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Abstract

In this paper, homomorphism theorems for ordered semirings are
studied. We obtain some characterizations of the smallest compati-
ble quasiorder or order-congruence generated by H. A homomorphism
theorem and two isomorphism theorems of ordered semirings based on
compatible quasiorders and order-congruences have been given. Finally,
we have a characterization for the direct product of ordered semirings
by using compatible quasiorders on an ordered semiring.
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1 Introduction

Homomorphism theorems for ordered algebras have been investigated by var-
ious authors, both from the point of view of ordered algebra and ordered
semigroup. Our research is closely related to those which was carried out in
[1, 2, 3, 4, 5, 7]. They defined order-congruence, compatible quasiorder on
those structures and investigated further results of homomorphism theorems.
Similarly, we have the following definitions. For undefined notions and nota-
tion we refer to the book [6].

For a semiring R, by R0 we denote the semigroup obtained from the semi-
group (R,+) by adjoining an additive identity if necessary. Similarly, by R1

we denote the semigroup obtained from the semigroup (R, •) by adjoining a
multiplicative identity if necessary.
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An ordered semiring is a partially ordered set (R,≤) and a semiring
(R,+, •) such that for all a, a′ ∈ R, a ≤ a′ implies r + a ≤ r + a′, a + r ≤
a′ + r, ra ≤ ra′ and ar ≤ a′r for all r ∈ R.

A homomorphism f :R→ S of ordered semirings is a monotone operation-
preserving map from an ordered semiring R to an ordered semiring S. We call
a homomorphism f an order-embedding if additionally f(a) ≤S f(a′) implies
a ≤R a′ for all a, a′ ∈ R.

We call a quasiorder σ on an ordered semiring R a compatible quasiorder
if it is compatible with operations and extends the order of R.

Given a quasiorder σ on a poset (R,≤) and a, a′ ∈ R, we write

a≤
σ
a′ ⇔ (∃n ∈ N)(∃a1, a2, · · · an ∈ R)(a ≤ a1σa2 ≤ a3σ · · ·σan ≤ a′).

An order-congruence on an ordered semiring R = (R,+, •,≤) is a congru-
ence θ of the semiring (R,+, •) such that the following condition is satisfied:

(∀a, a′ ∈ R)(a≤
θ
a′≤

θ
a⇒ aθa′).

If σ is a compatible quasiorder on R then σ = σ ∩ σ−1 is an order-
congruence. Let us denote the sets of all order-congruences and compatible
quasiorders of R by Con(R) and Cqu(R), respectively.

2 Preliminaries

For every subset H ⊆ R × R there is a smallest order-congruence ΘH (resp.
compatible quasiorder ΣH) on R containing H. This relation ΘH (resp. ΣH) is
called the order-congruence generated by H (resp. the compatible quasiorder
generated by H). We have the following characterizations of the smallest order-
congruence and compatible quasiorder generated by H.

Lemma 2.1. Let R be an ordered semiring, H ⊆ R × R. Then for any
c, c′ ∈ R, c ≤

ΘH

c′ if and only if c ≤ c′ or there exist xi, yi ∈ R1, ui, vi ∈ R0 and

(ai, a
′
i) ∈ H ∪H−1 for i ∈ {1, 2, · · · , n} such that we have one sequence

c ≤ p1(a1) p2(a2) ≤ p3(a3) · · · pn(an) ≤ c′,

p1(a′1) ≤ p2(a′2) · · · pn−1(a′n−1) ≤ pn(a′n)
for pi(ai) = ui + xiaiyi + vi, pi(a

′
i) = ui + xia

′
iyi + vi from c to c′.

