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Abstract

In this paper, homomorphism theorems for ordered semirings are
studied. We obtain some characterizations of the smallest compati-
ble quasiorder or order-congruence generated by H. A homomorphism
theorem and two isomorphism theorems of ordered semirings based on
compatible quasiorders and order-congruences have been given. Finally,
we have a characterization for the direct product of ordered semirings
by using compatible quasiorders on an ordered semiring.
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1 Introduction

Homomorphism theorems for ordered algebras have been investigated by var-
ious authors, both from the point of view of ordered algebra and ordered
semigroup. Our research is closely related to those which was carried out in
[1, 2, 3, 4, 5, 7]. They defined order-congruence, compatible quasiorder on
those structures and investigated further results of homomorphism theorems.
Similarly, we have the following definitions. For undefined notions and nota-
tion we refer to the book [6].

For a semiring R, by R we denote the semigroup obtained from the semi-
group (R,+) by adjoining an additive identity if necessary. Similarly, by R!
we denote the semigroup obtained from the semigroup (R, e) by adjoining a
multiplicative identity if necessary.
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An ordered semiring is a partially ordered set (R, <) and a semiring
(R,+,e) such that for all a,a’ € R,a < a' implies r +a < r+d,a+r <
a +r,ra <ra and ar < a'r for all r € R.

A homomorphism f: R — S of ordered semirings is a monotone operation-
preserving map from an ordered semiring R to an ordered semiring S. We call
a homomorphism f an order-embedding if additionally f(a) <g f(a’) implies
a<ga forall a,a € R.

We call a quasiorder ¢ on an ordered semiring R a compatible quasiorder
if it is compatible with operations and extends the order of R.

Given a quasiorder o on a poset (R, <) and a,d’ € R, we write

a<d & (In € N)(Jay, as, - a, € R)(a < ajoay < azo---oa, < a').
An order-congruence on an ordered semiring R = (R, +, e, <) is a congru-
ence 0 of the semiring (R, +, ) such that the following condition is satisfied:

(Va,d’ € R)(a<d' <a = abd').
o 0
If o is a compatible quasiorder on R then @ = o N o~ ! is an order-
congruence. Let us denote the sets of all order-congruences and compatible
quasiorders of R by Con(R) and Cqu(R), respectively.

2 Preliminaries

For every subset H C R x R there is a smallest order-congruence O (resp.
compatible quasiorder ¥ ) on R containing H. This relation O (resp. Xp) is
called the order-congruence generated by H (resp. the compatible quasiorder
generated by H). We have the following characterizations of the smallest order-
congruence and compatible quasiorder generated by H.

Lemma 2.1. Let R be an ordered semiring, H C R x R. Then for any
c,d € Ryec < if and only if c < ' or there exist x;,y; € R', u;,v; € R® and
é

H
(a;,a) € HUH™ forie {1,2,---,n} such that we have one sequence
c<pi(ar) p2az) < pslag) - Pnlan) < ¢,

pi(ay) < pa(ay) -+ paoi(a,_1) < palay)
for pi(a;) = u; + xia:y; + v, pi(al) = u; + z;aly; + v; from ¢ to .

Lemma 2.2. Let R be an ordered semiring, H C R x R. Then for any
¢, € R,cOpc if and only if c = ¢ or there exist x;,y; € R',u;,v; € R and
(a;,a) € HUH™ forie {1,2,---,n} such that we have one sequence
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c<pi(a1) p2az) <pslag) --- pnlan) < .

pi(ay) < paas) -+ puoala, ) < pulay)
for pi(a;) = u; + z;0;y; + v;, pi(al) = u; + xaly; + v; from ¢ to ¢ and another
similar sequence from ¢ to c.

Lemma 2.3. Let R be an ordered semiring, H C R x R. Then for any
e, € R,cXyc if and only if ¢ < ¢ or there exist x;,y; € R', u;,v; € R and
(a;,a) € HUH™ forie {1,2,---,n} such that we have one sequence

c<pi(a1) paaz) < ps(as) - pn(an) < .

pi(at) <pa(as) -+ pu-i(an_q) < palay,)
or pi(a;) = u; + x;a;y; + v, pi(al) = u; + xaly; + v; from ¢ to .
Y i iY

Lemma 2.4. Let R be an ordered semiring, o is a compatible quasiorder on
R. Let R = {u : pu is compatible quasiorder on R such that o C p}. Let S be
the set of all compatible quasiorders on R/a. For p € R, we define a relation
W on R/T as follows:

W ={(rsy7) : (Ga € 23,b € y5)(a,b) € pu}.
Then the mapping - R — S, u+— i’ is a bijection and for pq, pe € R, we have
i1 C g if and only if 1y C py.
Definition 2.5. Let R be an ordered semiring, ¥ is a family of compatible

quastorders on R. We say that ¥ separates the elements of R if for each
zr,y € R, (x,y) €<, there exists o € ¥ such that (z,y) € 0.

