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Abstract

In this paper, we introduce the notion of symmetric bi-multiplier
of lattice implication algebra and investigated some related properties.
Also, we prove that if D is a symmetric bi-multiplier of L, then d, is an
isotone map of L.
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1 Introduction

In order to research a logical system whose propositional value is given in a
lattice. Y. Xu [7] proposed the concept of lattice implication algebras, and
some researchers have studied their properties and the corresponding logic
systems. Also, in [8], Y. Xu and K. Y. Qin discussed the properties lattice H
implication algebras, and gave some equivalent conditions about lattice H im-
plication algebras. Y. Xu and K. Y. Qin [9] introduced the notion of filters in
a lattice implication, and investigated their properties. In this paper, we intro-
duce the notion of symmetric bi-multiplier of lattice implication algebra and
investigated some related properties. Also, we prove that if D is a symmetric
bi-multiplier of L, then d, is an isotone map of L.
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2 Preliminaries

A lattice implication algebra is an algebra (L; A, V,1,—,0,1) of type (2,2, 1,2,
0,0), where (L; A, V,0,1) is a bounded lattice, “/” is an order-reversing invo-
lution and “ — ” is a binary operation, satisfying the following axioms:

M) z—(y—2)=y— (r— z) forany z,y,z € L,
(I2) z — 2z =1 for any = € L,

(I3) -y =y — ' for any x,y € L,

(4) 2 y=y—ax=1=x=yforany z,y € L,
(I5) (z = y) —y=(y—x) =z forany z,y € L,
(L1) (xVy) = 2= (x —2)A\(y — 2) for any z,y,z € L,
(L2) (xAy) = 2= (x —2)V(y — 2) for any z,y,z € L.

If L satisfies conditions (I1) — (I5), we say that L is a quasi lattice implication
algebra. A lattice implication algebra L is called a lattice H implication algebra
if it satisfies x Vy V ((x Ay) — z) =1 for all z,y,z € L.

In the sequel the binary operation “ — ” will be denoted by juxtaposition. We
can define a partial ordering “ <7 on a lattice implication algebra L by x <y
if and only if z — y = 1.

In a lattice implication algebra L, the following hold (see [7]):
(ul) 0 »z=1,1wx=zxzand x — 1 =1 for any = € L,
(2) r—=y<(y—2) — (xr— z) forany z,y,z € L,
(u3) x <yimpliesy - 2 <z — zand z - x < z = y for any x,y,2 € L,
(ud) 2’ =2 — 0 for any x € L,
(ub) zVy=(r—y) —yforany z,y € L,
(w6) (y =) —=vy) =xANy=((x - y) =) forany z,y € L,
(u7) z < (x —y) = y for any z,y € L.

In a lattice H implication algebra L, the following hold:

() z — (v »y) =x — y for any z,y € L,

(W) z— (y = 2)=(r —>y) = (r — 2) for any x,y,z € L.
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A subset F of a lattice implication algebra L is called a filter of L it it satisfies:
(F1) 1 € F,
(F2) x€e Fand x -y € F imply y € F, for all z,y € L.

Definition 2.1 Let L be a lattice implication algebra. A mapping D : Lx L —
L is called symmetric if D(x,y) = D(y,z) holds for all x,y € L.

Definition 2.2 Let L be a lattice implication algebra and x € L. A mapping
d(x) = D(x,x) is called trace of D, where D : L x L — L is a symmeltric
mapping on L.

3 Symmetric bi-multipliers of lattice implica-
tion algebras

In what follows, let L denote a lattice implication algebra unless otherwise
specified.

Definition 3.1 Let L be a lattice implication algebra. A symmetric map D :

L X L — L is called a symmetric bi-multiplier of L if the following condition
hold:

D(xVy,z) =2V D(y,z)
forall z,y,z € L.
Example 3.2 Let L := {0,a,b,1} be a set with the Cayley table.
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For any x € L, we have 2’ = v — 0. The operations \ and V on L are defined
as follows:

tVy=@@—=y) -y, zAy=(a"=y)—=y).

Then (L,V,\,1,—) is a lattice implication algebra. Define a map D : L X L —
L by

a if (z,y) =(0,0)
D(xz,y) =14 b if (z,y) = (0,a) or (z,y) = (a,0)
1, otherwise

It is easy to check that D is a symmetric bi-multiplier of L.
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Proposition 3.3 Let D be a symmetric bi-multiplier of L. Then D(1,1) = 1.
Proof. Let D be a symmetric bi-multiplier of L. Then we have

D(1,1) = D(1Vv1,1)

= 1VvD(1,1)=1

Proposition 3.4 Let D be a symmetric bi-multiplier of L. Then D(1,x) =
D(x,1) =1 for allx € L.

Proof. Let D be a symmetric bi-multiplier of L. Then we have

D(l,z) = D(1V1,z)
— 1vD(1,2)=1

for every x € L. Similarly, D(z,1) = 1 for every x € L.

Proposition 3.5 Let D be a symmetric bi-multiplier of L. If d is a trace of
D, then the following conditions hold:

(1) D(z,y) =z V D(z,y) for all x,y € L.

(2) d(1) = 1.

Proof. (1) Let D be a symmetric bi-multiplier of L. Then we have

D(z,y) = D(xVu,y)
= zV D(z,y)

for all z,y € L.
(2) It is clear from (1).

Proposition 3.6 Let D be a symmetric bi-multiplier of L. If d is a trace of
D, then d(z) = d(z) V x for all x € L.

