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Abstract

A fractional matching of a graph G = (V,E) is a function f from E
to the interval [0, 1] such that

∑
e∈Γ(v) f(e) ≤ 1 for every v ∈ V , where

Γ(v) is the set of all edges incident to v. The fractional matching number
of G, written α′∗(G), is the maximum of

∑
e∈E f(e) over all fractional

matchings f .
In this paper, we gave the fractional matching number of the join of

some graphs, and the corona of some graphs.
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1 Introduction
As mentioned in [2], the study of the chromatic number of a graph may be
applied to scheduling problems. It can be used to determine the shortest possible
time needed to schedule two or more committee meetings, with some committees
having common members, without conflicts. The scheduling problem will be
modeled by graph, with committees represented by vertices, and any two
vertices are adjacent if the corresponding committees have common members.
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The chromatic number of the resulting graphs is the shortest possible time to
schedule the committee meetings without conflicts. However, if the committees
are willing to take a break in the middle and then to resume later, then the
shortest possible time is the fractional matching number.

There are two different classes of maximum fractional matchings. One was
introduced by Uhry [9] and the other was introduced by Muhlbacher et al. [8].
Uhry [9] presented the class of maximum fractional matchings for which the
number of cycles in the support is minimized. On the other hand, Muhlbacher
et al. [8] presented the class of maximum fractional matchings for which the
number of edges assigned the value 1 is maximized. Pulleyblank [3] presented
how the Edmonds-Gallai structure theorem for matchings in graphs can be
applied to these two different classes of maximum fractional matchings.

Liu et al. [4] characterized graphs for which the fractional matching number
equals the matching number, and graphs for which the fractional matching
number is equal to half the number of vertices.

Motwani et al. [5] showed that several simple algorithms based on throwing
balls into bins deliver a near-perfect fractional matching.

Choi et al. [6] proved that if G is an n-vertex connected graph that is neither
K1 norK3, then α′f (G)−α′ (G) ≤ (n− 2) /6 and α′f (G) /α′ (G) ≤ 3n/ (2n+ 2).
Both inequalities are sharp. They also characterized the infinite family of graphs
where equalities hold.

West et al. [7] proved that for a graph G with n vertices, m edges, positive
minimum degree d, and maximum degree D, α′∗(G) ≥ max{m/D, n −m/d,
dn/D + d}.

The path Pn = (v1, v2, . . . , vn) is the graph with distinct vertices v1, v2, . . . ,
vn and edges v1v2, v2v3, . . . , vn−1vn. The cycle Cn = [v1, v2, . . . , vn], n ≥ 3, is
the graph with vertices v1, v2, . . . , vn and edges v1v2, v2v3, . . . , vn−1vn, vnv1.
A complete graph of order n, denoted by Kn, is the graph in which every pair
of distinct vertices are adjacent.

Let X and Y be sets. The disjoint union of X and Y , denoted by X ∪̇ Y ,
is found by combining the elements of X and Y , treating all elements to be
distinct. Thus, |X ∪̇ Y | = |X|+ |Y |. The join of two graphs G and H, denoted
by G+H, is the graph with vertex-set V (G+H) = V (G) ∪̇ V (H) and edge-set
E(G+H) = E(G) ∪̇ E(H) ∪̇ {uv : u ∈ V (G), v ∈ V (H)}.

The complement of a graph G, denoted by G, is a graph with the same
vertex set as G and where two distinct vertices are adjacent if and only if they
are not adjacent in G.

Let G be a graph of order n. The corona G ◦H of two graphs G and H
is the graph obtained by taking one copy of G and n copies of H, and then
joining the ith vertex of G to every vertex of the ith copy of H.

A matching in a graph G = (V,E) is a set of pairwise non-adjacent edges of
G. A vertex is matched if it is an endpoint of one of the edges in the matching.
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A maximum matching is a matching that contains the largest possible number
of edges. The matching number of a graph, denoted by ν(G), is the size of
a maximum matching. A perfect matching is a matching which matches all
the vertices of the graph. A near-perfect matching is one in which exactly one
vertex is unmatched.

A integral matching of a simple graph G = (V,E) is a function g from E
to the set {0, 1, 2, . . . , k} such that ∑

e∈Γ(v) g(e) ≤ k for every v ∈ V , where
Γ(v) is the set of all edges incident to v. The integral matching number of G,
written µf (G), is the maximum of 1

k

∑
e∈E g(e) over all integral matchings g.

For the concepts that were not discussed please refer to [1], [10], [11], [12].

2 Fractional matching Number of Paths, Cy-
cles and Complete Graphs

This section gives the fractional matching number of paths, cycles and complete
graphs. Observation 2.1 is found in [7], while Observation 2.4 was stated in
[13].

