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Abstract

A fractional matching of a graph G = (V, E) is a function f from F
to the interval [0, 1] such that 3= cr(,) f(e) < 1 for every v € V, where
I'(v) is the set of all edges incident to v. The fractional matching number
of G, written o, (G), is the maximum of .. f(e) over all fractional
matchings f.

In this paper, we gave the fractional matching number of the join of
some graphs, and the corona of some graphs.
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1 Introduction

As mentioned in [2], the study of the chromatic number of a graph may be
applied to scheduling problems. It can be used to determine the shortest possible
time needed to schedule two or more committee meetings, with some committees
having common members, without conflicts. The scheduling problem will be
modeled by graph, with committees represented by vertices, and any two
vertices are adjacent if the corresponding committees have common members.
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The chromatic number of the resulting graphs is the shortest possible time to
schedule the committee meetings without conflicts. However, if the committees
are willing to take a break in the middle and then to resume later, then the
shortest possible time is the fractional matching number.

There are two different classes of maximum fractional matchings. One was
introduced by Uhry [9] and the other was introduced by Muhlbacher et al. [8].
Uhry [9] presented the class of maximum fractional matchings for which the
number of cycles in the support is minimized. On the other hand, Muhlbacher
et al. [8] presented the class of maximum fractional matchings for which the
number of edges assigned the value 1 is maximized. Pulleyblank [3] presented
how the Edmonds-Gallai structure theorem for matchings in graphs can be
applied to these two different classes of maximum fractional matchings.

Liu et al. [4] characterized graphs for which the fractional matching number
equals the matching number, and graphs for which the fractional matching
number is equal to half the number of vertices.

Motwani et al. [5] showed that several simple algorithms based on throwing
balls into bins deliver a near-perfect fractional matching.

Choi et al. [6] proved that if G is an n-vertex connected graph that is neither
Kinor K3, then oy (G)—a’ (G) < (n —2) /6and oy (G) /o’ (G) < 3n/ (2n + 2).
Both inequalities are sharp. They also characterized the infinite family of graphs
where equalities hold.

West et al. [7] proved that for a graph G with n vertices, m edges, positive
minimum degree d, and maximum degree D, o/, (G) > max{m/D,n — m/d,
dn/D + d}.

The path P, = (v1,vs,...,v,) is the graph with distinct vertices vy, v, .. .,
v, and edges v1vy, VoU3, ..., Uy_10,. The cycle C, = [v1,va,...,0,], n > 3, is
the graph with vertices vy, v, ..., v, and edges vivy, VU3, ..., Up_1Up, VpUy.
A complete graph of order n, denoted by K, is the graph in which every pair
of distinct vertices are adjacent.

Let X and Y be sets. The disjoint union of X and Y, denoted by X UY,
is found by combining the elements of X and Y, treating all elements to be
distinct. Thus, |[X UY| = |X|+|Y|. The join of two graphs G and H, denoted
by G+ H, is the graph with vertex-set V(G + H) = V(G) U V(H) and edge-set
E(G+H)=FEG) UEMH)U {uw:ueV(G),veV(H)}.

The complement of a graph G, denoted by G, is a graph with the same
vertex set as G and where two distinct vertices are adjacent if and only if they
are not adjacent in G.

Let G be a graph of order n. The corona G o H of two graphs G and H
is the graph obtained by taking one copy of G' and n copies of H, and then
joining the ith vertex of G to every vertex of the ith copy of H.

A matching in a graph G = (V, E) is a set of pairwise non-adjacent edges of
G. A vertex is matched if it is an endpoint of one of the edges in the matching.
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A maximum matching is a matching that contains the largest possible number
of edges. The matching number of a graph, denoted by v(G), is the size of
a maximum matching. A perfect matching is a matching which matches all
the vertices of the graph. A near-perfect matching is one in which exactly one
vertex is unmatched.

A integral matching of a simple graph G = (V| F) is a function g from F
to the set {0,1,2,...,k} such that Y .cp) g(e) < k for every v € V, where
['(v) is the set of all edges incident to v. The integral matching number of G,
written (@), is the maximum of § .. g(e) over all integral matchings g.

For the concepts that were not discussed please refer to [1], [10], [11], [12].

2 Fractional matching Number of Paths, Cy-
cles and Complete Graphs

This section gives the fractional matching number of paths, cycles and complete
graphs. Observation 2.1 is found in [7], while Observation 2.4 was stated in
[13].

