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Abstract

Simulation is a tradition of operating a process or system in the real world. The
act of simulating something first requires the development of a model; this model
represents the main characteristics of the selected behaviors, processes, and
functions. The model represents the system itself, while the simulation represents
the operation of the system over time. In this paper, the optimal solutions of
fractional human T-cell lymphotropic virus model infection of CD4+ T-cells will
selected by using an efficient technique, called the LHAM, which is a series
solution method based on the HAM and Laplace transform in obtaining the
solutions for a wide class of problem. The Pade approximation technique to
enlarge region of convergence for the solutions. Results obtained using the shame
presented here are in good agreement with the numerical results obtained before.
Our work confirms the efficiency of LHAM as a tool for solving linear and
nonlinear fractional differential equations. The numerical method proposed in this
thesis can be utilized to solve other problems in field of nonlinear fractional
differential equations.

Keywords: Laplace homotopy analysis method, Initial value problems,
Simulation, linear programming

1 Introduction

Human T-cell lymphotropic virus type I (HTLV-I) infection is associated with
variety of human diseases. Human T-cell lymphotropic virus (HTLV) is a member
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of the exogeneous human retroviruses that have atropism for T lymphocytes.
HTLV-I belongs to the delta-type retroviruses, which also include bovine
leukemia virus; human T-cell leukemia virus type Il (HTLV-II) katri and simian
T—cell leukemia [10]. Infection with HTLV-I is now a global epidemic, affecting
10 million to 20 million people. This virus has been linked to life — threatening,
incurable diseases: Adult T-cell leukemia (ATL) and HTLV-l associated
myelopathy - tropical spastic paraparesis (HAM/TSP). These syndromes are
important causes of mortality and morbidity in the areas where HTLV-I is
endemic, mainly in the tropics and subtropics [18]. There are large endemic areas
in southern Jaban, the Caribbean, central and West Africa, the Middle East, and
equatorial regions of Africa. In Europe and North America, the virus is found
chiefly in immigrants from the endemic areas and in some communities of
intravenous drug users. There is neither vaccine against the virus, nor a
satisfactory treatment for the malignancy or the inflammatory syndromes, HTLV-
I is transmitted via three major routes: transmission from mother to child by breast
feeding, transmission from male to female (more frequent than from female to
male) by sexual contact and transmission by infected blood, either by blood
transfusion or by the contaminated needles among drug abusers.

Like HIV, HTLV-I target CD4+ T-cells, the most abundant white cells in the
immune system, decreasing the body’s ability to fight infection. Primary infection
leads to chronic infection, the proviral load of which can be extremely high,
approximately 30-50%. However, only a small percentage of infected individuals
develop the disease and 2-5% percent of HTLV-I carriers develop symptoms of
ATL [10]. Also, there is very little cell-free virus in the plasma. Almost all viral
genetic material resides in DNA form integrated within the host genome of
infected cells. HTLV-I infection is achieved primarily through cell-to—cell
contact. There has been an enormous effort made in the mathematical modeling of
HTLV-I since 1990s. In [10] the authors proposed a modified model that
describes that T-cell dynamics of human T-cell lymphotropic virus | (HTLV-I)
infection and the development of adult T-cell leukemia (ATL). The HTLV-I
model is

dT
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dt a
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E=k1VT—(ﬂL+7)|,
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under the initial value

T(0)=C,, 1(0)=C,, V(0)=C, and L(0)=C,, @)
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where T, | and V denote the numbers of uninfected, latent infected, actively
infected CD4+ cells, and L the number of leukemia cells, respectively. The
parameters A, 4;,K and ki, are the source of CD4+ T-cells from precursors, the
natural death rate of CD4+ T-cells, the rate at which uninfected cells are contacted
by actively infected cells, the rate of infection of T-cells with virus from actively
infected cells, respectively. ¢ , 15, 14y, are blanket death terms for latently
infected, actively infected and leukemic cells. Additionally, 7 and o represent
the rates at which latently infected and actively infected cells become actively
infected and leukemic, respectively. The rate S determines the speed at which the

saturation level for leukemia cells is reached. Lmax is the maximal value that adult
T-cell leukemia can reach. Now we introduce the fractional-order into the model
of HTLV-I infection of CD4+ T-cells [10]. The new system is described by the
following set of fractional differential equation

DIT = A — 2, T —kVT,

DIl =kVT —(u +p)I, 3)

DXV = —(us + p)V,

DEL = pV + ALd——L

)_/UM L.

max

where o is a parameter describing the order of the fractional time—derivative in the
Caputo sense and 0 < a < 1, subject to the same initial conditions given in (2). The
general response expression contains a parameter describing the order of the
fractional derivatives that can be varied to obtain various responses. Obviously,
the integer—order system can be viewed as a special case from the fractional—
order system by putting the time—fractional order of the derivative equal to unity.
In other words, the ultimate behavior of the fractional system response must
converge to the response of the integer order version of the equation.