Proof. Let d be a trace of symmetric bi-multiplier D of L. Then we have

d(x) = D(z,z)=D(zVz,x)
= zV D(z,x) =2 Vd(x)

for all € L. This completes the proof.

Corollary 3.7 Let D be a symmetric bi-multiplier of L. If d is a trace of D,
then x < d(x) for all x € L.

Proposition 3.8 Let D be a symmetric bi-multiplier of L. Then D(x,y) > x
and D(z,y) >y for all x,y € L.
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Proof. Let D be a symmetric bi-multiplier of L. Then we have

D(z,y) = D(xVa,y)=zVD(zy)
= (¢ = D(z,y)) = D(z,y) > =
for all z,y € L by (u7). Similarly, we have y < D(z,y) for all z,y € L. This

completes the proof.

Definition 3.9 Let D be a symmetric bi-multiplier of L. If v < w implies
D(z,y) < D(w,y), D is called an isotone symmetric bi-multiplier of L.

Theorem 3.10 Let L be a lattice implication algebra and let D be a symmetric
bi-multiplier of L. Then D s an isotone map of L.

Proof. Let x,y € L be such that x <y and D be a symmetric bi-multiplier of
L. Then
D(y,z) = D((z =y) =y, 2)=D(xVy,2)
= D(yVa,z)=yVD(z,2)
= (y— D(z,2)) = D(z,2)
= (D(z,2) 2> y) >y = D(z,2)
for all z € L. This implies that D is an isotone map of L by (u7).

Let L be alattice implication algebra and let D be a symmetric bi-multiplier
of L. For a fixed element a € L, define a map d, : L — L by d,(x) = D(x,a)
for all z € L.

Proposition 3.11 Let L be a lattice implication algebra and let D be a sym-
metric bi-multiplier of L. Then the following conditions hold:

(1) do(x) = du(x) V & for every x € L.

(2) do(x Vy) =2V dy(y) for every z,y € L.

(3) If x <y, then do(x Vy) =d,(y) Vy forz,y € L.

Proof. (1) For every « € L, we have
do(r) = D(z,a)=D(xVz,a)
= zV D(x,a) =z Vd,()
(2) For every x,y € L, we have

d.(xVy) = D(zVy,a)
= 2V D(y,a) =1z Vd(y)

(3) Let z,y € L be such that x < y. Then x — y = 1. Hence
do(rVy) = D(zVy,a)
= D((z = y) = y,a)=D(y,a) = du(y)
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Proposition 3.12 Let L be a lattice implication algebra and let D be a sym-
metric bi-multiplier of L. Then d,(1) = 1.

Proof. Let L be a lattice implication algebra and let D be a symmetric bi-
multiplier of L.

do(1) = D(1,a) =D(1V 1, a)
— 1vD(l,a)=1V1=1.

This completes the proof.

Theorem 3.13 Let L be a lattice implication algebra and let D be a symmetric
bi-multiplier of L. Then d, is an isotone map of L.

Proof. Let x,y € L be such that x <y and z € L. Then

do(y) = D(y,a) =D((x = y) = y.a)
= D Vy,a)=D(yVuz,a)
= yV D(z,a) = (y = do(x)) = du(x)
= (da(z) = y) =y > da(2).

This implies that d, is an isotone map of L by (u7).

Let L be alattice implication algebra and let D be a symmetric bi-multiplier
of L. For a fixed element a € L, define a set Fiz,(L) by

Fiz,(L)={z € L| D(x,a) = z}.

Proposition 3.14 Let L be a lattice implication algebra and let D be a sym-
metric bi-multiplier of L. If x € L and y € Fix,(L), then V' y € Fix,(L).

Proof. Let « € L and y € Fiz,(L). Then we obtain
D(xVy,a)=xV D(y,a) =z Vy.
This completes the proof.

Proposition 3.15 Let L be a lattice implication algebra and let D be a sym-
metric bi-multiplier of L. Then x <y and x € Fix,(L) implies y € Fix,(L).

Proof. Let z,y be such that < y and = € Fiz,(L). Then

D(y,a) = D((x = y) = y,a)
= D(zVy,a)=D(yVzxa)
= yVD(r,a)=yVz
= zVy=(x—y) =y
1l=y=y.
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This completes the proof.

Let D be a symmetric bi-multiplier of L and let d be a trace of D. Define
a set Kerd by
Kerd={z € L| D(z,x) =d(z) = 1}.

Proposition 3.16 Let L be a lattice implication algebra and let D be a sym-
metric bi-multiplier of L. If v € L and y € Kerd, then x Vy € Kerd.

Proof. Let x € L and y € Kerd. Then we obtain d(y) = 1. Hence

dxVy) = D@Vy,zVy)
= zVDEVyy =zV(xV D(y,y))
= zV(xVvl) =1

Therefore, x V y € Kerd. This completes the proof.

Proposition 3.17 Let L be a lattice implication algebra and let D be a sym-
metric bi-multiplier of L. If v <y and x € Kerd, then y € Kerd.

Proof. Let x € Kerd and = < y. Then

dly) = D(y,y)=D((z =y) =y, (x = y) = vy)
= DVy,xVy)=DyVazeyVze)
= yVD(x,yVz)=yVDyVzzx)
yV(yV D z)=yV(yVvdx)
yviyvl) =1

Therefore, this implies y € Kerd. This completes the proof.
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