
International Mathematical Forum, Vol. 13, 2018, no. 10, 455 - 471  

HIKARI Ltd,  www.m-hikari.com  

https://doi.org/10.12988/imf.2018.8948 

 

 

Simulation as an Alternative to Linear  

 

Programming of Human T-cell Lymphotropic  

 

Virus I (HTLV-I) Model Infection of CD4+ T-Cells 
 

 

Mohammed Alabedalhadi 

 

The University of Jordan 

Amman, Jordan 

 
   Copyright © 2018 Mohammed Alabedalhadi. This article is distributed under the Creative 

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original work is properly cited. 

 

Abstract 

Simulation is a tradition of operating a process or system in the real world. The 

act of simulating something first requires the development of a model; this model 

represents the main characteristics of the selected behaviors, processes, and 

functions. The model represents the system itself, while the simulation represents 

the operation of the system over time. In this paper, the optimal solutions of 

fractional human T-cell lymphotropic virus model infection of CD4+ T-cells will 

selected by using an efficient technique, called the LHAM, which is a series 

solution method based on the HAM and Laplace transform in obtaining the 

solutions for a wide class of problem. The Pade approximation technique to 

enlarge region of convergence for the solutions. Results obtained using the shame 

presented here are in good agreement with the numerical results obtained before. 

Our work confirms the efficiency of LHAM as a tool for solving linear and 

nonlinear fractional differential equations. The numerical method proposed in this 

thesis can be utilized to solve other problems in field of nonlinear fractional 

differential equations. 

 

Keywords: Laplace homotopy analysis method, Initial value problems, 

Simulation, linear programming 

 

1 Introduction 
 

Human T-cell lymphotropic virus type I (HTLV-I) infection is associated with 

variety of human diseases. Human T-cell lymphotropic virus (HTLV) is a member  
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of the exogeneous human retroviruses that have atropism for T lymphocytes. 

HTLV-I belongs to the delta–type retroviruses, which also include bovine 

leukemia virus; human T-cell leukemia virus type II (HTLV-II) katri and simian 

T–cell leukemia [10]. Infection with HTLV-I is now a global epidemic, affecting 

10 million to 20 million people. This virus has been linked to life – threatening, 

incurable diseases: Adult T-cell leukemia (ATL) and HTLV-I associated 

myelopathy - tropical spastic paraparesis (HAM/TSP). These syndromes are 

important causes of mortality and morbidity in the areas where HTLV-I is 

endemic, mainly in the tropics and subtropics [18]. There are large endemic areas 

in southern Jaban, the Caribbean, central and West Africa, the Middle East, and 

equatorial regions of Africa. In Europe and North America, the virus is found 

chiefly in immigrants from the endemic areas and in some communities of 

intravenous drug users. There is neither vaccine against the virus, nor a 

satisfactory treatment for the malignancy or the inflammatory syndromes, HTLV-

I is transmitted via three major routes: transmission from mother to child by breast 

feeding, transmission from male to female (more frequent than from female to 

male) by sexual contact and transmission by infected blood, either by blood 

transfusion or by the contaminated needles among drug abusers.  

Like HIV, HTLV-I target CD4+ T-cells, the most abundant white cells in the 

immune system, decreasing the body’s ability to fight infection. Primary infection 

leads to chronic infection, the proviral load of which can be extremely high, 

approximately 30-50%. However, only a small percentage of infected individuals 

develop the disease and 2–5% percent of HTLV-I carriers develop symptoms of 

ATL [10]. Also, there is very little cell–free virus in the plasma. Almost all viral 

genetic material resides in DNA form integrated within the host genome of 

infected cells. HTLV-I infection is achieved primarily through cell–to–cell 

contact. There has been an enormous effort made in the mathematical modeling of 

HTLV-I since 1990s. In [10] the authors proposed a modified model that 

describes that T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) 

infection and the development of adult T-cell leukemia (ATL). The HTLV-I 

model is 
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under the initial value  
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where T, I and V denote the numbers of uninfected, latent infected, actively 

infected CD4+ cells, and L the number of leukemia cells, respectively. The 

parameters kT ,,  and k1, are the source of CD4+ T-cells from precursors, the 

natural death rate of CD4+ T-cells, the rate at which uninfected cells are contacted 

by actively infected cells, the rate of infection of T-cells with virus from actively 

infected cells, respectively. MAL  ,, are blanket death terms for latently 

infected, actively infected and leukemic cells. Additionally,  and  represent 

the rates at which latently infected and actively infected cells become actively 

infected and leukemic, respectively. The rate  determines the speed at which the 

saturation level for leukemia cells is reached. Lmax is the maximal value that adult 

T-cell leukemia can reach. Now we introduce the fractional–order into the model 

of HTLV-I infection of CD4+ T-cells [10]. The new system is described by the 

following set of fractional differential equation  
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                                    (3)                           

where α is a parameter describing the order of the fractional time–derivative in the 

Caputo sense and 0 < α < 1, subject to the same initial conditions given in (2). The 

general response expression contains a parameter describing the order of the 

fractional derivatives that can be varied to obtain various responses. Obviously, 

the integer–order system can be viewed as a special case from the fractional– 

order system by putting the time–fractional order of the derivative equal to unity. 