The homotopy analysis method (HAM) proposed first by Liao [12-16] for
solving linear and nonlinear differential and integral equations. This method
provides an effective procedure for explicit numerical solutions of a wide and
general class of differential systems representing real physical problems [17-23].
The validity of the HAM is independent of whether there exist small parameters
or not in the considered equation. The HAM contains a certain auxiliary parameter
h, auxiliary function H(t) and auxiliary linear operator L which provide us with a
simple way to control and adjust the rate of convergence of the series solution.
The objective of the present paper is to use the HAM and Laplace transform to
provide optimal solutions for a fractional order differential system model of
human T-cell lymphotropic virus | (HTLV-I) infection of CD4" T-cells. However,
other category of methods to handle large amount of fractional problem can be
found in [24-29].
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2 Preliminaries

2.1. Caputo Fractional Derivative
Firstly, we will provide two definitions are important in fractional calculus

Definition

i. Areal function f(x), x>0, is said to be in the space C,, u € R if there exists a
real number p>u such that f(x)=x"f(x) where f(x) is continues in [0, o).
Clearly C, < C, if p<u.

ii. A function f(x)eC,,x>0 is said to be in the space C,;, meN v {0}, if

u
f eCu.
The Caputo fractional derivate of f (t)of order « >0 is defined as

L .[ f(i)lfmdr, m-l<a<m,
r(m-a); (t-7)*
DZf(t) = ™ D" f (t) = (4)
d"f (t) .
dt"

Similar to integer-order differentiation, the Caputo’s fractional differentiation is a
linear operation

D [af,(t)+ bf, (t)] = aD f,(t) + bDZ f,(t). (5)
where a and b are constants.

For m-1<a<m, f(x)eC™ and «>-1, we have the following properties of the
Caputo fractional derivative
1. DEI“f () =  (1).

m-1

‘ (6)

2. 3°DEf (1) = (1) f(k)(0+)tk—|, t>0, m-l<g<m

K=0
For more details of fractional calculus, see [30-37].

2.2 Laplace Transform
The Laplace transform of a function f (t) is the function F(s)defined by

F(s)=Hf(t)}= J.:e*“ f (t)dt. )

Furthermore, the function f(t) is called the inverse transform of F(s)and will be
denoted by ¢*(F(s)) that is we shall write
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f(t) = (F(s)) (8)

For any function f(t) and g(t) whose Laplace transform exist with

HE )} =F(s) and ¢{g(t)}=G(s)

and any constant a and b, the Laplace transform has the following properties
1.¢{af (t) + bg(t)} = aF (s) + bG(s).

9)
2.04F () * g(t)} = F(5)G(5),
where

t

fO*g) = ft-r)g(z)dz. (10)

0

the convolution integral of f (t) and g(t).

3.If m-1l<a<m,meN, then the Laplace transform of the fractional derivative
DI f(t) is

/(D f (1)) = s“F(s) —f £00(01)s* ™+, t>0. (11)

3. The methodology of LHAM

In this section, we present a modification of the HAM. This modification is based
on the Laplace transform of the fractional derivative DS f(t). To illustrate the
basic idea, let us consider the following system of fractional differential equations
DIix (t) = £, (t,%,...., X,),i =1,2,3,....,n,t 20,0 < ; <1 (12)
subject to the initial conditions

X;,(0)=8a,,1=123,....,n (13)

Applying Laplace transform to both sides of equations in system (12) and by
using linearity of Laplace transform we get

(DX (1)) =0(f, (t, x,..., X)) ,i=12,3,....,n. (14)
Using (11), then we have
sUO(x (1)) —a,5* " = 0(f.(t, X0, X)), i =1,2,3, ..., . (15)
On simplifying

o(x (t))—%—siaﬂ(fi (t X X)) =0, i=12,3 ... . (16)
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Define the nonlinear operator

N; (¢ (t, ) = (4 (t, Q))—ﬁ—%ﬁ( fi (t, 4 (t,Q)..... 4, (1, Q))),
s s a7

i=123,...,n.
The zeroth—order deformation equations can be constructed as follows

