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Abstract

We study using the inclusion-exclusion principle and very elementary
methods the distribution of k positive integers not exceeding x with the
same greatest common divisor.

Mathematics Subject Classification: 11A99, 11B99

Keywords: k-tuples of positive integers, sets of k positive integers, great-
est common divisor

1 Introduction and Preliminary Notes

Let k ≥ 2 an arbitrary but fixed positive integer. Let us consider a k-tuple of
positive integers (a1, . . . , ak) where 1 ≤ ai ≤ x (i = 1, . . . , k). The number of
these k-tuples such that gcd(a1, . . . , ak) = g ≥ 1 will be denoted Ng,k(x) and
the number of these k-tuples such that gcd(a1, . . . , ak) > 1 will be denoted
N0,k(x). On the other hand, let us consider a set of k distinct positive integers
{a1, . . . , ak} where 1 ≤ ai ≤ x (i = 1, . . . , k). The number of these sets such
that gcd(a1, . . . , ak) = g ≥ 1 will be denoted Dg,k(x) and the number of these
sets such that gcd(a1, . . . , ak) > 1 will be denoted D0,k(x).

Let us consider a positive integer n such that its prime factorization is
n = qr11 · · · qrss . The number of k-tuples of positive integers (a1, . . . , ak) not
exceeding x such that gcd(a1, . . . , ak) = 1 and gcd(ai, n) = 1 (i = 1, . . . , k) will
be denoted Pk,n(x). The number of k-tuples of positive integers (a1, . . . , ak)
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not exceeding x such that the ai are pairwise relatively prime and such that
gcd(ai, n) = 1 (i = 1, . . . , k) will be denoted P

(n)
k (x). Note that if n = 1 then

P
(1)
k (x) is the number of k-tuples of positive integers (a1, . . . , ak) not exceeding
x such that the ai are pairwise relatively prime.

We shall need the following well-known theorem.

Theorem 1.1 (Inclusion-exclusion principle)Let S be a set of N distinct
elements, and let S1, . . . , Sr be arbitrary subsets of S containing N1, . . . , Nr

elements, respectively. For 1 ≤ i < j < . . . < l ≤ r, let Sij...l be the intersection
of Si, Sj, . . . , Sl and let Nij...l be the number of elements of Sij...l. Then the
number K of elements of S not in any of S1, . . . , Sr is

K = N −
∑

1≤i≤r
Ni +

∑
1≤i<j≤r

Nij −
∑

1≤i<j<k≤r
Nijk + . . .+ (−1)rN12...r

Proof. See, for example, [3] (page 84) or [2] (page 233).

2 Main Results

Nymann [4] proved the following theorem (with a better error term) using
a Moebius inversion formula. In this note, we prove the theorem using the
inclusion-exclusion principle, the proof is very elementary and short. In this
proof pn denotes the n-th prime, ζ(s) denotes the Riemann zeta function and
b.c denotes the integer-part function.

Theorem 2.1 Let k ≥ 2 an arbitrary but fixed integer. The following
asymptotic formula holds.

N1,k(x) =
1

ζ(k)
xk + o(xk) (1)

Proof. Let Aph,k(x) be the number of k-tuples of k positive integers not ex-
ceeding x such that the least prime factor in their greatest common divisor is
ph. The inclusion-exclusion principle gives

Aph,k(x) =

⌊
x

ph

⌋k
−

∑
1≤j≤h−1

⌊
x

phpj

⌋k
+

∑
1≤i<j≤h−1

⌊
x

phpipj

⌋k
− · · ·

= xk
1

pkh

h−1∏
i=1

(
1− 1

pki

)
+ o(xk) (2)

Note that

Aph,k(x) ≤
⌊
x

ph

⌋k
≤ xk

pkh
(3)
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The following equation can be proved without difficulty using mathematical
induction

n∑
h=1

1

pkh

h−1∏
i=1

(
1− 1

pki

)
= 1−

n∏
i=1

(
1− 1

pki

)

Therefore we have

∞∑
h=1

1

pkh

h−1∏
i=1

(
1− 1

pki

)
= 1− 1

ζ(k)
(4)

Let ε > 0. We shall choose n such that the following inequality holds

∞∑
h=n+1

1

pkh
≤ ε (5)

We have (see (2) and (4))

