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Abstract

In this paper we introduce a compactification of a soft topological
space via soft ultrafilters.
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1 Introduction

Soft sets was introduced by D. Molodtsov 1999 [4] as ageneral mathematical
tool for dealing with uncertain objects. Operations on soft sets was introduced
by P.K. Maji , R . Biswas and A. R. Roy 2003 [3]. Sabir and Nas 2011 [7]
introduced and studied the concept of soft topological spaces over soft sets
and some related concepts. In 2011 [1] Aygunogla , Aygun introduced the soft
product topology, E. Peygh and B. Samadi , A.Tayebi 2013 [5] introduced soft
locally connected of a soft point and soft connected spaces depending on soft
disjoint non-null soft open sets.
Let SS(X,A) be the collection of all soft sets over the set X where A is the
set of parameters. Let (X, τ, A) be a soft topological space, We show that
B(X, τ, A) is a compactification of (X, τ, A) which is Hausdorff.
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2 Preliminary Notes

Definition 2.1. [2] Let X be an initial universe set and A a set of parameters.
A pair (F,A), where F is a map from A to P(X), is called a soft set over X.
In what follows, by SS(X,A) we denote the family of all soft sets (F,A) over
X.

0A will denote the soft set (F,A) where F (a) = φ for all a ∈ A and 1A will
denote the soft set (F,A) where F (a) = X for all a ∈ A.
0A is called A−null soft set while 1A is called A−absolute soft set.

Definition 2.2. [2] Let (F,A), (G,A) ∈ SS(X,A). We say that the pair (F,A)
is a soft subset of (G,A) if F (a) ⊆ G(a) for every a ∈ A. Symbolically, we
write (F,A) v (G,A). Also we say that the pairs (F,A), (G,A) are soft equal if
(F,A) v (G,A) and (G,A) v (F,A). Symbolically, we write (F,A) = (G,A).

Definition 2.3. [2] Let I be an arbitrary index set and {(Fi, A) : i ∈ I} ⊆
SS(X,A).

1. The soft union of these sets is the soft set (F,A) = t{(Fi, A) : i ∈ I}
where F (a) =

⋃
{(Fi(a)) : i ∈ I}, for every a ∈ A.

2. The soft intersection of these sets is the soft set (F,A) = u{(Fi, A) : i ∈
I} where F (a) =

⋂
{(Fi(a)) : i ∈ I}, for every a ∈ A.

Definition 2.4. [2] Let (F,A) be a soft set over X and x ∈ X. We say that
x ∈ (F,A) whenever x ∈ F (a) for all a ∈ A. If U ⊆ X, U ⊆ F (a) for all
a ∈ A, then we write U⊆̃(F,A).

Definition 2.5. [6] Let x ∈ X. Then the soft set (F,A) over X, where
F (a) = {x} ∀a ∈ A, is called the singleton soft set and denoted by xA or
(x,A).

Definition 2.6. [2] Let X be an initial universe set and A be a set of param-
eters, and τ ⊆ SS(X,A). We say that the family τ defines a soft topology on
X if the following axioms are true:

1. 0A, 1A ∈ τ .

2. If (G,A), (H,A) ∈ τ , then (G,A) u (H,A) ∈ τ .

3. If (Gi, A) ∈ τ for every i ∈ I, then t{(Gi, A) : i ∈ I} ∈ τ .

The triple (X, τ, A) is called a soft topological space or soft space. The mem-
bers of τ are called soft open sets on X. Also, a soft set (F,A) is called soft
closed if the complement (F,A)c ∈ τ . The family of soft closed sets is denoted
by τ c.
If τ = SS(X,A), then τ is called the soft discrete topology on X and (X, τ, A)
is said to be the soft discrete space. Also for any (F,A) ∈ SS(X,A), by (F,A)
we mean the closure of (F,A) in (X, τ, A).
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Definition 2.7. let (X, τX) be a topological space and (Y, τY , B) be a soft
topological space. A function f : X → Y is continuous at the point x ∈ X
if for every soft open nhood (G,B) of f(x) in (Y, τY , B), there exists an open
nhood V of x in X such that f(V )⊂̃(G,B). If f is continuous at every point
of X, then we say that f is continuous.

Theorem 2.8. Let f : (X, τ)→ (Y, τY , B). Then the function f is continuous
if and only if for each soft open set (G,B) ∈ SS(Y,B), f−1(G,B) is open in
X.

Proof. Let (G,B) ∈ SS(Y,B) be a soft open set and let x ∈ f−1(G,B). Then
f(x) ∈ (G,B). Since f is continuous at x, there exists an open set V ⊆ X,
x ∈ V such that f(V )⊂̃(G,B). So x ∈ V ⊆ f−1(G,B).
Conversely, let x ∈ X, (G,B) ∈ SS(Y,B) be a soft open set containing f(x).
Then x ∈ f−1(G,B) which is open by assumption. So there exists an open set
V ⊆ X such that x ∈ V ⊆ f−1(G,B). This implies that f(x) ∈ f(V )⊂̃(G,B).
Hence f is continuous at x. Since x is arbitrary, f is continuous.