Lemma 2.2. Let R be an ordered semiring, H ⊆ R × R. Then for any
c, c′ ∈ R, cΘHc

′ if and only if c = c′ or there exist xi, yi ∈ R1, ui, vi ∈ R0 and
(ai, a

′
i) ∈ H ∪H−1 for i ∈ {1, 2, · · · , n} such that we have one sequence
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c ≤ p1(a1) p2(a2) ≤ p3(a3) · · · pn(an) ≤ c′.

p1(a′1) ≤ p2(a′2) · · · pn−1(a′n−1) ≤ pn(a′n)
for pi(ai) = ui + xiaiyi + vi, pi(a

′
i) = ui + xia

′
iyi + vi from c to c′ and another

similar sequence from c′ to c.

Lemma 2.3. Let R be an ordered semiring, H ⊆ R × R. Then for any
c, c′ ∈ R, cΣHc

′ if and only if c ≤ c′ or there exist xi, yi ∈ R1, ui, vi ∈ R0 and
(ai, a

′
i) ∈ H ∪H−1 for i ∈ {1, 2, · · · , n} such that we have one sequence

c ≤ p1(a1) p2(a2) ≤ p3(a3) · · · pn(an) ≤ c′.

p1(a′1) ≤ p2(a′2) · · · pn−1(a′n−1) ≤ pn(a′n)
for pi(ai) = ui + xiaiyi + vi, pi(a

′
i) = ui + xia

′
iyi + vi from c to c′.

Lemma 2.4. Let R be an ordered semiring, σ is a compatible quasiorder on
R. Let R = {µ : µ is compatible quasiorder on R such that σ ⊆ µ}. Let S be
the set of all compatible quasiorders on R/σ. For µ ∈ R, we define a relation
µ′ on R/σ as follows:

µ′ = {(xσ, yσ) : (∃a ∈ xσ, b ∈ yσ)(a, b) ∈ µ}.

Then the mapping f :R → S, µ 7→ µ′ is a bijection and for µ1, µ2 ∈ R, we have
µ1 ⊆ µ2 if and only if µ′1 ⊆ µ′2.

Definition 2.5. Let R be an ordered semiring, Σ is a family of compatible
quasiorders on R. We say that Σ separates the elements of R if for each
x, y ∈ R, (x, y) 6∈≤, there exists σ ∈ Σ such that (x, y) 6∈ σ.

Theorem 2.6. Let R be an ordered semiring, Σ is a family of compatible
quasiorders on R. If Σ separates the elements of R, then

⋂
{σ : σ ∈ Σ} =≤.

Conversely, if
⋂
{σ : σ ∈ Σ} ⊆≤, then Σ separates the elements of R.

Proof. Since Σ is a family of compatible quasiorders on R. Then ≤⊆
⋂
{σ :

σ ∈ Σ}. Let (x, y) ∈
⋂
{σ : σ ∈ Σ}, x 6≤ y. Since Σ separates the elements of

R, there exists σ ∈ Σ such that (x, y) 6∈ σ. Impossible.
Conversely, suppose x, y ∈ R, x 6≤ y. Then there exists σ ∈ Σ such that

(x, y) 6∈ σ. Suppose (x, y) ∈ σ for any σ ∈ Σ. Then (x, y) ∈
⋂
{σ : σ ∈ Σ} ⊆≤,

thus x ≤ y. Impossible.

3 Homomorphism theorems

Given a homomorphism f :R → S of ordered semirings, the directed kernel−→
kerf of f , defined as

−→
kerf = {(a, b) ∈ R × R : f(a) ≤S f(b)} is clearly a

compatible quasiorder on R. Hence kerf = (
−→
kerf)

⋂
(
−→
kerf)

−1
is an order-

congruence on R.
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Lemma 3.1. Let R be an ordered semiring, σ ⊆ R × R. Then σ is a
compatible quasiorder on R if and only if there exists an ordered semiring
(S,≺) and a homomorphism f :R→ S such that σ =

−→
kerf .

Lemma 3.2. Let R be an ordered semiring, θ is a congruence on R. Then
the following statements are equivalent:

(1) θ is a order-congruence on R;
(2) There exists a compatible quasiorder σ of R such that θ = σ ∩ σ−1;
(3) There exists an ordered semiring (S,≺) and a homomorphism f :R→ S

such that θ = kerf .