In other words, the ultimate behavior of the fractional system response must 

converge to the response of the integer order version of the equation. 

The homotopy analysis method (HAM) proposed first by Liao [12-16] for 

solving linear and nonlinear differential and integral equations. This method 

provides an effective procedure for explicit numerical solutions of a wide and 

general class of differential systems representing real physical problems [17-23].  

The validity of the HAM is independent of whether there exist small parameters 

or not in the considered equation. The HAM contains a certain auxiliary parameter 

ћ, auxiliary function H(t) and auxiliary linear operator L which provide us with a 

simple way to control and adjust the rate of convergence of the series solution. 

The objective of the present paper is to use the HAM and Laplace transform to 

provide optimal solutions for a fractional order differential system model of 

human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells. However, 

other category of methods to handle large amount of fractional problem can be 

found in [24-29]. 
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2 Preliminaries 
 
 

2.1. Caputo Fractional Derivative  

Firstly, we will provide two definitions are important in fractional calculus 

 

Definition  

i. Areal function )(xf , 0x , is said to be in the space C , μ   R if there exists a 
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Similar to integer-order differentiation, the Caputo’s fractional differentiation is a 

linear operation  

                          .2*1*21* tfbDtfaDtbftafD                                (5) 
 

where a and b are constants. 

 

For   mCxfmm    ,1  and 1 , we have the following properties of the 

Caputo fractional derivative  
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For more details of fractional calculus, see [30-37]. 

 

2.2 Laplace Transform  

The Laplace transform of a function )(tf  is the function )(sF defined by  

                                 .)()}({)(
0


 dttfetfsF st                                                 (7) 

 

Furthermore, the function )(tf  is called the inverse transform of )(sF and will be 

denoted by  )(1 sF
  that is we shall write 
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                           .)( 1 sFtf 
                                                           (8) 

 

For any function f(t) and g(t) whose Laplace transform exist with  

 

              )()( sFtf   and    )(sGtg   

 

and any constant a and b, the Laplace transform has the following properties  
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the convolution integral of )(tf  and )(tg .     
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3. The methodology of LHAM 
 

In this section, we present a modification of the HAM. This modification is based 

on the Laplace transform of the fractional derivative )(* tfD . To illustrate the 

basic idea, let us consider the following system of fractional differential equations             

10,0,,....,3,2,1),,....,,()(*  iniii tnixxtftxD i 
          (12)    

subject to the initial conditions  
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Applying Laplace transform to both sides of equations in system (12) and by 

using linearity of Laplace transform we get  
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Using (11), then we have  

 

         . ...., ,3 ,2 ,1)),,...,,(())(( 1

1 nixxtfsatxs niii    
                   (15) 

On simplifying 

. ...., ,3 ,2 ,1,0)),...,,((
1

))(( 1 nixxtf
ss

a
tx ni

i
i  

                          (16) 



460                                                                                    Mohammed Alabedalhadi 

 

 

Define the nonlinear operator  
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The zeroth–order deformation equations can be constructed as follows  
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where ]1,0[q  is an embedding parameter, 
iN  are nonlinear operators,   is the 

Laplace transform, )(txio
are initial guesses satisfy the initial conditions (13), 

0i  are auxiliary parameters, 0)( sH i  are auxiliary functions and ),( qti  

are unknown functions. Obviously; when 0q , and 1q , we get  
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respectively. Thus, as q  increase from 0 to 1, the solution ),( qti varies from the 

initial guesses )(txio  to the solution )(txi
. Expanding ),( qti in Taylor series with 
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               





1

. ...., ,3 ,2 ,1,)()(),(
m

m

imioi niqtxtxqt                         (20) 

where  

              . ...., ,3 ,2 ,1,0
),(

!

1
)( niq

q

qt

m
tx

m

i

m

im 






                                 (21) 

Assume that the auxiliary parameters ,i the auxiliary function )(sH i
and the 

initial approximations )(0 txi  are properly chosen so that the series (20) converges 

at 1q . Then at 1q  and by (19) the series (20) becomes  
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Differentiating equations (18) m times with respect to the embedding parameter 
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Applying inverse Laplace transform, we have  
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The convergence of a series is important. As long as the series solution (22) 

given by the (LHAM) is convergent, it must be the solution of the considered 

system of fractional differential equations.  
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4 Simulation with applications 
 

In this section, the LHAM is applied to the fractional order system given in (3). 

