Therefore equation (35) and equation (3) give

∑
x
s
k<p1···ps<x1−

1
k

1

p1 · · · ps
1

1− log(p1···ps)
log x

≥ 1

1− s
k

∑
x
s
k<p1···ps<x1−

1
k

1

p1 · · · ps

≥ 1

1− s
k

s∏
i=1

 ∑
xαi<p<xβi

1

p

 ≥ D

where D is a positive constant.
Equation (31), equation (32) and equation (33) give

δs+1,k(x)

=
1

s+ 1


 ∑
x
s
k<p1···ps<x1−

1
k

(
π

(
x

p1 · · · ps

)
− π

(
x

1
k

))−Bs+1,k(x)

(37)

where Bs+1,k(x) is the number of composite number with s + 1 prime factors
not exceeding x, such that only a prime factor is repeated twice and such that
each prime factor is greater than x

1
k . Therefore, by Lemma 1.5 we have

Bs+1,k(x) = o

(
x

log x

)
(38)

On the other hand, equation (1) and equation (2) give

π
(
x

1
k

) ∑
x
s
k<p1···ps<x1−

1
k

1 ≤ πs
(
x1−

1
k

)
π
(
x

1
k

)
= o

(
x

log x

)
(39)
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Equation (1) gives

∑
x
s
k<p1···ps<x1−

1
k

π

(
x

p1 · · · ps

)

=
x

log x

∑
x
s
k<p1···ps<x1−

1
k

1

p1 · · · ps
1

1− log(p1···ps)
log x

+
x

log x

∑
x
s
k<p1···ps<x1−

1
k

f

(
x

p1 · · · ps

)
1

p1 · · · ps
1

1− log(p1···ps)
log x

(40)

Let ε > 0. There exists xε such that if x ≥ xε (see (34)) we have
∣∣∣f ( x

p1···ps

)∣∣∣ < ε.

Therefore (see (36))∣∣∣∣∣∣∣
∑

x
s
k<p1···ps<x1−

1
k

f

(
x

p1 · · · ps

)
1

p1 · · · ps
1

1− log(p1···ps)
log x

∣∣∣∣∣∣∣ ≤ εB

and since ε can be arbitrarily small we have

lim
x→∞

 ∑
x
s
k<p1···ps<x1−

1
k

f

(
x

p1 · · · ps

)
1

p1 · · · ps
1

1− log(p1···ps)
log x

 = 0 (41)

Equations (37), (38), (39), (40) and (41) give

δs+1,k(x) =
x

log x

 1

s+ 1

∑
x
s
k<p1···ps<x1−

1
k

1

p1 · · · ps
1

1− log(p1···ps)
log x

+ o

(
x

log x

)
(42)

If s + 1 = 2 equation (42) and Lemma 1.4 give us equation (29). If s + 1 ≥ 3
equation (42) and equations (36) give us equation (30). The theorem is proved.

Theorem 1.7 Let k ≥ 3 an arbitrary but fixed positive integer. Let us
consider the composite numbers not exceeding x such that each prime factor is
greater than x

1
k . The number of these composite numbers not exceeding x we

denote χk(x). The following formulae hold. If k = 3 then

χk(x) ∼ (log 2)
x

log x
(43)

If k ≥ 4 then the order of χk(x) is x
log x

. That is, there exist two positive
constants D1 and D2 depending of k such that

D1
x

log x
< χk(x) < D2

x

log x
(44)
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Proof. Note that the number of prime factors in these composite numbers does
not exceed k−1. Therefore the proof is an immediate consequence of Theorem
1.6 and Lemma 1.5. The theorem is proved.

In the following theorem we prove a result stronger (see equations (30) and
(44)).

Theorem 1.8 The following asymptotic formulae hold.

δs+1,k(x) ∼ 1

(s+ 1)!
L

x

log x
(45)

where L > 0 depends of s+ 1 and k and is defined bellow (in the proof)

χk(x) ∼ D3
x

log x
(46)

where D3 > 0 can be easily expressed in terms of the L’s constants.

Proof. We shall prove equation (45), since equation (46) is an immediate
consequence of equation (45). Let α = s

k
and β = 1 − 1

k
. We have (see

Theorem 1.6 and equation (42))

A(x) =
∑

x
s
k<p1···ps<x1−

1
k

1

p1 · · · ps
1

1− log(p1···ps)
log x

(47)

Let us consider the partition α = α0 < α1 < α2 < · · · < α2n = β, where
αi+1 − αi = β−α

2n
(i = 0, 1, . . . , 2n−1).