Observation 2.1 Let G be a graph of order n and f be a fractional matching.
Then

1. pp(G) <n/2,
2. ug(G) =n/2 if and only if k-regqular, and

3. Yeerw) fe) = 1 if and only if usy(G) = n/2.

Corollary 2.2 Let C,, be a cycle of order n. Then us(C,) =n/2.
Corollary 2.3 Let K,, be a complete graph of order n. Then ps(K,) = n/2.
Observation 2.4 A near-perfect matching is mazimum.

The next Theorem is found in [2].
Theorem 2.5 If G is a bipartite graph, then us(G) = v(G).
Theorem 2.6 Let P, be a path of order n. Then

_ 5, if n is even
p(Fn) = { w1 ifn is odd.
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Proof: Let P, = (u1,us,...,u,) be a path of order n. Define f : E(P,) —
{0,1,2} by f(uitit1(mod ny) = 1 if 7 is odd and 0 otherwise. Then f is a perfect
matching if n is even and a near-perfect matching if n is odd. Hence, by
Observation 2.4 f is maximum. Since P, is a bipartite graph, by Theorem 2.5
the assertion follows. |

3 Fractional matching Number of the Join of
Graph

This section gives the fractional matching number of the join of graphs.
Lemma 3.1 Let G be a simple graph. Then o, (G) = ps(G).

To see this, let G = (V, E) be a simple graph. Let & = {; > cpg(e) :
g is a k-int match in G} and # = {>.cg f(e) : f is a frac match in G}. It
suffices to show that o = ZA. Now, let w € &/. Then there exist a k-
integral matching g : £ — {0,1,2,...,k} such that w = 1 ..y g(e). Define
f:E — [0,1] by f(e) = g(e)/k. Then f is a fractional matching and
Yeer f(€) = Yeer 19(e) = £ Xcep g(e) = w. Hence, w € . This shows that
g C A

Next, let z € Z. Then there exist a fractional matching f : E — [0, 1] such
that z =Y .cp f(e). Let f(e;) = a;/b; with (a;,b;) =1 fori=1,2,...,m, and
k be the least common multiple of the elements of {b; : i =1,2,...,m}. Note
that k(a;/b;) € N and k(a;/b;) < k. Define f : E — {0,1,...,k} by g(e) =
k(f(e)). Then g(e) < k for all e € E, and X e 9(€) = Xeerw) k(f(e)) =
kY eerw f(e) < k. Thus, g is a k-integral matching, and > .cpg(e) =
=3 eenk(f(e)) = Yecr f(e) = z. Hence, z € 7. This shows that £ C &/

Accordingly, &7 = 2. This implies that o/ (G) = us(G). [

By virtue of Lemma 3.1, we may use o/, (G) and ps(G) interchangeably.
Theorem 3.2 presents a sharp upperbound of the fractional matching number
of the join of graphs.

Theorem 3.2 Let G and H be graphs of order m and n, respectively. Then
mn

> .
n(G+H) 2 mazx {m,n}

Proof: Let G and H be graphs of order m and n, respectively. Without loss of
generality, assume that m > n. Define f : E(G+ H) —{0,1,2,...,m} by

f()_{(), if e € E(G) or e € E(G)

| 1, otherwise.
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Then f is an m-integral matching. Hence,

mn mn
G+H) > —=—"——.
n(G+H) 2 m  max {m,n}

Theorem 3.3 Let G and H be graphs of order n and n+ 1, respectively. Then
Mf(G + H) =n.

Proof: Let G and H be graphs of order n and n + 1, respectively. Then G + H
has a Hamiltonian path of odd order. This implies that G+ H has a near-perfect
matching. Hence, by Observation 2.4 u¢(G + H) > v(G + H) = n. Therefore,
by Observation 2.1, us(G + H) = n. [

Lemma 3.4 Let G be a graph of order n. If G is Hamiltonian, then pr(G) =
n/2.

Proof: Let G = (V, E) be a Hamiltonian graph and C,, = [u1, us,. .., u,] be a
Hamiltonian cycle in G. Define f : E— {0,1,2} by f(e) =1 for all e € E(C},)

and f(e) = 0 otherwise. Then f is a 2-integral matching. Hence, p17(G) > n/2.
By Oservation 2.1, pus(G) = n/2. |

Corollary 3.5 shows that the bound given in Theorem 3.2 is sharp.