Theorem 2.6. Let R be an ordered semiring, X is a family of compatible
quasiorders on R. If ¥ separates the elements of R, then ({{o : 0 € ¥} =<.
Conversely, if (\{o : 0 € X} C<, then X separates the elements of R.

Proof. Since ¥ is a family of compatible quasiorders on R. Then <C (\{o :
o € X}. Let (z,y) € ({o:0 € X}, x £y. Since X separates the elements of
R, there exists o € 3 such that (z,y) ¢ 0. Impossible.

Conversely, suppose x,y € R,z £ y. Then there exists ¢ € ¥ such that
(x,y) & o. Suppose (z,y) € o for any 0 € ¥. Then (z,y) € (J{o : 0 € ¥} C<,
thus x < y. Impossible. O

3 Homomorphism theorems

(}_i\>fen a homomorphism f: R — S of ordered semirings, the directed kernel
kerf of f, defined as kerf = {(a,b) € R x R : f(a) <g f(b)} is clearly a

compatible quasiorder on R. Hence kerf = (k:—e;’ N (;@i f)_1 is an order-
congruence on .
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Lemma 3.1. Let R be an ordered semiring, 0 C R x R. Then o is a
compatible quasiorder on R if and only if there exists an ordered semiring
(S, <) and a homomorphism f: R — S such that o = kerf.

Lemma 3.2. Let R be an ordered semiring, 0 is a congruence on R. Then
the following statements are equivalent:

(1) 6 is a order-congruence on R;

(2) There exists a compatible quasiorder o of R such that 0 = o No™1;

(3) There exists an ordered semiring (S, <) and a homomorphism f: R — S
such that 0 = kerf.

Theorem 3.3. (Homomorphism Theorem) Let R, S be ordered semirings,
v: R i}S 1s a homomorphism. If o is a compatible quasiorder on R such that
o C keryp, then the mapping f: R/d — S,az — ¢(a) is the unique homomor-
phism of R/a into S such that the diagram

R—*2-38
”*j /
R/

commutes (i.e., foo* = ). Moreover, Imf = Ime. Conversely, if o is a
compatible quasiorder on R for which there exists a homomorphism f: R/G —
S such that the above diagram Commutes, then o C kerep.

Proof. Let 0 € Cqu(R), o C l@zgp, fiR/T — S, az — p(a). Then we have
a4y = by = (a,0) €7 = (a,b), (b,a) € o = (a,b), (b,a) € ket
= p(a) <s (), p(b) <s p(a) = ¢(a) = @(b).
If a,b € R, then
flaz +bz) = f((a+ b)s) = p(a +b) = S(D(CL) +¢(b) = flaz) + f(bs);
a :

flasbz) = f((ab)s) = p(ab) =7
az < by = (a,b) € 0 C kerp = ¢(a) <g ¢(b)

Hence f is a homomorphism.

For each a € R, (foo*)(a) = f(c"(a)) = f(az) = ¢(a). Then foo* = .
Let g: R/ — S be a homomorphism such that goo* = ¢. For each a € R, we
have f(az) = ¢(a) = (goo*)(a) = g(c*(a)) = g(az). Then f = g. Moreover,
Imf={f(az:a € R} ={p(a) :a € R} = Imep.

Conversely, suppose o € Cqu(R), f: R/g — S is a homomorphism, foo* =
. Then we have

(a,b) € 0 = a5z < by = f(az) <g f(bs) = f(c%(a)) <g f(0_*>(b)) =
(foo*)(a) <s (foo™)(b) = ¢la) <s p(b) = (a,b) € kerp.
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Therefor o C l@“gp. O

Corollary 3.4. Let R, S be ordered semirings, ¢: R — S is a homomor-
phism. Then R/kerp = Imgp.