Theorem 3.3. (Homomorphism Theorem) Let R, S be ordered semirings,
ϕ:R→ S is a homomorphism. If σ is a compatible quasiorder on R such that
σ ⊆ −→kerϕ, then the mapping f :R/σ → S,aσ 7→ ϕ(a) is the unique homomor-
phism of R/σ into S such that the diagram

R

σ∗

��

ϕ // S

R/σ
f

==

commutes (i.e., f ◦ σ∗ = ϕ). Moreover, Imf = Imϕ. Conversely, if σ is a
compatible quasiorder on R for which there exists a homomorphism f :R/σ →
S such that the above diagram Commutes, then σ ⊆ −→kerϕ.

Proof. Let σ ∈ Cqu(R), σ ⊆ −→kerϕ, f :R/−→σ → S, aσ 7→ ϕ(a). Then we have

aσ = bσ ⇒ (a, b) ∈ σ ⇒ (a, b), (b, a) ∈ σ ⇒ (a, b), (b, a) ∈ −→kerϕ

⇒ ϕ(a) ≤S ϕ(b), ϕ(b) ≤S ϕ(a)⇒ ϕ(a) = ϕ(b).

If a, b ∈ R, then

f(aσ + bσ) = f((a+ b)σ) = ϕ(a+ b) = ϕ(a) + ϕ(b) = f(aσ) + f(bσ);
f(aσbσ) = f((ab)σ) = ϕ(ab) = ϕ(a)ϕ(b) = f(aσ)f(bσ);

aσ ≺ bσ ⇒ (a, b) ∈ σ ⊆ −→kerϕ⇒ ϕ(a) ≤S ϕ(b).

Hence f is a homomorphism.
For each a ∈ R, (f ◦ σ∗)(a) = f(σ∗(a)) = f(aσ) = ϕ(a). Then f ◦ σ∗ = ϕ.

Let g:R/σ → S be a homomorphism such that g ◦σ∗ = ϕ. For each a ∈ R, we
have f(aσ) = ϕ(a) = (g ◦ σ∗)(a) = g(σ∗(a)) = g(aσ). Then f = g. Moreover,
Imf = {f(aσ : a ∈ R} = {ϕ(a) : a ∈ R} = Imϕ.

Conversely, suppose σ ∈ Cqu(R), f :R/σ → S is a homomorphism, f ◦σ∗ =
ϕ. Then we have

(a, b) ∈ σ ⇒ aσ ≺ bσ ⇒ f(aσ) ≤S f(bσ)⇒ f(σ∗(a)) ≤S f(σ∗(b))⇒
(f ◦ σ∗)(a) ≤S (f ◦ σ∗)(b)⇒ ϕ(a) ≤S ϕ(b)⇒ (a, b) ∈ −→kerϕ.
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Therefor σ ⊆ −→kerϕ.

Corollary 3.4. Let R, S be ordered semirings, ϕ:R → S is a homomor-
phism. Then R/kerϕ ∼= Imϕ.

Theorem 3.5. Let R be an ordered semiring, ρ, σ are compatible qua-
siorders on R, ρ ⊆ σ. Then σ/ρ is a compatible quasiorder on R/ρ and
(R/ρ)/(σ/ρ) ∼= (R/σ).

