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Abstract

We study using the inclusion-exclusion principle and very elementary
methods the distribution of k positive integers not exceeding x with the
same greatest common divisor.
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1 Introduction and Preliminary Notes

Let k£ > 2 an arbitrary but fixed positive integer. Let us consider a k-tuple of
positive integers (ai, ..., ax) where 1 < a; < x (i = 1,...,k). The number of
these k-tuples such that ged(as,...,ay) = g > 1 will be denoted Ny (x) and
the number of these k-tuples such that ged(aq,...,ax) > 1 will be denoted
Nox(x). On the other hand, let us consider a set of k distinct positive integers
{a1,...,;a;} where 1 < a; < x (i =1,...,k). The number of these sets such
that ged(ay, ..., ax) = g > 1 will be denoted D, x(z) and the number of these
sets such that ged(aq, ..., ax) > 1 will be denoted Dy k().

Let us consider a positive integer n such that its prime factorization is
n = qi*---q°. The number of k-tuples of positive integers (ay,...,ax) not
exceeding x such that ged(ay,...,a;) =1 and ged(a;,n) =1 (@ =1,...,k) will
be denoted Py ,(x). The number of k-tuples of positive integers (ay, ..., ax)



216 Rafael Jakimczuk

not exceeding x such that the a; are pairwise relatively prime and such that
ged(a;,n) =1 (i =1,...,k) will be denoted Pk(n)(x). Note that if n = 1 then
Pk(l)(x) is the number of k-tuples of positive integers (ay, .. ., ax) not exceeding
x such that the a; are pairwise relatively prime.

We shall need the following well-known theorem.

Theorem 1.1 (Inclusion-exclusion principle)Let S be a set of N distinct
elements, and let Sy,...,S, be arbitrary subsets of S containing Ny,..., N,
elements, respectively. For1 <1 <j <...<l<r, let S ; be the intersection
of Si,Sj,..., S and let Ny ; be the number of elements of S;;.;. Then the

number K of elements of S not in any of Si,...,5, is
1<i<r 1<i<j<r 1<i<j<k<r

Proof. See, for example, [3] (page 84) or [2] (page 233).

2 Main Results

Nymann [4] proved the following theorem (with a better error term) using
a Moebius inversion formula. In this note, we prove the theorem using the
inclusion-exclusion principle, the proof is very elementary and short. In this
proof p, denotes the n-th prime, ((s) denotes the Riemann zeta function and
|.| denotes the integer-part function.

Theorem 2.1 Let k > 2 an arbitrary but fized integer. The following
asymptotic formula holds.

1
Nyp(2) = —~2" + o(z") (1)
¢(k)
Proof. Let A,, x(x) be the number of k-tuples of k positive integers not ex-
ceeding x such that the least prime factor in their greatest common divisor is
pr- The inclusion-exclusion principle gives

k k k
A s T
i) = |2 - > |2y [
Dh 1<j<h—1 LPnPj 1<i<j<h—1 LPhPiDj

— xki hl:[l (1 - 1) + o(z*) (2)
i i=1 f
Note that
o
it < | 2] <5 ®
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The following equation can be proved without difficulty using mathematical

induction
no1 5 n 1
— —1— 1— —
z:: §H< pz> 1_[1< pi-“)

Therefore we have
1 h—1 < ) 1
- —= (4)
2 ll )
Let € > 0. We shall choose n such that the following inequality holds

i s 5)

h=n+

We have (see (2) and (4))

Nale) = F st =a 5 T (1= ) +olet) + Pl
- (1-E s~ LT (1= 1) 4ot 4 Pl
- (o) S () e
where (see (3))
0< Flx i ég (1)
Equations (6), (7) and (5) give
No’k(x)— —L €+e+e= 3¢ T2
‘ : (1 C(M)'S +ete=3 (x> ) (8)

Consequently, since € > 0 can be arbitrarily small, equation (8) gives

1
Nop(x) = <1 — C(/{)) 2k + o(azk) (9)

Now
Niw(@) + Nog(z) = |2]* = 2" + o(a") (10)
Equations (9) and (10) give (1). The theorem is proved.

Remark 2.2 Since ((k) — 1, if k is large the number of k-tuples not ex-
ceeding x such that the ged of the a; is greater than 1 is negligible compared
with the number k-tuples not exceeding x such that ged of the a; is 1.
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Corollary 2.3 The following asymptotic formula holds.
1
g*¢(k)

Proof. We have N, ;(z) = Ny (x> The corollary is proved.

g

Ngi(x) = z* + o(x¥)

Theorem 2.4 The following asymptotic formula holds.

