International Mathematical Forum, Vol. 13, 2018, no. 7, 337 - 342 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.8529

Logarithm of the Kernel Function

Rafael Jakimczuk

División Matemática Universidad Nacional de Luján Buenos Aires, Argentina

Copyright © 2018 Rafael Jakimczuk. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this note we study the logarithm of the kernel function and related functions.

Mathematics Subject Classification: 11A99, 11B99

Keywords: Kernel function, logarithm

1 Introduction and Preliminary Results

A square-free number is a number without square factors, a product of different primes. The first few terms of the integer sequence of square-free numbers are

$$1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, \dots$$

Let us consider the prime factorization of a positive integer $n \geq 2$

$$n = q_1^{s_1} q_2^{s_2} \cdots q_t^{s_t}$$

where $q_1, q_2, \dots q_t$ are the different primes in the prime factorization.

We have the following two arithmetical functions

$$u(n) = q_1 q_2 \cdots q_t$$

The arithmetical function u(n) is well-known in the literature, it is called kernel of n, radical of n, etc. Note that u(n) is the largest squarefree number that divides n. There exist many papers dedicated to this function.

$$v(n) = \frac{n}{u(n)} = q_1^{s_1 - 1} q_2^{s_2 - 1} \cdots q_t^{s_t - 1}$$

We call v(n) the remainder of n. Note that v(n) = 1 if and only if n is a square-free.

In this note we obtain asymptotic formulae for the following sums.

$$\sum_{1 \le i \le n} \log u(i), \qquad \sum_{1 \le i \le n} \log v(i)$$

$$\sum_{1 \le i \le n} \frac{\log u(i)}{\log n}, \qquad \sum_{1 \le i \le n} \frac{\log v(i)}{\log n}$$

As usual, $\lfloor x \rfloor$ denotes the integer part of x, $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of x, p denotes a positive prime, the simbol \sum_p mean that the sum run on all positive primes.

We need the following well-known lemmas.

Lemma 1.1 The following asymptotic formula holds

$$\sum_{1 \le i \le n} \frac{1}{i} = \log n + \gamma + o(1)$$

where $\gamma = 0,5772156649...$ is called Euler's constant (see [2, chapter 1]).

Lemma 1.2 The following asymptotic formula holds

$$\sum_{2 \le p \le x} \frac{\log p}{p} = \log x + C + o(1)$$

where

$$C = -\gamma - \sum_{p} \frac{\log p}{p(p-1)} = -1,3325822757...$$

(See [2, chapter 2])

Lemma 1.3 (Prime number theorem) The following asymptotic formula holds

$$\sum_{2 \le p \le x} \log p = x + o(x)$$

Lemma 1.4 The following asymptotic formula holds

$$\sum_{1 \le i \le n} \log i = n \log n - n + o(n)$$

Proof. It is a weak consequence of the Stirling's formula $n! \sim \frac{\sqrt{2\pi}n^n\sqrt{n}}{e^n}$.

2 Main Results

Theorem 2.1 The following asymptotic formulae hold

$$\sum_{1 \le i \le n} \log u(i) = n \log n - (1+A)n + o(n)$$
 (1)

$$\sum_{1 \le i \le n} \log v(i) = An + o(n) \tag{2}$$

where $A = \sum_{p} \frac{\log p}{p(p-1)} = 0,7553...$

Proof. Equation (2) is an immediate consequence of equation (1) and Lemma 1.4, since u(i)v(i)=i. Therefore we shall prove equation (1). Note that if j is an arbitrary but fixed positive integer and the prime p satisfies the inequality $\frac{n}{j+1} then <math>\left\lfloor \frac{n}{p} \right\rfloor = j$. Let $\epsilon > 0$, we choose the fixed positive integer s such that

$$\frac{1}{s} < \epsilon \tag{3}$$

and in the equation (see Lemma 1.1)

$$\sum_{j=1}^{s} \frac{1}{j} = \log s + \gamma + o_1(1)$$

we have

$$|o_1(1)| < \epsilon$$

We have

$$\sum_{1 \le i \le n} \log u(i) = \sum_{2 \le p \le n} \log p \left\lfloor \frac{n}{p} \right\rfloor = \left(\sum_{j=1}^{s-1} j \sum_{\frac{n}{j+1} (4)$$

We have by Lemma 1.3 and Lemma 1.1

$$\sum_{j=1}^{s-1} j \sum_{\frac{n}{j+1}
$$+ o(n) = n \sum_{j=1}^{s} \frac{1}{j} - n + o(n) = n \left(\log s + \gamma + o_1(1) \right) - n + o_2(1)n$$
 (5)$$

On the other hand, we have by Lemma 1.2

$$\sum_{2 \le p \le \frac{n}{s}} \log p \left\lfloor \frac{n}{p} \right\rfloor = n \sum_{2 \le p \le \frac{n}{s}} \frac{\log p}{p} - \sum_{2 \le p \le \frac{n}{s}} \log p \left\{ \frac{n}{p} \right\}$$

$$= n \left(\log \left(\frac{n}{s} \right) + C + o_3(1) \right) - \sum_{2 \le p \le \frac{n}{s}} \log p \left\{ \frac{n}{p} \right\}$$
(6)

where by Lemma 1.3 and equation (3)

$$0 \le \sum_{2 \le p \le \frac{n}{s}} \log p \left\{ \frac{n}{p} \right\} \le \sum_{2 \le p \le \frac{n}{s}} \log p = \left(\frac{1}{s} + o_4(1) \right) n \le 2\epsilon n$$

That is

$$0 \le \frac{\sum_{2 \le p \le \frac{n}{s}} \log p\left\{\frac{n}{p}\right\}}{n} \le 2\epsilon \tag{7}$$

We have choose n_0 such that if $n \geq n_0$ then $|o_2(1)| < \epsilon$, $|o_3(1)| < \epsilon$ and $|o_4(1)| < \epsilon$.