N0,k(x) =
∑

2≤ph≤x
Aph,k(x) = xk

∑
1≤h≤n

1

pkh

h−1∏
i=1

(
1− 1

pki

)
+ o(xk) + F (x)

=

(
1− 1

ζ(k)

)
xk − xk

∞∑
h=n+1

1

pkh

h−1∏
i=1

(
1− 1

pki

)
+ o(xk) + F (x) (6)

where (see (3))

0 ≤ F (x) ≤ xk
∞∑

h=n+1

1

pkh
≤ εxk (7)

Equations (6), (7) and (5) give∣∣∣∣∣N0,k(x)

xk
−
(

1− 1

ζ(k)

)∣∣∣∣∣ ≤ ε+ ε+ ε = 3ε (x ≥ xε) (8)

Consequently, since ε > 0 can be arbitrarily small, equation (8) gives

N0,k(x) =

(
1− 1

ζ(k)

)
xk + o(xk) (9)

Now

N1,k(x) +N0,k(x) = bxck = xk + o(xk) (10)

Equations (9) and (10) give (1). The theorem is proved.

Remark 2.2 Since ζ(k) → 1, if k is large the number of k-tuples not ex-
ceeding x such that the gcd of the ai is greater than 1 is negligible compared
with the number k-tuples not exceeding x such that gcd of the ai is 1.
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Corollary 2.3 The following asymptotic formula holds.

Ng,k(x) =
1

gkζ(k)
xk + o(xk)

Proof. We have Ng,k(x) = N1,k

(
x
g

)
. The corollary is proved.

Theorem 2.4 The following asymptotic formula holds.

D1,k(x) =
1

k!ζ(k)
xk + o(xk)

Proof. The proof is the same as the proof of Theorem 2.1. In this case, in
equation (2) (inclusion-exclusion principle), we substitute⌊

x

ph

⌋k

by

1

k!

(⌊
x

ph

⌋(⌊
x

ph

⌋
− 1

)
. . .

(⌊
x

ph

⌋
− (k − 1)

))

etc. Note also that

D0,k(x) +D1,k(x) =

(
bxc
k

)
=

1

k!
xk + o(xk)

The theorem is proved.

Corollary 2.5 The following asymptotic formula holds.

Dg,k(x) =
1

k!gkζ(k)
xk + o(xk)

Theorem 2.6 The following asymptotic formula holds.

Pk,n(x) =
1

ζ(k)

∏s
i=1

(
1− 1

qi

)k
∏s
i=1

(
1− 1

qki

)xk + o(xk) (11)

Proof. Let N(x) be the number of numbers not exceeding x and relatively
prime to n. The inclusion-exclusion principle gives

N(x) = bxc −
∑

1≤i≤s

⌊
x

qi

⌋
+

∑
1≤i<j≤s

⌊
x

qiqj

⌋
− · · · = x

s∏
i=1

(
1− 1

qi

)
+ o(x) (12)
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Let us consider a positive integer C relatively prime to n such that its prime
factorization is cr11 · · · crtt . For sake of simplicity we put y = x

c1···ct . Then the
number of numbers not exceeding x relatively prime to n and multiple of C is
(inclusion exclusion principle)

byc −
∑

1≤i≤s

⌊
y

qi

⌋
+

∑
1≤i<j≤s

⌊
y

qiqj

⌋
− · · · = x

c1 · · · ct

s∏
i=1

(
1− 1

qi

)
+ o(x) (13)

In this proof pn denotes the n-th prime. Let ph is the h-th prime, where ph 6= qi
(i = 1, . . . , s). For sake of simplicity we put S =

∏s
i=1

(
1− 1

qi

)
. Let Aph(x) be

the number of k-tuples (a1, . . . , ak) not exceeding x such that gcd(ai, n) = 1
(i = 1, . . . k) and such that the least prime factor in their greatest common
divisor is ph. The inclusion-exclusion principle and equation (13) give

Aph(x) =

(
x

ph
S + o(x)

)k
−

∑
1≤j≤h−1,pj 6=qi(i=1,...,s)

(
x

phpj
S + o(x)

)k
+ · · ·

= xk
s∏
i=1

(
1− 1

qi

)k
1

pkh

∏
1≤j≤h−1,pj 6=qi(i=1,...,s)