Theorem 3.5. Let R be an ordered semiring, p, o are compatible qua-

siorders on R, p C 0. Then o/p is a compatible quasiorder on R/p and
(R/p)/(c/p) = (R/7).
Proof. <,C o/p: If (az,b;) €<,, then (a,b) € p C o, (az,b5) € o/p. Let
(az,b5) € a/p, (bs,c;) € o/p. Then (a,b), (b,¢) € 0. Thus (a,c) € 0, (as,¢;5) €
a/p. Let (az,b;) € o/p, ¢ € R. Since (a,b) € o, we have (a +¢,b+¢) € o,
((a+¢)5, (b+¢)5) € o/p. Thus (a5 + ¢5,b; + ¢5) € 0/p. Similarly, we have
(c5 + ap,c5 + bs), (apcs, bsep), (cpaz, cbs) € o/p. We consider the mapping
f:R/p — R/7,az — az. Since

a; =b; = (a,b) € p= (a,b),(b,a) € p C o= (a,b) €7 = a7 = bs.

Then f is well defined. Let o,,0, be the multiplication on R/p, R/T respec-
tively. Then

flag 0, bg) = f((ab)s) = (ab)z = az o7 (b)s = f(az o5 bp).
aﬁgﬂbﬁi (a’b) €EpCo=ar <, bs.

Hence f is a homomorphism. Thus (R/p,0,,<,),(R/7,0,,<,) are ordered
semirings, the mapping f is_g homomorphism. By Corollary 3.4 we have
(R/p)/kerf = Imf. Since kerf = {(az,b5) € R/p x R/p : f(az) <, f(b5)}.
Then we have

(ap,by) € kerf < f(ay) <o f(by) & a5 <o by < (a,b) € 0 < (az,by) € 7/p.

Hence Mf = o/p, kerf = a/p. Then Imf = {f(ap) 1 a € R} = {az : a €
R} = R/@. Thus we have (R/p)/(c/p) = (R/7). O

A homomorphism f: R — S of ordered semirings is called a Q-homomorphism
if, for all b, ¥’ € S, b <g V' implies that there exist a, a’ € R such that b = f(a),
a < d and V = f(d).
kerf
Theorem 3.6. O is an order-congruence of ordered semiring R if and only
if © = kerf for some epimorphism Q-homomorphism f: R — S.

Proof. Necessity: Suppose © is an order-congruence of ordered semiring R. By
Lemma 3.2, there exists a epimorphism homomorphism f: R — R/© such that
© = kerf. Let x,y € R/O,z < y. There exist a, b € R such that x = f(a),

y= f(b), (a,b) € kerf. Hence a < b. Then f is a Q- homomorphism.
kerf

Sufficiency: Obviously © is an equivalence on R. Let (a,b) € O, ¢ € R.
Then f(a) = f(b). Hence O is a congruence on R. Let a <b<a. There exist

6 ©
a;,b; € R fori e {1,2,--- ,n} such that
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a§a19a2S@ag@---@an§b§b1@b2§b3@---@bn§a.

Then

flar) = f( 2) flag) = -+ = flan) < f(b),
f by f

(bs) =+ = f(bn) < fla).
Hence f(a) = f(b). Then a©b. Therefor © is an order-congruence on R. [

t’:
INIA

Next we investigate two isomorphism theorems of ordered semirings based
on compatible quasiorders and order-congruences.

Theorem 3.7. (First Isomorphism Theorem) Given an ordered semiring
R, a subsemiring S of R and a compatible quasiorder o on R. Define [S] =
{re R:(3s € S)(r,s) €0}, where = cNot. Let S be the subsemiring of
R determined by [S]. Then the mapping

a5/ 0s = 5 /b)), [x]os = [2]og ([2] € [S])
18 an isomorphism.

Proof. We consider the mapping a: S/ 05 — 5" /0;s, [x]os > [2]g,y ([2] € [S]).
Let [z]os = [ylos. Then ([z],]y]) € 0s. Because [z], [y] S ], we obtain
([z], [y]) € 05 Then [z]gy, = [ylo- Since we have

a([z]e +[y]9s) = a([z + ?/]es) [z + y]e 5] [1’]9[5]—1-[3/]9[3] = O‘([x]es)"{'a([y]@s);
a([es[yles) = allzylyy) = eyl = [elog Wl = allz]os)al[ylos);
]

£ < s = (2,) € 05 = (2], ) 69[s1 = [2losy < o)

Then f is a homomorphism.

Let [z]g = [yl Then [z]oy < [Ylay < [zl Hence (x,y), (y,7) € Os.
Therefor [7]gs < [ylog < [7]os. Then [z]ps = [ylos. Let [2]gy € S'/0)s). Then
([z], [z]) € 6N([S] x [S]). Therefor (z,z) € 6((S x S). Thus [z]p, € S/0s.