B 1
CRG)

Proof. The proof is the same as the proof of Theorem 2.1. In this case, in
equation (2) (inclusion-exclusion principle), we substitute

&l
o (5] )

etc. Note also that

D, y(z) F + o(xk)

Dop() + Dyp(e) = <L2J> _ Lok po(a?)

The theorem is proved.

Corollary 2.5 The following asymptotic formula holds.

o
© klgRC(k)

Theorem 2.6 The following asymptotic formula holds.

D, (z) z* + o(z")

I (1 - l)k

i

¢(k) ) (1 — qlk>

7

Pin(z) = ¥+ o(2") (11)

Proof. Let N(z) be the number of numbers not exceeding = and relatively
prime to n. The inclusion-exclusion principle gives

N@) = o) = 3 H+1<;<i mJ—---:xﬁ<1—1>+0(x) (12)

1<i<s L4i 4iq; i—1 q;
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Let us consider a positive integer C relatively prime to n such that its prime
factorization is c}' - - - ¢;*. For sake of simplicity we put y = oo Then the

number of numbers not exceeding x relatively prime to n and multiple of C' is
(inclusion exclusion principle)

- X 2 X [ e I T (10 ) el (3

1<i<s L4 1<i<j<s L9495 Cre-Ct iy 4

In this proof p, denotes the n-th prime. Let py, is the h-th prime, where p;, # ¢;

(1=1,...,s). For sake of simplicity we put S = [];_, (1 - l) Let A, (x) be

q/)"
the number of k-tuples (ay,...,ax) not exceeding = such that ged(a;,n) = 1

(1 = 1,...k) and such that the least prime factor in their greatest common
divisor is py. The inclusion-exclusion principle and equation (13) give

Ay, (z) = (xS—I—o(a:))k— 3 <f5+0<$>)k+,,_

Ph 1<j<h—1,p;74i(i=1,...,s) \PhPs

= :c’“l;[l (1 - 1>k ik 11 <1 - 1k> + o(z") (14)

%/ Phi<j<h—1p£q6=1,..5) J

Let Ny(z) be the number of k-tuples (ay,...,a;) not exceeding = such that
ged(a;,n) =1 (i = 1,...k) and such that ged(ay,...,ax) > 1. Equation (14)
and an identical proof as in Theorem 2.1 give

1 1 s 1\*

No(z) = ( Z — H (1_k>)H<1_A> "
pn#ai(i=1,.,8) Ph 1<j<h—1,p,7#qi(i=1,....9) PjJ ) = i

+ o(a:k) (15)

Now, we have the equality

v L 1 <1_1>:1_ I )(1-5)(16)

k k
PrAai(i=1,.08) Ph 1<j<h—1,p; 4, (i=1,...9) P; Pi#4i(i=1,....8 J
since both series have the same terms. The term ry - -7, where the different
primes r; (i = 1,...,t) satisfy the inequality r > --- > 7, is obtained in the
series of the left hand when p;, = ry.

Note that (see equation(12))
s k
k 1 k k
No(z) + Pyp(z) =2"J] (1 - m ¥ + o(z") (17)
=1 i

Equations (15), (16) and (17) give

k
1 s 1
Piin() = ( 11 (1 - k)) 11 <1 - > 2" + o(a")
P #qi(1=1,...,5) Dj i=1 qi
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1 I (1 q1i>kx’“ + o(a*)

O (1 — qlk)

k3

That is, equation (11). The theorem is proved.
Remark 2.7 Note that if n is fived then we have

. 1 Il (1 - %)k
P T (i ql>

45

=0 (18)

T6th [5] proved, using mathematical induction, the following theorem (with
a better error term)

Theorem 2.8 The following asymptotic formulae hold.

S

n k
P,E )(x):AkH <1—q'+k_1>a:k+o(xk)

i=1

P (x) = Apa® + o(a")

o) ()

Now, we give a simple proof of the following theorem.

where

Theorem 2.9 The following limit holds.

k—o0

The following inequality holds.

k42
A, <t

< (20)

Proof. The number of even numbers not exceeding x is {%J = ¢ +o(z) and the
number of odd numbers not exceeding x is [z ] — EJ = & +o(z). Therefore the
number of k-tuples (aq, ..., ax) not exceeding = with all a; odd is Ny(z) = g—: +
o(x*) and the number of k-tuples with only one even a; is No(1) = Z%k +o(z").