Substituting equations (5) and (6) into equation (4) we find that

$$\sum_{1 \le i \le n} \log u(i) = n \log n - \left(1 + \sum_{p} \frac{\log p}{p(p-1)}\right) n + o_1(1)n + o_2(1)n + o_3(1)n$$

$$- \frac{\sum_{2 \le p \le \frac{n}{s}} \log p\left\{\frac{n}{p}\right\}}{n} n$$

Therefore (see equation (7))

$$\left| \frac{\sum_{1 \le i \le n} \log u(i) - n \log n + \left(1 + \sum_{p} \frac{\log p}{p(p-1)}\right) n}{n} \right| \le |o_1(1)| + |o_2(1)| + |o_3(1)| + \frac{\sum_{2 \le p \le \frac{n}{s}} \log p\left\{\frac{n}{p}\right\}}{n} \le 5\epsilon \qquad (n \ge n_0)$$

That is

$$\frac{\sum_{1 \le i \le n} \log u(i) - n \log n + \left(1 + \sum_{p} \frac{\log p}{p(p-1)}\right) n}{n} = o(1)$$

That is, equation (1), since ϵ can be arbitrarily small. The theorem is proved.

An immediate consequence of Stirling's formula (see above) is the well-known limit

$$\frac{\sqrt[n]{n!}}{n} \to \frac{1}{e}$$

Note that

$$n! = \prod_{i=1}^{n} i = \prod_{i=1}^{n} (u(i)v(i)) = \left(\prod_{i=1}^{n} u(i)\right) \left(\prod_{i=1}^{n} v(i)\right)$$

An immediate consequence of Theorem 2.1 is the following corollary.

Corollary 2.2 The following limits hold

$$\frac{\sqrt[n]{\prod_{i=1}^{n} u(i)}}{n} \to \frac{1}{e^{1+A}} \qquad \sqrt[n]{\prod_{i=1}^{n} v(i)} \to e^{A}$$

Theorem 2.3 The following asymptotic formulae hold

$$\sum_{2 \le n \le x} \frac{\log v(n)}{\log n} = A \frac{x}{\log x} + o\left(\frac{x}{\log x}\right) \tag{8}$$

$$\sum_{2 \le n \le x} \frac{\log u(n)}{\log n} = x - A \frac{x}{\log x} + o\left(\frac{x}{\log x}\right) \tag{9}$$

Proof. Note that

$$x + o\left(\frac{x}{\log x}\right) = \lfloor x \rfloor - 1 = \sum_{2 \le n \le x} \frac{\log n}{\log n} = \sum_{2 \le n \le x} \frac{\log(u(n)v(n))}{\log n}$$
$$= \sum_{2 \le n \le x} \frac{\log u(n)}{\log n} + \sum_{2 \le n \le x} \frac{\log v(n)}{\log n}$$
(10)

Therefore (9) is an immediate consequence of (8) and (10). The proof of (8) is by partial summation (see [3, chapter XXII]).

We have by Theorem 2.1

$$\sum_{2 \le n \le x} \log v(n) = Ax + o(x)$$

Consequently, if we use the function $f(x) = \frac{1}{\log x}$ then

$$\sum_{2 \le n \le x} \frac{\log v(n)}{\log n} = (Ax + o(x)) f(x) - \int_2^x (At + o(t)) f'(t) dt$$

$$= A \frac{x}{\log x} + o\left(\frac{x}{\log x}\right) + A \int_2^x \frac{1}{\log^2 t} dt + \int_2^x o(1) \frac{1}{\log^2 t} dt$$

$$= A \frac{x}{\log x} + o\left(\frac{x}{\log x}\right)$$

That is, equation (8). The theorem is proved.

342 Rafael Jakimczuk

3 An Application to Sums of Fractional Parts

Dirichlet (1849) proved the asymptotic formula

$$\sum_{1 \le k \le n} \left\{ \frac{n}{k} \right\} = (1 - \gamma)n + O\left(\sqrt{n}\right)$$

De la Vallée Poussin [1] proved the asymptotic formula

$$\sum_{1 \le p \le n} \left\{ \frac{n}{p} \right\} = (1 - \gamma) \frac{n}{\log n} + o\left(\frac{n}{\log n}\right)$$

Note that an immediate consequence of Lemma 1.2, (1) and (4) is the asymptotic formula

$$\sum_{1 \le p \le n} \log p \left\{ \frac{n}{p} \right\} = (1 - \gamma)n + o(n)$$

Acknowledgements. The author is very grateful to Universidad Nacional de Luján.

References

- [1] C. de la Vallée Poussin, Sur les valeurs moyennes de certaines fonctions arithmétiques, Annales de la Société Scientifique de Bruxelles, 22 (1898), 84 90.
- [2] S. Finch, Mathematical Constants, Cambridge University Press, 2003.
- [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1960.

Received: May 23, 2018; Published: June 21, 2018