Observation 2.1 Let G be a graph of order n and f be a fractional matching.
Then

1. µf (G) ≤ n/2,

2. µf (G) = n/2 if and only if k-regular, and

3. ∑
e∈Γ(v) f(e) = 1 if and only if µf (G) = n/2.

Corollary 2.2 Let Cn be a cycle of order n. Then µf (Cn) = n/2.

Corollary 2.3 Let Kn be a complete graph of order n. Then µf (Kn) = n/2.

Observation 2.4 A near-perfect matching is maximum.

The next Theorem is found in [2].

Theorem 2.5 If G is a bipartite graph, then µf (G) = ν(G).

Theorem 2.6 Let Pn be a path of order n. Then

µf (Pn) =
{

n
2 , if n is even

n−1
2 , if n is odd.
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Proof : Let Pn = (u1, u2, . . . , un) be a path of order n. Define f : E(Pn) →
{0, 1, 2} by f(uiui+1(mod n)) = 1 if i is odd and 0 otherwise. Then f is a perfect
matching if n is even and a near-perfect matching if n is odd. Hence, by
Observation 2.4 f is maximum. Since Pn is a bipartite graph, by Theorem 2.5
the assertion follows. �

3 Fractional matching Number of the Join of
Graph

This section gives the fractional matching number of the join of graphs.

Lemma 3.1 Let G be a simple graph. Then α′∗(G) = µf (G).

To see this, let G = (V,E) be a simple graph. Let A = { 1
k

∑
e∈E g(e) :

g is a k-int match in G} and B = {∑e∈E f(e) : f is a frac match in G}. It
suffices to show that A = B. Now, let w ∈ A . Then there exist a k-
integral matching g : E → {0, 1, 2, . . . , k} such that w = 1

k

∑
e∈E g(e). Define

f : E → [0, 1] by f(e) = g(e)/k. Then f is a fractional matching and∑
e∈E f(e) = ∑

e∈E
1
k
g(e) = 1

k

∑
e∈E g(e) = w. Hence, w ∈ B. This shows that

A ⊆ B.
Next, let z ∈ B. Then there exist a fractional matching f : E → [0, 1] such

that z = ∑
e∈E f(e). Let f(ei) = ai/bi with (ai, bi) = 1 for i = 1, 2, . . . ,m, and

k be the least common multiple of the elements of {bi : i = 1, 2, . . . ,m}. Note
that k(ai/bi) ∈ N and k(ai/bi) ≤ k. Define f : E → {0, 1, . . . , k} by g(e) =
k(f(e)). Then g(e) ≤ k for all e ∈ E, and ∑

e∈Γ(v) g(e) = ∑
e∈Γ(v) k(f(e)) =

k
∑

e∈Γ(v) f(e) ≤ k. Thus, g is a k-integral matching, and 1
k

∑
e∈E g(e) =

1
k

∑
e∈E k(f(e)) = ∑

e∈E f(e) = z. Hence, z ∈ A . This shows that B ⊆ A .
Accordingly, A = B. This implies that α′∗(G) = µf (G). �

By virtue of Lemma 3.1, we may use α′∗(G) and µf(G) interchangeably.
Theorem 3.2 presents a sharp upperbound of the fractional matching number
of the join of graphs.

Theorem 3.2 Let G and H be graphs of order m and n, respectively. Then

µf (G+H) ≥ mn

max {m,n} .

Proof : Let G and H be graphs of order m and n, respectively. Without loss of
generality, assume that m ≥ n. Define f : E(G+H)→ {0, 1, 2, . . . ,m} by

f(e) =
{

0, if e ∈ E(G) or e ∈ E(G)
1, otherwise.
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Then f is an m-integral matching. Hence,

µf (G+H) ≥ mn

m
= mn

max {m,n} .

�

Theorem 3.3 Let G and H be graphs of order n and n+ 1, respectively. Then
µf (G+H) = n.

Proof : Let G and H be graphs of order n and n+ 1, respectively. Then G+H
has a Hamiltonian path of odd order. This implies that G+H has a near-perfect
matching. Hence, by Observation 2.4 µf (G+H) ≥ ν(G+H) = n. Therefore,
by Observation 2.1, µf (G+H) = n. �

Lemma 3.4 Let G be a graph of order n. If G is Hamiltonian, then µf (G) =
n/2.

Proof : Let G = (V,E) be a Hamiltonian graph and Cn = [u1, u2, . . . , un] be a
Hamiltonian cycle in G. Define f : E → {0, 1, 2} by f(e) = 1 for all e ∈ E(Cn)
and f(e) = 0 otherwise. Then f is a 2-integral matching. Hence, µf (G) ≥ n/2.
By Oservation 2.1, µf (G) = n/2. �

Corollary 3.5 shows that the bound given in Theorem 3.2 is sharp.

Corollary 3.5 Let G and H be graphs of order m and n, respectively. If
m = n, then µf (G+H) = n.