Then « is an isomorphism. O

Theorem 3.8. (Second Isomorphism Theorem) Let R be an ordered semir-
ing, o1, o9 be compatible quasiorders on R with oy C 09, and let 0; = oy Moyt
Oy = o3 N a;l. Then the relation Gy on R/oy defined by

(ag,,by,) € T2 < (a,b) € 09

is a compatible quasiorder on R/oy and the mapping o : (R/01)/Ty — R/,
(ae,)g, > as, is an isomorphism, where 5 = 75 N o,y
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Proof. Obviously @9 is a quasiorder on R. Let (ag,,by,) € T2, ¢ € R. Then
(a,b) € 09,c9, € R/oy. Because o9 € Cqu(R), we obtain (¢ + a,c + b) € 0.
Then ((c+a)y,, (c+b),,) € Ta. Hence (co, + ag,, co, +bp,) € To. Similarly, we
have (ag, + co,,bo, + co, ), (co, Go,, Co,bo, ), (ap, oy, by, Co,) € Ta.

Let ag, <o, bg,. Then (a,b) € 1. Because o1 C 09, we obtain (a,b) € os.
Hence (ag,,by,) € 2. Thus 75 is a compatible quasiorder on R.

We consider the mapping o : (R/01)/02 — R/0a, (ag,)z, + ag,. Let
(ag,)g, = (b, )g,- Then (ag,, b, ), (b, ,a9,) € T2. Hence (a,b), (b,a) € oa. Then
ag, = bp,. Since we have

a((ag, )5, + (ba,)5,) = a(ag, + be,)z,) = a(((a +b)y3,) = (a+b)s, =
ag, + be, = a((ag, )g,) + a((be, )z, );
a((ag, )g,(be, )g,) = a((as,bs,)z,) = a(((ab)yg,) = (ab)e, = as,bs, =
a((a91>§2)a((b91)§2);
(a(’l )@2 =&y (bel )52 = (af)u a92) €0y = (a’ b) € 02 = Ay, <o, b@g-

Then f is a homomorphism. Let ag, = bg,. Then (a,b),(b,a) € o,. Hence
(ag,,bo, ), (bo,,a0,) € T2. Then (ag, )z, = (by, )5, Let ag, € R/0oy. We have
(ae,)g, € (R/01)/T2. Then « is an isomorphism. O

Theorem 3.9. Let R, Ry, Ry be ordered semirings. Then R = Ry X Ry if
and only if there exist compatible quasiorders oy,09 of R such that
(1)0'1 N 09 :S,'
(2)c1 0G5 =200, = R x R.

Proof. Necessity: (1) Let ¢: R — R; X Ry be an isomorphism. Then ¢;: R —
R;(i = 1,2) are homomorphisms and onto. By lemma 3.1, kery;(i = 1,2) are
compatible quasiorders on R, then <C (mﬂcpl) N (@@2). Furthermore, let
(e,9) € (kergr) N (kergn). Then px) = (p1(), a(x) < (21(y). $2ly)) =
©(y). Since ¢ is an order-embedding, we deduce that x < y.

(2) Let (¢,d) € R x R and k = ¢1(c), p2(d)). Since ¢ is an isomorphism,
there exists w € R such that p(w) = (pi(c), pa(d)) = (v1(w), p2(w)). Then
(c,w) € kerp; and (w,d) € kery,. Thus, (c,d) € kerp; o kery,. We conclude
that kery; o kerps = R x R. Similarly, we can prove kerys o kergp; = R X R.

Sufficiency: Let o; and o, be compatible quasiorders on R. By lemma
3.2, there exists an order relation <; on R/a; such that R; = (R/7;,0;, <;)
is an ordered semiring, the natural homomorphism ¢;: R — R/7;,a — az, is
isotone, and o; = {(a,b) € R X R : a5, <; by, for i =1,2.

We define a mapping ¢: R — Ry X Ry, x — (d1(x),72(x)). Then the
semiring homomorphism ¢ is an ordered semiring isomorphism, i.e., R = R; X
Rs. Indeed, it is easily seen that ¢ is isotone. If p(z) < ¢(y), then (z,y) €
01 N oy =<. Thus, ¢ is an order-embedding.
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If (Z1,T2) € Ry X Ry, there exist x1,z5 € R such that (x1)s, = T; and

(x2)7, = Tz. Since 1 09 = G2 001 = R X R, there exists y € R such that

(x1,y) € 71 and (y,x2) € To. Thus ¢(y) = (T1,T2), i.e., ¢ is onto. ]
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