Corollary 3.5 Let G and H be graphs of order m and n, respectively. If
m =mn, then pu(G+ H) = n.

Proof: Let G and H be graphs of order m and n, respectively. If V(G) =

{uy,ug, ..., up} and V(H) = {v1,ve,...,v,}, then [ui, vy, us, v, us, ..., U,
Un, 1] is a Hamiltonian cycle. Hence, G + H is Hamiltonian. Therefore, by
Lemma 34 ps(G+ H) = (m+n)/2 =n. |

Corollary 3.6 to Corollary 3.11 also follows from Lemma 3.4 since these
graphs are Hamiltonian. These further affirms that the bound given by Theorem
3.2 is sharp.

Corollary 3.6 Let P, and P, be paths of order m and n, respectively. Then
1y (P + Pa) = (m+7) /2.

Corollary 3.7 Let P,, be a path of order m and C,, be a cycle of order n.
Then pp(Pp, + Cy) = (m +n)/2.
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Corollary 3.8 Let C,, and C,, be cycles of order m and n, respectively. Then
pp(Co + Cp) = (m +n)/2.

Corollary 3.9 Let K,, be a complete graph of order m and P, be a path of
order n. Then ps(K,, + P,) = (m+n)/2.

Corollary 3.10 Let K,, be a complete graph of order m and C,, be a cycle of
order n. Then ps(K,, + Cp) = (m+n)/2.

Corollary 3.11 Let K,, and K, be a complete graph of order m and n, re-
spectively. Then pr(K,, + K,) = (m+n)/2.

Corollary 3.11 also follows from Corollary 2.3 since the join of complete
graphs is a complete graph.

4 Fractional Matching Number of the Corona
of Graphs

This section gives the fractional matching number of the corona of graphs.
Theorem 4.1 gives a sharp upperbound for the fractional matching number of
the corona of two graphs. For example, equality holds for K o P.

Theorem 4.1 Let G = (Vi, Ey1) and H = (Va, Ey) be graphs with |Vi| = ny,
|Ey| = may, |Va| = ng and |Ey| = mo. Then pup(G o H) > (my + ning +
nims)/(A(G) + na).

Proof: Let G = (V4, Ey) and H = (V4, Ey) be graphs with |Vi| = ny, |Ey| = my,
|Va| = ny and |Es| = my. Define f: E(Go H) — {0,1,2,...,A(G) + na} by

. 0, ifee E1
J(e) = { 1, otherwise.

Then f is a A(G) 4 no-integral matching. Hence, pus(G o H) > (my + ning +

The following observations must be clear.

Observation 4.2 Let G be a connected graphs. If H is a connected subgraph
of G, then 1y(H) < i5(G).

Observation 4.3 Let G and H be connected graphs. Then pp(G U H) =
1y (G) + py(H).
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Lemma 4.4 follows from Lemma 3.4, and Observations 4.2 and 4.3.

Lemma 4.4 Let G = (V, E) be a graph of order n. If there is a partition
{Vi, Vo, ..., Vb of V' such that for each i = 1,2,...,n, (V;) is Hamiltonian,
then pup(G) =n/2.

Theorem 4.5 Let G and H be graphs of order m and n, respectively. If H
has a Hamiltonian path, then pup(G o H) =m(n+1)/2.

Proof: Let G be a graph with vertex set {uj,us,...,u,} and H be a graph
with vertex set {v1,v9,...,v,}. Let G o H be the graph obtained by taking a
copy of G and m copies of H (which we denote by HI = ({v],v3,...,vl}, E)
for j = 1,2,...,m) and then joining each jth vertex of G to every vertex in
the jth-copy of H. If H has a Hamiltonian path, then there exists a path
P, = (v1,v2,v3,...,v,) in H that passes through each vertex exactly ones.
Consider the partition {{u;} U{v] : i = 1,2,....n} : j = 1,2,...,m} of
V(G o H). Note that for each i =1,2,...,m, <{u,} Ufv! ci= 1,2,...,n}> is
Hamiltonian. Hence, by Lemma 4.4 p1;(G o H) = m(n+1)/2. |

Corollary 4.6 Let G be a graph of order m and P,, be a path of order n. Then
1y(G o P) = min +1)/2.

Corollary 4.7 Let G be a graph and C,, be a cycle of order n. Then js(G o
C,) =m(n+1)/2.

Corollary 4.8 Let G be a graph and K,, be a complete graph of order n. Then
pur(Go Ky)=m(n+1)/2.
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