Proof : Let G and H be graphs of order m and n, respectively. If V (G) =
{u1, u2, . . . , um} and V (H) = {v1, v2, . . . , vn}, then [u1, v1, u2, v2, u3, . . . , un,
vn, u1] is a Hamiltonian cycle. Hence, G + H is Hamiltonian. Therefore, by
Lemma 3.4 µf (G+H) = (m+ n)/2 = n. �

Corollary 3.6 to Corollary 3.11 also follows from Lemma 3.4 since these
graphs are Hamiltonian. These further affirms that the bound given by Theorem
3.2 is sharp.

Corollary 3.6 Let Pm and Pn be paths of order m and n, respectively. Then
µf (Pm + Pn) = (m+ n)/2.

Corollary 3.7 Let Pm be a path of order m and Cn be a cycle of order n.
Then µf (Pm + Cn) = (m+ n)/2.
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Corollary 3.8 Let Cm and Cn be cycles of order m and n, respectively. Then
µf (Cm + Cn) = (m+ n)/2.

Corollary 3.9 Let Km be a complete graph of order m and Pn be a path of
order n. Then µf (Km + Pn) = (m+ n)/2.

Corollary 3.10 Let Km be a complete graph of order m and Cn be a cycle of
order n. Then µf (Km + Cn) = (m+ n)/2.

Corollary 3.11 Let Km and Kn be a complete graph of order m and n, re-
spectively. Then µf (Km +Kn) = (m+ n)/2.

Corollary 3.11 also follows from Corollary 2.3 since the join of complete
graphs is a complete graph.

4 Fractional Matching Number of the Corona
of Graphs

This section gives the fractional matching number of the corona of graphs.
Theorem 4.1 gives a sharp upperbound for the fractional matching number of
the corona of two graphs. For example, equality holds for K1 ◦ P2.

Theorem 4.1 Let G = (V1, E1) and H = (V2, E2) be graphs with |V1| = n1,
|E1| = m1, |V2| = n2 and |E2| = m2. Then µf(G ◦ H) ≥ (m1 + n1n2 +
n1m2)/(∆(G) + n2).

Proof : Let G = (V1, E1) and H = (V2, E2) be graphs with |V1| = n1, |E1| = m1,
|V2| = n2 and |E2| = m2. Define f : E(G ◦H)→ {0, 1, 2, . . . ,∆(G) + n2} by

f(e) =
{

0, if e ∈ E1
1, otherwise.

Then f is a ∆(G) + n2-integral matching. Hence, µf(G ◦H) ≥ (m1 + n1n2 +
n1m2)/(∆(G) + n2). �

The following observations must be clear.

Observation 4.2 Let G be a connected graphs. If H is a connected subgraph
of G, then µf (H) ≤ µf (G).

Observation 4.3 Let G and H be connected graphs. Then µf(G ∪ H) =
µf (G) + µf (H).
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Lemma 4.4 follows from Lemma 3.4, and Observations 4.2 and 4.3.

Lemma 4.4 Let G = (V,E) be a graph of order n. If there is a partition
{V1, V2, . . . , Vn} of V such that for each i = 1, 2, . . . , n, 〈Vi〉 is Hamiltonian,
then µf (G) = n/2.

Theorem 4.5 Let G and H be graphs of order m and n, respectively. If H
has a Hamiltonian path, then µf (G ◦H) = m(n+ 1)/2.

Proof : Let G be a graph with vertex set {u1, u2, . . . , um} and H be a graph
with vertex set {v1, v2, . . . , vn}. Let G ◦H be the graph obtained by taking a
copy of G and m copies of H (which we denote by Hj

n = ({vj
1, v

j
2, . . . , v

j
n}, E

j
H)

for j = 1, 2, . . . ,m) and then joining each jth vertex of G to every vertex in
the jth-copy of H. If H has a Hamiltonian path, then there exists a path
Pn = (v1, v2, v3, . . . , vn) in H that passes through each vertex exactly ones.
Consider the partition {{ui} ∪ {vj

i : i = 1, 2, . . . , n} : j = 1, 2, . . . ,m} of
V (G ◦H). Note that for each i = 1, 2, . . . ,m,

〈
{ui} ∪ {vj

i : i = 1, 2, . . . , n}
〉
is

Hamiltonian. Hence, by Lemma 4.4 µf (G ◦H) = m(n+ 1)/2. �

Corollary 4.6 Let G be a graph of order m and Pn be a path of order n. Then
µf (G ◦ Pn) = m(n+ 1)/2.

Corollary 4.7 Let G be a graph and Cn be a cycle of order n. Then µf(G ◦
Cn) = m(n+ 1)/2.

Corollary 4.8 Let G be a graph and Kn be a complete graph of order n. Then
µf (G ◦Kn) = m(n+ 1)/2.
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