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Abstract

Let k£ > 3 an arbitrary but fixed positive integer. In this note we
examine the number of composite numbers not exceeding x such that
all their prime factors are large, for example, greater than z/*.
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1 Preliminary Notes and Main Results

We shall see that the numbers such that all their prime factors are ”large”
have zero density. That is, the number of these numbers not exceeding x is
o(z). Therefore, we are interested in to obtain more precise formulae.

We need the following well-known Mertens’s theorem.

Lemma 1.1 The following asymptotic formula holds
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Proof. See, for example, [1].

Let f(x) be a positive, continuous, strictly increasing function such that
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and f(z) < logz. Now, let A(z) be the number of positive integers not
exceeding = such that all their prime factors are greater than f(z). We have
the following theorem.

Theorem 1.2 The following asymptotic formula holds.

X
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Therefore A(z) = o(x).

Proof. It is an immediate consequence of the inclusion-exclusion principle and
Lemma 1.1.

Aw) = lo- H+...:x I (1—1>+E(x):evlog(ji(x))

p<f(z) p p<f(z) p

v o <1og2(f(w))>

(Lf(I)J> . (Lf(x)J) e <Lf(w)J> _ s

Since

|E()]

0 1 Lf ()]
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The theorem is proved.

If we put f(x) =logx then we obtain the following corollary.

Corollary 1.3 The following asymptotic formula holds.
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Let 71 (z) = m(x) be the number of primes not exceeding z. It is well-known
the following equation (prime number theorem)
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+ f(x)
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m(x) = 7(x)

B log x log x

where lim, . f(z) = 0.

Let m,,(z) be the number of numbers not exceeding = with exactly m >
1 prime factors in their prime factorization. It is well-known the following
equation (Landau’s theorem)

z(loglogx)™ !
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If m = 1 then equation (2) becomes equation (1).
The following equation is well-known (Mertens’s theorem)

leloglogx—i-M%—O(l) (3)

p<z

where M is Mertens’s constant.

Lemma 1.4 If0 < a < 8 < 1 then the following limit holds.
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Proof. Let us consider the partition a = ap < a3 < ag < - -+ < o, = [, where

b —«

n

Cn = Q1 — Oy = (’L:O,l,,n—l) (5)

Equation (3) gives

1
> = =logai1 —loga; + o(1) (1=0,1,...,n—1) (6)

% <p<z“itl

1

Now, the function logx has strictly decreasing derivative -, consequently by

the mean value theorem we have the inequality

iyl — Qjp1 — Q4
— < log a1 —logo; < ——
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(i=0,1,....n—1) (7

Let us consider the inequality
% < p < gt (t=0,1,...,n—1). (8)

This inequality implies the inequality

1 1 1
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By integration theory we have
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Let € > 0. There exists n, sufficiently large and depending of €, such that
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where |b] < €
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(CtiJrl — Oéi) =A +a (14)

il —aiy
where |a| < e.
Equations (9), (6) and (7) give
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Equations (15) and (11) give

> < s — ) +o()
" — (41 — Oy 0
¥ <p<ztitl pl— iggg 1-—- Qi1 O
1 1 a1 1 1

7(04#1 - ai)

(i1 = 1) - 0(1) < (14 )7 ——

I — i1 a1 oy
+ o(1) (16)

and equations (15) and (12) give

>

i <p<g*itl

1 1 1 1
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For sake of simplicity we put

Alx)= Y ;1 1logp (18)

z*<p<zh - log z
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Therefore

1 1

A= Y =Z( y ol 1) (19)

T <p<zh pl-= log = =0 \z*i<p<zit+l pl— log

From a certain value of x we have (see below) |o(1)| < €. Equations (19), (16)
and (14) give

n—1 1 1
Alx) < (1+e€ e
() ( );ai+11_ai+l
+ o) <(Q+e)(A+e)+e=A+e(A+1)+e(e+1)
<

)
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(i1 — ;) +o(1) < (1+€)(A +a)

Equations (19), (17) and (13) give

Alz) > ( 1—enzli (i — ) +o(1) 2 (1 - (A +)
+ o) >(1—¢€)(A—¢)—e=A—€c(A+1)—€(1—¢)
> A—2e(A+1) (21)

Therefore, since € can be arbitrarily small, equations (18), (20) and (21) give
equation (4). Note that

- Lt = b ()] () - (25)

The theorem is proved.

Lemma 1.5 Let us consider the composite numbers not exceeding x with
exactly t > 2 prime factors in their prime factorization such that each prime
factor is greater than x*% and such that there is in the prime factorization
some prime repeated, that is, some prime has multiplicity greater than 1. The
number of these composite numbers not exceeding x we denote A\ x(x). The
following formula holds.