Proof. ≤ρ⊆ σ/ρ: If (aρ, bρ) ∈≤ρ, then (a, b) ∈ ρ ⊆ σ, (aρ, bρ) ∈ σ/ρ. Let
(aρ, bρ) ∈ σ/ρ, (bρ, cρ) ∈ σ/ρ. Then (a, b), (b, c) ∈ σ. Thus (a, c) ∈ σ, (aρ, cρ) ∈
σ/ρ. Let (aρ, bρ) ∈ σ/ρ, c ∈ R. Since (a, b) ∈ σ, we have (a + c, b + c) ∈ σ,
((a + c)ρ, (b + c)ρ) ∈ σ/ρ. Thus (aρ + cρ, bρ + cρ) ∈ σ/ρ. Similarly, we have
(cρ + aρ, cρ + bρ), (aρcρ, bρcρ), (cρaρ, cρbρ) ∈ σ/ρ. We consider the mapping
f :R/ρ→ R/σ, aρ 7→ aσ. Since

aρ = bρ ⇒ (a, b) ∈ ρ⇒ (a, b), (b, a) ∈ ρ ⊆ σ ⇒ (a, b) ∈ σ ⇒ aσ = bσ.

Then f is well defined. Let ◦ρ, ◦σ be the multiplication on R/ρ,R/σ respec-
tively. Then

f(aρ ◦ρ bρ) = f((ab)ρ) = (ab)σ = aσ ◦σ (b)σ = f(aρ ◦σ bρ).
aρ ≤ρ bρ ⇒ (a, b) ∈ ρ ⊆ σ ⇒ aσ ≤σ bσ.

Hence f is a homomorphism. Thus (R/ρ, ◦ρ,≤ρ), (R/σ, ◦σ,≤σ) are ordered
semirings, the mapping f is a homomorphism. By Corollary 3.4 we have
(R/ρ)/kerf ∼= Imf . Since

−→
kerf = {(aρ, bρ) ∈ R/ρ × R/ρ : f(aρ) ≤σ f(bρ)}.

Then we have

(aρ, bρ) ∈
−→
kerf ⇔ f(aρ) ≤σ f(bρ)⇔ aσ ≤σ bσ ⇔ (a, b) ∈ σ ⇔ (aρ, bρ) ∈ σ/ρ.

Hence
−→
kerf = σ/ρ, kerf = σ/ρ. Then Imf = {f(aρ) : a ∈ R} = {aσ : a ∈

R} = R/σ. Thus we have (R/ρ)/(σ/ρ) ∼= (R/σ).

A homomorphism f :R→ S of ordered semirings is called a Q-homomorphism
if, for all b, b′ ∈ S, b ≤S b′ implies that there exist a, a′ ∈ R such that b = f(a),
a ≤
kerf

a′ and b′ = f(a′).

Theorem 3.6. Θ is an order-congruence of ordered semiring R if and only
if Θ = kerf for some epimorphism Q-homomorphism f :R→ S.

Proof. Necessity: Suppose Θ is an order-congruence of ordered semiring R. By
Lemma 3.2, there exists a epimorphism homomorphism f :R→ R/Θ such that
Θ = kerf . Let x, y ∈ R/Θ, x ≺ y. There exist a, b ∈ R such that x = f(a),
y = f(b), (a, b) ∈ kerf . Hence a ≤

kerf
b. Then f is a Q- homomorphism.

Sufficiency: Obviously Θ is an equivalence on R. Let (a, b) ∈ Θ, c ∈ R.
Then f(a) = f(b). Hence Θ is a congruence on R. Let a≤

Θ
b≤

Θ
a. There exist

ai, bi ∈ R for i ∈ {1, 2, · · · , n} such that
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a ≤ a1Θa2 ≤ Θa3Θ · · ·Θan ≤ b ≤ b1Θb2 ≤ b3Θ · · ·Θbn ≤ a.

Then

f(a) ≤ f(a1) = f(a2) ≤ f(a3) = · · · = f(an) ≤ f(b),
f(b) ≤ f(b1) = f(b2) ≤ f(b3) = · · · = f(bn) ≤ f(a).

Hence f(a) = f(b). Then aΘb. Therefor Θ is an order-congruence on R.

Next we investigate two isomorphism theorems of ordered semirings based
on compatible quasiorders and order-congruences.