@—a) /4t a) — %o ®M]=arH ()N, [4 (t. )} i=12,3,.... n. (18)

where q<[0,1] is an embedding parameter, N, are nonlinear operators, / is the
Laplace transform, x,, (t)are initial guesses satisfy the initial conditions (13),
h, = 0 are auxiliary parameters, H;(s) =0 are auxiliary functions and ¢ (t,q)
are unknown functions. Obviously; when =0, and g =1, we get

¢(1,0)=x,(1), 4t =x(0) (19)

respectively. Thus, as J increase from 0 to 1, the solution ¢ (t,q) varies from the

initial guesses X, (t) to the solution x(t) . Expanding & (t,q) in Taylor series with
respect to the embedding parameter (, one has

A(6Q) =%, O+ X (0", i=12,3....n. (20)
where N
xim(t)ziamqj‘—(tm'q)mzo, i=123,..,n (21)
m!  oq

Assume that the auxiliary parameters 7,,the auxiliary function H,(s)and the
initial approximations X;, (t) are properly chosen so that the series (20) converges
at g=1.Thenat g=1 and by (19) the series (20) becomes

X (1) = X0 () + 3 % (1), 1=1,2,3, .. 22)
Define the vector "
Xim = X 0, % (O X (O} 121 2,3, 0 23)

Differentiating equations (18) m times with respect to the embedding parameter
g, then setting g =0 and dividing by m! finally using (21), we have the mth—
order deformation equations

X () = ZonXscom 1y (0] = 72, H; (8) R (Xi(n0)),1 =1, 2, 3, oo
where (24)

- 1 am_1Ni I t’q
Rim(Xi(mfl)) = (m—1)! aq(f—l( ))‘q:o i
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and

O,m<l1
= 25
X {1’m>1 (25)

Applying inverse Laplace transform, we have

Xin(©) = Zn X @+ (H ()R (Kin )i =1 2,3, (26)

The convergence of a series is important. As long as the series solution (22)
given by the (LHAM) is convergent, it must be the solution of the considered
system of fractional differential equations.

Theorem 1. If the series ixim(t),i =1,2,3, ..., n. is convergent, it must be a
solution of system (12). "

4 Simulation with applications

In this section, the LHAM is applied to the fractional order system given in (3).

Applying the Laplace transform to system (3) we have
0(DET) = (A — 1, T —kVT),

(D) = (VT = (ee, + 7)),

(27)
((DEV) = 6(A = (ua+ P V),
(DIL) = UpV + AL~ )~ L),
Using linearity of Laplace transform and property (11) we get
SU(T) =57 T (0) = £ = 1y ((T) —ke(VT),
s“0(1) —s“1(0) =k L(VT) — (g, +1)e(1),
(28)

STUNV) =s“NV(0) =y £(1) = (ua + p)UV),

SU(L) =57 IL(0) = prV) + (B — s Y(L) 2= 0L,

max

On simplifying and using (2) we have
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S S S (29)

C —
(L)~ 22 2ofy)- Lot () L

Define the nonlinear operators

et avita Ceal= dffa)-=2 - £ ff ) < o)l

0 oV aClal- (a2 S At ar (o)L o)

wltaitanta ol dital)-S- Ldital2 2 diea)

vFakita o Leal-ta)- 2 -2 a2 (o)

L i([o)) )

S“Lyay
In view of the LHAM presented in the previous chapter, the zeroth—order
deformation equations are

(L—a)IT (6, a) ~ Ty 1= ah,H, ()N, [T, 7.V, L]

(@- )R a) — 1, (O] = a7, H, (5N, [T, 1V, L],
(31)

(L- )V (6, 9) Vo ()] = a7 H (5N, |
(- a)IL(t a) — Ly®1= o H, ()N, [T, 7.V, L]

Where qe[01] is an embedding parameter, N;, N,, N, and N, are
nonlinear operators, £ is the Laplace transform, T, (t), 1,(t), V,(t) and L,(t)
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are initial guesses satisfy the initial conditions (4.2), #, #0 are auxiliary
parameters, H,(s)=0 are auxiliary functions and T(t,q), i(t,q), V(t,q)and L(t,q)
are unknown functions. Obviously; when q=0, and q=1, we get
T(t,0)=T,(t), Tt =T(), I(t0)=1,@), I(t1)=1(),

V(£,0) =V, (t), V(t1) =V (), L(t,0) = L,(t), L(t1)=L(t). (32)

respectively. Thus, as g increase from 0 to 1, the solutions T(t,q), I(t,q), V(t,q)
and L(t,q) varies from the initial guesses T_(t), I,(t), V,(t) and L,(t) to the
solutions T (t), 1(t), V(t) and L(t), respectively. Expanding T(t,q),I(t, q),

V(t,q) and L(t,q) in Taylor series with respect to the embedding parameter q,
one has