Aop(z) = o< ’ ) (22)

log x

Proof. If t = 2 the proof is trivial since p?> < x implies p < y/z and consequently

Agi(2) < (ﬁ) 10;/_\/_<1 +oll)) =0 (1023:)
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If £ > 3 we can choose a repeated prime p an therefore we have
pro..psp? <

where s =¢t—2 > 1 and the p; (i = 1,...,s) are prime numbers. Consequently

p < L (23)

P1...Ds

Note that since the p; (i = 1,...,s) and p are greater than 2% we have

Tk < pr.ps <R (24)
and consequently

ot < — T gl (25)
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and

1 1 k

1—2 < 1 — log(p1...ps) < 92 (26)
k logx

Therefore (see (23), (24), (25), (1) and (26))
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Tk <p1...ps<x1

eI

Ckﬁ > _ (27)

log x prpi<a V/P1- - Ds

If we put f(x) = ﬁ then we have (see equation (2) and [1])

> 1 Va(logloga) ™t <ﬁ(1og log x)51>

prope<e VP1---Ds ~ (s=1D!logx (s — 1)logz
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Since (L’Hospital’s rule)

%f;‘ (loglogt)s—1 dt

. tlogt
lim Vtlog — =1
300 vz (loglog x)*
logx

Equations (27) and (28) give equation (22). The theorem is proved.

Now, we can prove our main theorems.

Theorem 1.6 Let s+ 1 > 2 an arbitrary but fixed positive integer. Let us
consider the composite numbers not exceeding x with exactly s + 1 different
prime factors and such that each prime factor is greater than zx. The number
of these composite numbers not exceeding x© we denote d541 x(x). The following
formulae hold. If s +1 =2 then

T

5s+1,k($) ~ Cerl,k@ (29)

where Cyy1 = log(k — 1)
If s+1 > 3 then there exist two positive constants Cy and Csy depending of
s+ 1 and k such that

T

4 < Ogp1p(w) < Oy (30)

x
log log x

Proof. Note that £ > s+ 1. Let us consider a composite number p; - - - pspsi1
not exceeding x with s + 1 different prime factors p; (i = 1,...,s 4+ 1) such
that each prime factor is greater than zx. That is,

prepper <z (pi>aF) (i=1,...,5+1) (31)

Equation (31) gives

Tt < poyr < (32)
P1-Ds
Note that
T* <pl---ps<acl_i1 (33)
Equation (33) gives us
ot < — 0 < gl (34)
P1-Ds
and
1 1
<k (35)

1— 3 < 1 _ log(pi-ps)
k logx
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Equation (35) and equation (3) give

1 1 1
Z 1p1---p31_mﬁ’f Z

S
-+ logx 275<p1-~~ps<3:17?

ES 1
Tk <p1-ps<x

< k[ X

L 1
xk <p<z

<B (36)

D=

1
k

where B is a positive constant.

We can choose two finite sequences aq, s, ...,as and By, (s, ..., B such
that
1
E<a1<61<a2<62<---<a5<65
s 1
*<041+042+"‘+Oés<ﬁ1+52—|—"’+53<1—%

k
Therefore equation (35) and equation (3) give

1 1 1 1
Z D1 Ps 1 — log(p1---ps) Z 1-2 Z D1 Ps
x%<p1~~~ps<xl_% logz k x%<p1~~ps<xl_%
1 £ 1
> —II| X ~]=D
1- k=1 ¥ <p<zPi p
where D is a positive constant.
Equation (31), equation (32) and equation (33) give
5s+1,k(x)
1 T 1
— — k - B 37
s+1 2 . (W (pl---ps) m(e )> w14(2) [(37)

EX 1—
Tk <p1--ps<T

where By k() is the number of composite number with s 4+ 1 prime factors

not exceeding x, such that only a prime factor is repeated twice and such that
. . 1

each prime factor is greater than x%. Therefore, by Lemma 1.5 we have

Baiu(z) =0 (1;) (38)

On the other hand, equation (1) and equation (2) give

) X rsm(e el ol (39)

s 1— =
ok <pi-ps<z’ F
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Equation (1) gives

> ()

s 1,1
Tk <p1-ps<z k

T 1 1
T 2 cpg 1 — loslprps)
08T $%<p1--~ps<ac1_% P1 p 1 log
x x 1 1
40
" logs 2 _ f<p1'--ps>p1~-p31—bg(p”’s) (40)

s 1
xﬁ<p1--'Ps<zl k logz

Let € > 0. There exists x, such that if z > x, (see (34)) we have ‘f (plf’ips)
Therefore (see (36))

< €.

1 1
Z f( & > Toa( ) <eB
L D1 Ps pl...psl_ og(P1-"Ps

S —_ =
J;E<p1...ps<zl k log x

and since € can be arbitrarily small we have

x 1 1
lim f 0 i

s 1,1
xk<pr--ps<z’ k

Equations (37), (38), (39), (40) and (41) give

T 1 1 1 T
554_1’]6(5(]) Z ) +o0 <1Og$>(42)

T logz (s+1 L P ps 1 — loslpips)
$E<p1~~ps<x1_E logx

If s +1 =2 equation (42) and Lemma 1.4 give us equation (29). If s+1 >3

equation (42) and equations (36) give us equation (30). The theorem is proved.