Now, P)(z) = Apab + o(z¥) < Ny(z) + No(z) = EtLak + o(2"). From this

inequality we obtain inequality (20). Limit (19) is an immediate consequence
of inequality (20). The theorem is proved.
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Remark 2.10 Since ((k) — 1 and Ay — 0 we see that if k is large then the
number of k-tuples (ai,...,a) not exceeding x such that the a; are pairwise
relatively prime is negligible compared with the number of k-tuples (a1, ..., ax)
not exceeding x such that ged(aq, ..., ax) = 1.

In the oposite side, let us consider the number of k-tuples (aq, ..., ax) not
exceeding x such that ifi # j (i =1,...,k) (j =1,...,k) then ged(a;, a;) > 1.
Let Bg(x) be the number of these k-tuples not exceeding x. We have the
following simple theorem.

Theorem 2.11 The following inequality hold
If k is even

Meliog)  wxw

If k is odd

Bk(x) _L (k—1)/2
<2(1- ) o=

Therefore if By(x) = Bra® + o(z¥), for a positive constant By, then By — 0.

Proof. If k = 2 is well-known that By(x) = (1 — #) z? + o(x?). Therefore if

¢(2)
k is even we have By(z) < (Ba(z))"? = (1 - ﬁ)k/z xF + oy (2%), since there
are k/2 consecutive pairs a;, a;+1 (1 = 1,3,..., k—1)in the k-tuple (ay, ..., ay).
If £ is odd in the same way we obtain
(h=1)/2
By(z) < (By(z)) ¥ V2 g = (1 - @“(12)> 2 + op(z¥).

The theorem is proved.

To finish, we give another proof of Theorem 2.1 using mathematical induction.
Before, we need the following lemma.

Lemma 2.12 Let k > 2 an arbitrary but fixed positive integer. The follow-
g asymptotic formula holds.

3 nlk =0« (@>1) (21)

Let k an arbitrary but fixed positive integer. The following asymptotic formula
holds.

ST (1 - ;) = C(kl—i—l)x + o(z) (22)

n<z pln
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Proof. Equation (21) is proved in [1, Chapter 3, page 55]. Equation (22) can
be proved as [1, Chapter 3, Theorem 3.7, page 62] since we have

S TI(1- k) - Z(Zu ()’“)

n<z pln n<zr \dn
1

= ...= <k+1)g(k+1)xk+l+o(3§k+l)

From here, using partial summation, we obtain (22). The lemma is proved.

We also need the following definition. Let N*™!(x) be the number of (k + 1)-
tuples (aq,...axy1) such that ged(aq, ..., ax41) = 1 and a; = n.

Theorem 2.13 Ifn =1 we have
N{*(z) = 2" + o(a*) (23)
If n > 2 we have
NEt Y (z) = 2] ( ) + o(z*) (n<ux) (24)
pn
Finally, we have
1
Nig(z) = —=a" g 25
@) = et +ole?) (25)

Proof. The theorem is true for k£ = 2. Suppose the theorem is true for k, then
we shall prove that the theorem is also true for k£ 4+ 1. Therefore, we have

1
N — ok k 5
1k () Ol + f(2)z (26)
where |f(x)] < M and lim,_ f(z) = 0. BEquation (26) gives
x 1 x\ 1
Now(w) = Nuw| o) = xk+f<>xk 27
(@) = Niy (g) e )L o
Note that (see (21))
1 1
Z Tk < = < szl—k (28)
g>z,(g,n)=1 g g>x g

On the other hand, let us consider the function

R@= Y f() (29)

g<z,(g,n)=1
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We have
T 1 1 T 1
ez b Eh Gl b6l
g<az,(g.,n)=1 g/149 g<z g 9<vT g/19
1
+ > f<x> — < e((k) + Mye < ¢ (x > xo)
Vr<g<z 9719

where € > 0 and consequently € > 0 can be arbitrarily small. Hence lim,_,o, F,(x) =
0. Using equations (26), (27), (28) and (29) we find that

1
Ny z) = Nyi(x) = 2" T[ (1= = | + on(a" n<z) (30
(2) 1gggzz,<;,,n>-1 (2) E( p) (@) (n=z) (30)

That is, equation (24). Using equationes (30), (23) and (22) we obtain

Nigpa(z) = > Nitl(z) = !

k+1 k+1
g o(zh )
1<n<z C(k + 1)

The theorem is proved.
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