Theorem 3.7. (First Isomorphism Theorem) Given an ordered semiring
R, a subsemiring S of R and a compatible quasiorder σ on R. Define [S] =
{r ∈ R : (∃s ∈ S)(r, s) ∈ θ}, where θ = σ ∩ σ−1. Let S ′ be the subsemiring of
R determined by [S]. Then the mapping

α:S/ θS → S ′/θ[S], [x]θS 7→ [x]θ[S]
([x] ∈ [S])

is an isomorphism.

Proof. We consider the mapping α:S/ θS → S ′/θ[S], [x]θS 7→ [x]θ[S]
([x] ∈ [S]).

Let [x]θS = [y]θS . Then ([x], [y]) ∈ θS. Because [x], [y] ∈ [S], we obtain
([x], [y]) ∈ θ[S]. Then [x]θ[S]

= [y]θ[S]
. Since we have

α([x]θS+[y]θS) = α([x+ y]θS) = [x+ y]θ[S]
= [x]θ[S]

+[y]θ[S]
= α([x]θS)+α([y]θS);

α([x]θS [y]θS) = α([xy]θS) = [xy]θ[S]
= [x]θ[S]

[y]θ[S]
= α([x]θS)α([y]θS);

[x]θS ≤ [y]θS ⇒ (x, y) ∈ θS ⇒ ([x], [y]) ∈ θ[S] ⇒ [x]θ[S]
≺ [y]θ[S]

.

Then f is a homomorphism.

Let [x]θ[S]
= [y]θ[S]

. Then [x]θ[S]
≤ [y]θ[S]

≤ [x]θ[S]
. Hence (x, y), (y, x) ∈ θS.

Therefor [x]θS ≤ [y]θS ≤ [x]θS . Then [x]θS = [y]θS . Let [x]θ[S]
∈ S ′/θ[S]. Then

([x], [x]) ∈ θ
⋂

([S] × [S]). Therefor (x, x) ∈ θ
⋂

(S × S). Thus [x]θS ∈ S/θS.
Then α is an isomorphism.

Theorem 3.8. (Second Isomorphism Theorem) Let R be an ordered semir-
ing, σ1, σ2 be compatible quasiorders on R with σ1 ⊆ σ2, and let θ1 = σ1∩σ−1

1 ,
θ2 = σ2 ∩ σ−1

2 . Then the relation σ2 on R/σ1 defined by

(aθ1 , bθ1) ∈ σ2 ⇔ (a, b) ∈ σ2

is a compatible quasiorder on R/σ1 and the mapping α : (R/σ1)/σ2 → R/σ2,
(aθ1)θ2 7→ aθ2 is an isomorphism, where θ2 = σ2 ∩ σ−1

2 .
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Proof. Obviously σ2 is a quasiorder on R. Let (aθ1 , bθ1) ∈ σ2, c ∈ R. Then
(a, b) ∈ σ2, cθ1 ∈ R/σ1. Because σ2 ∈ Cqu(R), we obtain (c + a, c + b) ∈ σ2.
Then ((c+ a)θ1 , (c+ b)θ1) ∈ σ2. Hence (cθ1 + aθ1 , cθ1 + bθ1) ∈ σ2. Similarly, we
have (aθ1 + cθ1 , bθ1 + cθ1), (cθ1aθ1 , cθ1bθ1), (aθ1cθ1 , bθ1cθ1) ∈ σ2.

Let aθ1 ≺σ1 bθ1 . Then (a, b) ∈ σ1. Because σ1 ⊆ σ2, we obtain (a, b) ∈ σ2.
Hence (aθ1 , bθ1) ∈ σ2. Thus σ2 is a compatible quasiorder on R.