The inequality

xαi < p1 · · · ps < xαi+1 (48)

give us

1

1− αi
<

1

1− log(p1···ps)
log x

<
1

1− αi+1

(49)

Let us consider the following two functions depending of n.

F1(2
n, x) =

2n−1∑
i=0

1

1− αi
∑

xαi<p1···ps<xαi+1

1

p1 · · · ps
(50)

F2(2
n, x) =

2n−1∑
i=0

1

1− αi+1

∑
xαi<p1···ps<xαi+1

1

p1 · · · ps
(51)



Composite numbers with large prime factors 37

We have (see equation (49))

F1(2
n, x) < A(x) < F2(2

n, x) (52)

Now, A(x) ≤ B (see equation (36)) therefore F1(2
n, x) ≤ B.

Note that

0 ≤ F2(2
n, x)− F1(2

n, x) ≤ β − α
2n

1

(1− β)2
∑

xα<p1···ps<xβ

1

p1 · · · ps

≤ β − α
2n

1

(1− β)2
M (53)

since (see equation (3))

∑
xα<p1···ps<xβ

1

p1 · · · ps
<

 ∑
x

1
k<p<xβ

1

p


s

< M (54)

Equation (3) and integration theory give us

∑
xαi<p1···ps<xαi+1

1

p1 · · · ps
=

1

s!

∫
Di

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs + o(1) (55)

where the domain Di is

αi ≤ x1 + x2 + · · ·+ xs ≤ αi+1, xi ≥
1

k
(i = 1, 2, . . . , s) (56)

Note that the frontier ofDi has zero content and the set of points (x1, x2, · · · , xs)
in Di with repeated coordinates also has zero content. We also need, from the
integration theory, a limit formula as (10) for functions of s variables. Note
also that (mean value theorem)

Πs
i=1

1

xi + ∆xi
∆xi < Πs

i=1(log(xi + ∆xi)− log xi) < Πs
i=1

1

xi
∆xi

Equation (50) and equation (55) give

F1(2
n, x) =

1

s!

2n−1∑
i=0

1

1− αi

∫
Di

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs + o(1)

=
1

s!
S1(n) + o(1) (57)

where S1(n) is the sequence

S1(n) =
2n−1∑
i=0

1

1− αi

∫
Di

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs (58)
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Note that

S1(n) < S1(n+ 1) (59)

since the function 1
1−x is strictly increasing in the interval (0, 1) and∫

Di
⋃
Di+1

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs

=
∫
Di

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs +

∫
Di+1

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs(60)

Since F1(2
n, x) ≤ B (see above) equation (57) implies that S1(n) is bounded

and hence there exists

lim
n→∞

S1(n) = L1 > 0 (61)

Equation (51) and equation (55) give

F2(2
n, x) =

1

s!

2n−1∑
i=0

1

1− αi+1

∫
Di

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs + o(1)

=
1

s!
S2(n) + o(1) (62)

where S2(n) is the sequence

S2(n) =
2n−1∑
i=0

1

1− αi+1

∫
Di

1

x1

1

x2
· · · 1

xs
dx1dx2 · · · dxs (63)

Note that

S2(n) > S2(n+ 1) (64)

Therefore there exists

lim
n→∞

S2(n) = L2 (65)

Equations (53), (57) and (62) give us

L1 = L2 = L > 0 (66)

Equations (52), (57) and (62) give

1

s!
S1(n) + o(1) ≤ A(x) ≤ 1

s!
S2(n) + o(1) (67)

Let ε > 0. There exists nε such that (see equations (61), (65) and (66))
S1(nε) = L + a and S2(nε) = L + b, where |a| < ε and |b| < ε. On the other
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hand from a certain value of x we have |o(1)| < ε. Consequently equation (67)
gives

1

s!
L− 2ε ≤ 1

s!
(L+ a) + o(1) ≤ A(x) ≤ 1

s!
(L+ b) + o(1) ≤ 1

s!
L+ 2ε (68)

Now, ε can be arbitrarily small. Therefore

lim
x→∞

A(x) =
1

s!
L (69)

Equations (42) and (69) give equation (45). The theorem is proved.
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