Theorem 1.7 Let k > 3 an arbitrary but fized positive integer. Let us
consider the composite numbers not exceeding x such that each prime factor is

greater than z%. The number of these composite numbers not exceeding x we
denote xi(x). The following formulae hold. If k = 3 then

(43)

If k > 4 then the order of xx(x) is @. That s, there exist two positive
constants D1 and Dy depending of k such that

Xz

x
D D 44
gz © xk(w) < *lop s (44)
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Proof. Note that the number of prime factors in these composite numbers does
not exceed k—1. Therefore the proof is an immediate consequence of Theorem
1.6 and Lemma 1.5. The theorem is proved.

In the following theorem we prove a result stronger (see equations (30) and

(44)).

Theorem 1.8 The following asymptotic formulae hold.

1 x
s ~ 4
+14(7) (s+1)! logx (4)
where L > 0 depends of s+ 1 and k and is defined bellow (in the proof)
() ~ Dy (46)
Xk 310gx

where D3 > 0 can be easily expressed in terms of the L’s constants.

Proof. We shall prove equation (45), since equation (46) is an immediate
1—

consequence of equation (45). Let a = 7 and = £. We have (see
Theorem 1.6 and equation (42))
1 1
A(.T) - Z 1 P1 Ds 1 _ lOg(pl'”ps) (47)
$%<p1'-~ps<m1_E log =
Let us consider the partition o = ag < a1 < ag < -+ < agn = 3, where
A — O = 52—n6¥ (l = 0, ]., ce 7271—1)‘
The inequality
Y < ppeepsy < XY (48)
give us
1 1 1 49
e < (19)
logx
Let us consider the following two functions depending of n.
2" —1 1 1
=0 -G T <py-ps<azVit1 P1-:Ps
2" —1 1 1
-y — (51)

—0 1-— Oy T <1 - <zt P1- - Ps

~
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We have (see equation (49))

Now, A(x) < B (see equation (36)) therefore F; (2", x) < B.
Note that
g—a 1 1
20 (1= B)? L e D1 Ds

O S FQ(Q”,ZL’)—Fl(Qn,I’)S

< M 53
< o aoap (53)
since (see equation (3))
1 1
> <| > =| <M (54)
o g P11 Ds 1 p
<P Ps<T @® <p<azB

Equation (3) and integration theory give us

1 1 11 1

T <py-eps <z Mitl P1---Ps sl Jp; x1 2o Ls

where the domain D; is

1
W ST+ Tt T S, T2 (i=1,2,...,5) (56)
Note that the frontier of D; has zero content and the set of points (1, xa, - - -, x5)

in D; with repeated coordinates also has zero content. We also need, from the
integration theory, a limit formula as (10) for functions of s variables. Note
also that (mean value theorem)

S 1 S S 1
Hi=1mA37i < IT;_, (log(z; + Ax;) — log x;) < Hizlx—iAxi

Equation (50) and equation (55) give

1220 1 11 1
(2", x) ol ; 1 — o Jo, 21 29 - r1ax3 zs+o(1)
1
= ZSi(n) +o() (57)

where S1(n) is the sequence

271 11
Si(n) =Y ——

=0

1
v — dxidry - - - dag (58)
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Note that
Si(n) < Si(n+1) (59)

since the function ﬁ is strictly increasing in the interval (0,1) and

11 1
/ —— - — dxydzy - - dxs
DiUDH—l xl'TQ 'TS
11 1

11 1
—— -+ — dridzy - - - dzs(60)

it1 L1 L2 T

. —dmld:vg---dxs—l—/
D

D; 1 T2 T

Since F1(2",z) < B (see above) equation (57) implies that Si(n) is bounded
and hence there exists

n—00

Equation (51) and equation (55) give

AT L1 geidey - de, +o(1)
) = — e — —— - — adx1dxy - - AT 0
22 sl = 1 —qjpq Iy w0 @ e
1
= ;SQ(”)—'—O(l) (62)

where S5(n) is the sequence

=1 11 1
Sa(n) = ;} [~ oL dridxsy - - - dr, (63)
Note that
Sa(n) > Se(n+1) (64)
Therefore there exists
Jim. Sa(n) = Ly (65)
Equations (53), (57) and (62) give us
Li=Ly=L>0 (66)
Equations (52), (57) and (62) give
51!5'1(77,) +o(1) < Alz) < ;Sg(n) +o(1) (67)

Let ¢ > 0. There exists n. such that (see equations (61), (65) and (66))
Si(ne) = L+ a and Sa(n.) = L + b, where |a| < € and [b] < e. On the other
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hand from a certain value of  we have |o(1)| < e. Consequently equation (67)
gives
1 1 1 1
—L—2e<—(L+a)+o(l) <A(@) < 5(L+b)+o(l) < L+2 (68)
s! s! s s!

Now, € can be arbitrarily small. Therefore

lim A(z) = ;L (69)

T—00

Equations (42) and (69) give equation (45). The theorem is proved.
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