(
1− 1

pkj

)
+ o(xk) (14)

Let N0(x) be the number of k-tuples (a1, . . . , ak) not exceeding x such that
gcd(ai, n) = 1 (i = 1, . . . k) and such that gcd(a1, . . . , ak) > 1. Equation (14)
and an identical proof as in Theorem 2.1 give

N0(x) =

 ∑
ph 6=qi(i=1,...,s)

1

pkh

∏
1≤j≤h−1,pj 6=qi(i=1,...,s)

(
1− 1

pkj

) s∏
i=1

(
1− 1

qi

)k
xk

+ o(xk) (15)

Now, we have the equality

∑
ph 6=qi(i=1,...,s)

1

pkh

∏
1≤j≤h−1,pj 6=qi(i=1,...,s)

(
1− 1

pkj

)
= 1−

∏
pj 6=qi(i=1,...,s)

(
1− 1

pkj

)
(16)

since both series have the same terms. The term rk1 · · · rkt , where the different
primes ri (i = 1, . . . , t) satisfy the inequality r1 > · · · > rt is obtained in the
series of the left hand when ph = r1.

Note that (see equation(12))

N0(x) + Pk,n(x) = xk
s∏
i=1

(
1− 1

qi

)k
xk + o(xk) (17)

Equations (15), (16) and (17) give

Pk,n(x) =

 ∏
pj 6=qi(i=1,...,s)

(
1− 1

pkj

) s∏
i=1

(
1− 1

qi

)k
xk + o(xk)
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=
1

ζ(k)

∏s
i=1

(
1− 1

qi

)k
∏s
i=1

(
1− 1

qki

)xk + o(xk)

That is, equation (11). The theorem is proved.

Remark 2.7 Note that if n is fixed then we have

lim
k→∞

1

ζ(k)

∏s
i=1

(
1− 1

qi

)k
∏s
i=1

(
1− 1

qki

) = 0 (18)

Tóth [5] proved, using mathematical induction, the following theorem (with
a better error term)

Theorem 2.8 The following asymptotic formulae hold.

P
(n)
k (x) = Ak

s∏
i=1

(
1− k

qi + k − 1

)
xk + o(xk)

P
(1)
k (x) = Akx

k + o(xk)

where

Ak =
∏
p

(
1− 1

p

)k−1 (
1 +

k − 1

p

)

Now, we give a simple proof of the following theorem.

Theorem 2.9 The following limit holds.

lim
k→∞

Ak = 0 (19)

The following inequality holds.

Ak ≤
k + 2

2k
(20)

Proof. The number of even numbers not exceeding x is
⌊
x
2

⌋
= x

2
+o(x) and the

number of odd numbers not exceeding x is bxc−
⌊
x
2

⌋
= x

2
+o(x). Therefore the

number of k-tuples (a1, . . . , ak) not exceeding x with all ai odd is N1(x) = xk

2k
+

o(xk) and the number of k-tuples with only one even ai is N2(x) = kxk

2k
+o(xk).

Now, P
(1)
k (x) = Akx

k + o(xk) ≤ N1(x) + N2(x) = k+1
2k
xk + o(xk). From this

inequality we obtain inequality (20). Limit (19) is an immediate consequence
of inequality (20). The theorem is proved.
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Remark 2.10 Since ζ(k)→ 1 and Ak → 0 we see that if k is large then the
number of k-tuples (a1, . . . , ak) not exceeding x such that the ai are pairwise
relatively prime is negligible compared with the number of k-tuples (a1, . . . , ak)
not exceeding x such that gcd(a1, . . . , ak) = 1.

In the oposite side, let us consider the number of k-tuples (a1, . . . , ak) not
exceeding x such that if i 6= j (i = 1, . . . , k) (j = 1, . . . , k) then gcd(ai, aj) > 1.
Let Bk(x) be the number of these k-tuples not exceeding x. We have the
following simple theorem.

Theorem 2.11 The following inequality hold
If k is even

Bk(x)

xk
≤ 2

(
1− 1

ζ(2)

)k/2
(x ≥ xk)

If k is odd

Bk(x)

xk
≤ 2

(
1− 1

ζ(2)

)(k−1)/2

(x ≥ xk)

Therefore if Bk(x) = Bkx
k + o(xk), for a positive constant Bk, then Bk → 0.