TR0 =T,0+ 3T, 16D = 1,0+ 1,00

V(t,q) =V, (1) + >V, t)a", Lt,q)=L,t)+> L, ({t)ag" (33)
m=1 m=1

Where
1 8™ (t,q) 1 0™i(t,q)

T (t)=— =0, 1 ()=—2"g=0,

() s la (t) R (¢
1 8™V (t, 1 0™L(t,

Vo)== YD g o =2 T LD g (34)
m!  oq m!  oq

Assume that the auxiliary parameters 7, the auxiliary function H,(s)and the

initial approximations T, (t), I,(t), V,(t) and L,(t) are properly chosen so that
the series (33) convergesat g =1.
Then at g =1 the series (33) becomes

TO=T,O+3 T,
) =1,0+3 1,0,
V) =V,0)+ SV, ),

L) =L@+ L. (). (35)

Differentiating equations (31) m times with respect to the embedding parameter
g, then setting g =0 and dividing by m! finally using (34), we have the mth—
order deformation equations
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T (1) = X T (O] =7,H, (s) Rm,T (s)
O = 2l ®O]=7,H, ()R, (5)

(36)

NV () = ZaVaa (O] =713H; ()R, (5)

L, () — 2 bna(W]=7,H,(S)R,,  (5)
where

9= 1,0 S22 2] o) S, 0]

(37)

S s* s*
m-1
L E(Z L (tL,, () | (4.15)
Lo D
O,m<1 N
and g, = Imal Applying inverse Laplace transform of (36), we have the

form
T () = 2 Toa(©) + 7,07 (H (S)R,, 1 (5)),

I () = X Lna O + 7,07 (H, ()R, (5)),
(38)

Vi (1) = X Vira (0 + 71507 (H3 ()R, (),

Lo (1) = X Lo () +71,67(H, (S)R,, L (9))-
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Finally, we have

T®=>T,®.
1®) = 3 1,0, (39)
V) = >V,

L(t) = i L. (b).

Next, we assumed that all parameters are positive and in mm?®/day as follows
1 =0.6, g, =0.006, , =0.05, 1, =0.0005 4 =0.0003

4
y =0.0004, p =0.00004, L, =2200,4 =6and k =k, =0.1. (40)
and the initial conditions
T(0)=1000, 1(0)=250, V(0) =15 and L(0)=0. (41)
Considere, =a, =a, =0, =a, H,(S)=H,(s)=H,(s)=H,(s)=1 , and

hy=h,=h,=h,=h =-1 then following the procedure of the LHAM and with the aid

of the computer package Mathematica, we obtain the first few components of the
LHAM solution of system (3) as

T(t):1000+1488ht +h2ta(r744 555.506 t J

r+a) (+a) T0+2a)

I(t)= 250 22687 20{_ 1484  110.056t J

rara) U Thra) Tas2a)

(42)

V(t)=1.5-

0.049881t* ., ,( 0.02494 0.058112"
——— + At — +
Il+a) ( Il+a) F(1+2a)]

0.000127t* , .( 0.00006 9.856*107t"
(t)= ——————+n’t*| - +
rl+a) IMl+a) TQ+2a)

Figs. (1)-(4) shows the series solutions obtained using the LHAM at
a=1 a=0.99%nda =0.95
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Fig. (1) Plot of T(t), I(t), V(t) and L(t): (Solid line) o=1, (Dashed line) 0=0.99,
(Dot-dashed line) 0=0.95.

and this is the same result obtained by using HAM [34]. Figs (5)—( 8) shows the
series solutions obtained using LHAM combined with pade’ approximant at
a =1, a=0.95anda =0.85
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Fig. (2) Plot of T(t), I(t), V(t) and L(t) using LHAM-Pade: (Solid line) a=1,
(Dashed line) 0=0.95, (Dot-dashed line) 0=0.85.
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The above results are in excellent agreement with the results obtained by using
MSGDTM [9], and the result obtained by using GEM [18].

Conclusions

In this paper we presented the LHAM which is an efficient method for solving
system of fractional differential equations based on the HAM and Laplace
transformation. A fractional order differential system for modeling a human T-cell
lymphotropic virus | (HTLV-I) infection of CD4+ T-cells is studied and it is
approximate solution is introduced using the LHAM together with Pade
approximation technique to enlarge region of convergence for the series solutions.
There are important points to make here. First, the LHAM was shown to be a
simple, yet powerful analytic scheme for handling for systems of fractional order.
Finally generally speaking; the proposed approach can be further implemented to
solve other nonlinear problems in fractional calculus field.
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