Applying the Laplace transform to system (3) we have  
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Using linearity of Laplace transform and property (11) we get  
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On simplifying and using (2) we have  
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Define the nonlinear operators  
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In view of the LHAM presented in the previous chapter, the zeroth–order 

deformation equations are  
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Where ]1,0[q  is an embedding parameter, LVIT NNNN  and    ,  ,  are 

nonlinear operators,   is the Laplace transform, )(  and  )(  ),(  ),( tLtVtItT oooo  



Simulation as an alternative to linear programming                                           463 

 

 

are initial guesses satisfy the initial conditions (4.2), 0i  are auxiliary 

parameters, 0)( sH i
 are auxiliary functions and ),(ˆ qtT , ),(ˆ qtI , ),(ˆ qtV and ),(ˆ qtL   

are unknown functions. Obviously; when 0q , and 1q , we get  

),()1,(ˆ   ),()0,(ˆ 0 tTtTtTtT   ),()1,(ˆ   ),()0,(ˆ 0 tItItItI   

),()1,(ˆ   ),()0,(ˆ 0 tVtVtVtV  ).()1,(ˆ   ),()0,(ˆ 0 tLtLtLtL                (32) 

 

respectively. Thus, as q  increase from 0 to 1, the solutions ),(ˆ qtT , ),(ˆ qtI , ),(ˆ qtV  

and ),(ˆ qtL  varies from the initial guesses )(  and  )(  ),(  ),( tLtVtItT oooo  to the 

solutions )(  and  )(  ),(  ),( tLtVtItT , respectively. Expanding ),(ˆ qtT , ),(ˆ qtI ,

),(ˆ qtV  and ),(ˆ qtL  in Taylor series with respect to the embedding parameter q , 

one has 







1

,)()(),(ˆ

m

m

mo qtTtTqtT 





1

,)()(),(ˆ

m

m

mo qtItIqtI  







1

,)()(),(ˆ

m

m

mo qtVtVqtV 





1

.)()(),(ˆ

m

m

mo qtLtLqtL                     (33) 

 

Where 

,0
),(ˆ

!

1
)( 




 q

q

qtT

m
tT

m

m

m
,0

),(ˆ

!

1
)( 




 q

q

qtI

m
tI

m

m

m  

,0
),(ˆ

!

1
)( 




 q

q

qtV

m
tV

m

m

m .0
),(ˆ

!

1
)( 




 q

q

qtL

m
tL

m

m

m
                           (34) 

Assume that the auxiliary parameters ,i the auxiliary function )(sH i
and the 

initial approximations )(  and  )(  ),(  ),( tLtVtItT oooo  are properly chosen so that 

the series (33) converges at 1q . 

Then at 1q  the series (33) becomes  
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Differentiating equations (31) m times with respect to the embedding parameter 

q , then setting 0q  and dividing by m! finally using (34), we have the mth–

order deformation equations 
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Next, we assumed that all parameters are positive and in mm3/day as follows  
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and the initial conditions 
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1  4321    then following the procedure of the LHAM and with the aid 

of the computer package Mathematica, we obtain the first few components of the 

LHAM solution of system (3) as 
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Figs. (1)–(4) shows the series solutions obtained using the LHAM at 

95.099.0,1   and  
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Fig. (1) Plot of T(t), I(t), V(t) and L(t): (Solid line) α=1, (Dashed line) α=0.99, 

(Dot-dashed line) α=0.95. 

 

and this is the same result obtained by using HAM [34]. Figs (5)–( 8) shows the 

series solutions obtained using LHAM combined with pade’ approximant at 

85.095.0,1   and  

 
 

 
Time(days) 

Fig. (2) Plot of T(t), I(t), V(t) and L(t) using LHAM-Pade: (Solid line) α=1, 

(Dashed line) α=0.95, (Dot-dashed line) α=0.85. 
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The above results are in excellent agreement with the results obtained by using 

MSGDTM [9], and the result obtained by using GEM [18]. 

 

Conclusions  
 

In this paper we presented the LHAM which is an efficient method for solving 

system of fractional differential equations based on the HAM and Laplace 

transformation. A fractional order differential system for modeling a human T-cell 

lymphotropic virus I (HTLV-I) infection of CD4+ T-cells is studied and it is 

approximate solution is introduced using the LHAM together with Pade 

approximation technique to enlarge region of convergence for the series solutions. 

There are important points to make here. First, the LHAM was shown to be a 

simple, yet powerful analytic scheme for handling for systems of fractional order. 

Finally generally speaking; the proposed approach can be further implemented to 

solve other nonlinear problems in fractional calculus field.  
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