Definition 2.9. [8] Let (X, τ, A) be a soft topological space over X, (G,A)
be a soft closed set and x ∈ X such that x /∈ (G,A). If there exist soft
open sets (F1, A) and (F2, A) such that x ∈ (F1, A), (G,A) v (F2, A) and
(F1, A) u (F2, A) = 0A, then (X, τ, A) is called a soft regular space.

Theorem 2.10. [8] A soft topological space (X, τ, A) is soft regular if and
only if for every x ∈ X and every soft open set (F,A) of x, there is a soft open
set (G,A) of x such that x ∈ (G,A) v (G,A) v (F,A).

Definition 2.11. [9] let (X, τ, A) be a soft topological space. A soft filter
on(X, τ, A) is a non empty set U ⊆ SS(X,A) such that :

1. If (G,A), (H,A) ∈ U , then (G,A) u (H,A) ∈ U .

2. If (G,A) ∈ U and (G,A) v (H,A) ∈ SS(X,A), then (H,A) ∈ U .

3. 0A /∈ U .

A soft filter on (X, τ, A) is called a soft ultrafilter if it is not properly contained
in any other soft filter.
Note that if U and V are two soft ultrafilters on (X, τ, A), then U = V iff
U ⊆ V .

Theorem 2.12. [6] Let SS(X,A), SS(Y,B) be the families of all soft sets on
X and Y , respectively and ϕfs be a soft mapping from SS(X,A) to SS(Y,B).

1. If U is a soft filter on X, then ϕfs(U) = {(G,B) : ϕ−1fs (G,B) ∈ U} is a
soft filter on Y .

2. If U is a soft ultrafilter on X, then ϕfs(U) = {(G,B) : ϕ−1fs (G,B) ∈ U}
is a soft ultrafilter on Y .



306 A. EL-Mabhouh and Wesam Mousa

Definition 2.13. [6] Let (X, τ, A) be a soft topological space and U be a soft
ultrafilter on X. U is said to be a soft compact if it contains some (F,A) such
that (F,A) is a soft compact.

Theorem 2.14. [6] Let (X, τ, A) be a soft Hausdorff space and U be a soft
compact ultrafilter on X. Then u{(F,A) : (F,A) ∈ U} is a singeltion soft set.

3 Basic Results

Definition 3.1. Let (X, τ, A) be a soft topological space, then

(a) B(X, τ, A) = {U : U is a soft ultrafilter on (X,τ, A)}.

(b) Given (G,A) ∈ SS(X,A), (̂G,A) = {U ∈ B(X, τ, A) : (G,A) ∈ U}.

Lemma 3.2. let U be a soft filter on (X, τ, A) and let (F,A) ∈ SS(X,A).
Either

1. there is some (G,A) ∈ U such that (G,A) u (F,A) = 0A or

2. {(C,A) ∈ SS(X,A) : there is some (H,A) ∈ U with (H,A) u (F,A) v
(C,A)} is a soft filter on (X, τ, A).

Proof. Let (F,A) ∈ SS(X,A) and suppose for any (G,A) ∈ U , (G,A) u
(F,A) 6= 0A. We want to show that

V = {(C,A) ∈ SS(X,A) : for some (H,A) ∈ U , (F,A) u (H,A) v (C,A)}

is a soft filter on (X, τ, A). To show this we first note that 1A ∈ V , since
1A ∈ U and 1A u (F,A) v 1A.
Hence V is a non empty subset of SS(X,A). Now let (C1, A), (C2, A) ∈ V , and
pick (H1, A), (H2, A) ∈ U with (H1, A) u (F,A) v (C1, A) and
(F,A) u (H2, A) v (C2, A). So
[(F,A) u (H1, A)] u [(F,A) u (H2, A)] v (C1, A) u (C2, A). Hence,
⇒ (F,A) u [(H1, A) u (H2, A)] v (C1, A) u (C2, A). Therefore,
(C1, A)u (C2, A) ∈ V . Let (C1, A) ∈ V and(C,A) v (M,A) ∈ SS(X,A). Then
there exists (H,A) ∈ U with [(F,A) u (H,A)] v (C,A) v (M,A). Therefore
(M,A) ∈ V .
Assume on the contrary that 0A ∈ V . So there is some (H,A) ∈ U , with
(F,A)u(H,A) v 0A. Therefore, (F,A)u(H,A) = 0A which is a contradiction.

In the following we let Pf (H)) = {φ 6= F : F ⊆ H, and F is finite} where
H is any set.