We consider the mapping α : (R/σ1)/σ2 → R/σ2, (aθ1)θ2 7→ aθ2 . Let
(aθ1)θ2 = (bθ1)θ2 . Then (aθ1 , bθ1), (bθ1 , aθ1) ∈ σ2. Hence (a, b), (b, a) ∈ σ2. Then
aθ2 = bθ2 . Since we have

α((aθ1)θ2 + (bθ1)θ2) = α((aθ1 + bθ1)θ2) = α(((a+ b)θ1θ2) = (a+ b)θ2 =
aθ2 + bθ2 = α((aθ1)θ2) + α((bθ1)θ2);

α((aθ1)θ2(bθ1)θ2) = α((aθ1bθ1)θ2) = α(((ab)θ1θ2) = (ab)θ2 = aθ2bθ2 =
α((aθ1)θ2)α((bθ1)θ2);

(aθ1)θ2 ≺σ2 (bθ1)θ2 ⇒ (aθ1 , aθ2) ∈ σ2 ⇒ (a, b) ∈ σ2 ⇒ aθ2 ≺σ2 bθ2 .

Then f is a homomorphism. Let aθ2 = bθ2 . Then (a, b), (b, a) ∈ σ2. Hence
(aθ1 , bθ1), (bθ1 , aθ1) ∈ σ2. Then (aθ1)θ2 = (bθ1)θ2 . Let aθ2 ∈ R/σ2. We have
(aθ1)θ2 ∈ (R/σ1)/σ2. Then α is an isomorphism.

Theorem 3.9. Let R, R1, R2 be ordered semirings. Then R ∼= R1 × R2 if
and only if there exist compatible quasiorders σ1, σ2 of R such that

(1)σ1 ∩ σ2 =≤;

(2)σ1 ◦ σ2 = σ2 ◦ σ1 = R×R.

Proof. Necessity: (1) Let ϕ:R → R1 × R2 be an isomorphism. Then ϕi:R →
Ri(i = 1, 2) are homomorphisms and onto. By lemma 3.1,

−→
kerϕi(i = 1, 2) are

compatible quasiorders on R, then ≤⊆ (
−→
kerϕ1) ∩ (

−→
kerϕ2). Furthermore, let

(x, y) ∈ (
−→
kerϕ1) ∩ (

−→
kerϕ2). Then ϕ(x) = (ϕ1(x), ϕ2(x)) ≤ (ϕ1(y), ϕ2(y)) =

ϕ(y). Since ϕ is an order-embedding, we deduce that x ≤ y.

(2) Let (c, d) ∈ R × R and k = ϕ1(c), ϕ2(d)). Since ϕ is an isomorphism,
there exists w ∈ R such that ϕ(w) = (ϕ1(c), ϕ2(d)) = (ϕ1(w), ϕ2(w)). Then
(c, w) ∈ kerϕ1 and (w, d) ∈ kerϕ2. Thus, (c, d) ∈ kerϕ1 ◦ kerϕ2. We conclude
that kerϕ1 ◦ kerϕ2 = R×R. Similarly, we can prove kerϕ2 ◦ kerϕ1 = R×R.

Sufficiency: Let σ1 and σ2 be compatible quasiorders on R. By lemma
3.2, there exists an order relation ≤i on R/σi such that Ri = (R/σi, ◦i,≤i)
is an ordered semiring, the natural homomorphism ϕi:R → R/σi, a 7→ aσi

is
isotone, and σi = {(a, b) ∈ R×R : aσi

≤i bσi
for i = 1, 2.

We define a mapping ϕ:R → R1 × R2, x 7→ (σ1(x), σ2(x)). Then the
semiring homomorphism ϕ is an ordered semiring isomorphism, i.e., R ∼= R1×
R2. Indeed, it is easily seen that ϕ is isotone. If ϕ(x) ≤ ϕ(y), then (x, y) ∈
σ1 ∩ σ2 =≤. Thus, ϕ is an order-embedding.
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If (x1, x2) ∈ R1 × R2, there exist x1, x2 ∈ R such that (x1)σ1 = x1 and
(x2)σ2 = x2. Since σ1 ◦ σ2 = σ2 ◦ σ1 = R × R, there exists y ∈ R such that
(x1, y) ∈ σ1 and (y, x2) ∈ σ2. Thus ϕ(y) = (x1, x2), i.e., ϕ is onto.
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