Proof. If k = 2 is well-known that B2(x) =
(
1− 1

ζ(2)

)
x2 + o(x2). Therefore if

k is even we have Bk(x) ≤ (B2(x))k/2 =
(
1− 1

ζ(2)

)k/2
xk + ok(x

k), since there

are k/2 consecutive pairs ai, ai+1 (i = 1, 3, . . . , k−1)in the k-tuple (a1, . . . , ak).
If k is odd in the same way we obtain

Bk(x) ≤ (B2(x))(k−1)/2 x =

(
1− 1

ζ(2)

)(k−1)/2

xk + ok(x
k).

The theorem is proved.

To finish, we give another proof of Theorem 2.1 using mathematical induction.
Before, we need the following lemma.

Lemma 2.12 Let k ≥ 2 an arbitrary but fixed positive integer. The follow-
ing asymptotic formula holds.∑

n>x

1

nk
= O

(
x1−k

)
(x ≥ 1) (21)

Let k an arbitrary but fixed positive integer. The following asymptotic formula
holds. ∑

n≤x

∏
p|n

(
1− 1

pk

)
=

1

ζ(k + 1)
x+ o(x) (22)
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Proof. Equation (21) is proved in [1, Chapter 3, page 55]. Equation (22) can
be proved as [1, Chapter 3, Theorem 3.7, page 62] since we have

∑
n≤x

nk
∏
p|n

(
1− 1

pk

)
=
∑
n≤x

∑
d|n
µ(d)

(
n

d

)k
= . . . =

1

(k + 1)ζ(k + 1)
xk+1 + o(xk+1)

From here, using partial summation, we obtain (22). The lemma is proved.

We also need the following definition. Let Nk+1
n (x) be the number of (k + 1)-

tuples (a1, . . . ak+1) such that gcd(a1, . . . , ak+1) = 1 and a1 = n.

Theorem 2.13 If n = 1 we have

Nk+1
1 (x) = xk + o(xk) (23)

If n ≥ 2 we have

Nk+1
n (x) = xk

∏
p|n

(
1− 1

pk

)
+ o(xk) (n ≤ x) (24)

Finally, we have

N1,k(x) =
1

ζ(k)
xk + o(xk) (25)

Proof. The theorem is true for k = 2. Suppose the theorem is true for k, then
we shall prove that the theorem is also true for k + 1. Therefore, we have

N1,k(x) =
1

ζ(k)
xk + f(x)xk (26)

where |f(x)| ≤M1 and limx→∞ f(x) = 0. Equation (26) gives

Ng,k(x) = N1,k

(
x

g

)
=

1

gkζ(k)
xk + f

(
x

g

)
1

gk
xk (27)

Note that (see (21))

∑
g>x,(g,n)=1

1

gk
≤
∑
g>x

1

gk
≤M2x

1−k (28)

On the other hand, let us consider the function

Fn(x) =
∑

g≤x,(g,n)=1

f

(
x

g

)
1

gk
(29)
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We have

|Fn(x)| ≤
∑

g≤x,(g,n)=1

∣∣∣∣∣f
(
x

g

)∣∣∣∣∣ 1

gk
≤
∑
g≤x

∣∣∣∣∣f
(
x

g

)∣∣∣∣∣ 1

gk
=

∑
g≤
√
x

∣∣∣∣∣f
(
x

g

)∣∣∣∣∣ 1

gk

+
∑

√
x<g≤x

∣∣∣∣∣f
(
x

g

)∣∣∣∣∣ 1

gk
≤ εζ(k) +M1ε ≤ ε′ (x ≥ xε′)

where ε > 0 and consequently ε′ > 0 can be arbitrarily small. Hence limx→∞ Fn(x) =
0. Using equations (26), (27), (28) and (29) we find that

Nk+1
n (x) =

∑
1≤g≤x,(g,n)=1

Ng,k(x) = xk
∏
p|n

(
1− 1

pk

)
+ on(xk) (n ≤ x) (30)

That is, equation (24). Using equationes (30), (23) and (22) we obtain

N1,k+1(x) =
∑

1≤n≤x
Nk+1
n (x) =

1

ζ(k + 1)
xk+1 + o(xk+1)

The theorem is proved.
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