Theorem 3.3. Let (X, τ, A) be a soft topological space and let U ⊆ SS(X,A).
Then the following statements are equivalent:



Compactification of a soft topological space 307

(a) U is a soft ultrafilter on (X, τ, A).

(b) U has the finite intersection property and for each (G,A) ∈ SS(X,A)\U ,
there is some (H,A) ∈ U such that (G,A) u (H,A) = 0A.

(c) U is maximal w.r.t finite intersection property, that is ; U is maximal
member of {V ⊆ SS(X,A) : V has the finite intersection property}.

(d) U is a soft filter on (X, τ, A) and for all F ∈ Pf (SS(X,A)), if tF ∈ U ,
then F ∩ U 6= φ.

(e) U is a soft filter on (X, τ, A) and for all (G,A) ∈ SS(X,A) either
(G,A) ∈ U or (G,A)c ∈ U .

Proof.

(a⇒ b) By condition (1) and (3) of definition(2.11), U has the finite intersection
property. Let (G,A) ∈ SS(X,A) \ U and

V = {(C,A) ∈ SS(X,A) : for some (H,A) ∈ U , (G,A)u(H,A) v (C,A)}

Then (G,A) ∈ V so U ( V so V is not a soft filter on (X, τ, A). Thus by
lemma(3.2), there is some (H,A) ∈ U such that
(G,A) u (H,A) = 0A.

(b⇒ c) Let U has the finite intersection proprty, let U  V ⊆ SS(X,A). Pick
(G,A) ∈ V \ U and (H,A) ∈ U such that (G,A) u (H,A) = 0A. Then
(G,A), (H,A) ∈ V . So V does not have the finite intersection property .

(c⇒ d) Assume U is maximal with respect to the finite intersection property
among subsets of SS(X,A). Then one has immediately that U is a
nonempty subset of SS(X,A). Since U ∪ {1A} has finite intersection
property and U ⊆ U ∪ {1A}, one has U = U ∪ {1A}.
That is; 1A ∈ U . Given (G,A), (F,A) ∈ U , U ∪ {(G,A)u (F,A)} has the
finite intersection property. So (G,A) u (F,A) ∈ U . Given (G,A), (F,A)
with (G,A) ∈ U and (G,A) v (F,A) ∈ SS(X,A), U ∪{(F,A)} has finite
intersection property, since if (T,A) ∈ U and (T,A) u (F,A) = 0A, then
(G,A)u (T,A) = 0A which is a contradiction. Hence(F,A) ∈ U . Now let
F ∈ Pf (SS(X,A)) with tF ∈ U and suppose that for each (G,A) ∈ F ,
(G,A) /∈ U . Then given (G,A) ∈ F , U  U ∪ {(G,A)}.
So U ∪ {G,A} does not have the finite intersection property. So there
exist g(G,A) ∈ Pf (U) such that (G,A) u (ug(G,A)) = 0A. Let H =
∪(G,A)∈F(g(G,A)). Then H ∪ {tF} ⊆ U . While (tF) u (uH) = 0A which
is a contradiction.

(d⇒ e) let F = {(G,A), 1A\(G,A)}. Then tF = 1A ∈ U .
Then F ∩ U 6= φ (by d). This implies that (G,A) ∈ U or (G,A)c =
1A�(G,A) ∈ U .
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(e⇒ a) Assume U is a soft filter on (X, τ, A) and for all (G,A) ∈ SS(X,A),(G,A) ∈
U or 1A�(G,A) ∈ U .
Let V be a soft filter with U ⊆ V and suppose that U 6= V . Pick(G,A) ∈
V�U . Then 1A�(G,A) ∈ U ⊆ V while 1A�(G,A) u (G,A) = 0A (a
contradiction).

Proposition 3.4. Let x ∈ X, let ax ∈ A be fixed. Let

e(x) = {(G,A) : x ∈ G(ax)}

Then e(x) is a soft ultrafilter on (X, τ, A) which is called the soft Principal
ultrafilter on (X, τ, A).

Theorem 3.5. [9] Let A ⊆ SS(X,A) has the soft finite intersection property.
Then there is a soft ultrafilter U on (X, τ, A) such that A ⊆ U .

Lemma 3.6. Let (X, τ, A) be a soft topological space, (G,A), (F,A) ∈ SS(X,A),
then

(a) [ ̂(G,A) u (F,A)] = (̂G,A) ∩ (̂F,A).

(b) ̂(G,A) t (F,A) = (̂G,A) ∪ (̂F,A).

(c) ̂(G,A)c = B(X, τ, A)�(̂G,A).

(d) (̂G,A) = φ iff (G,A) = 0A.

(e) (̂G,A) = B(X, τ, A) if and only if (G,A) = 1A.

Proof. (a) Let U ∈ ̂(G,A) u (F,A). Since (G,A)u(F,A) v (F,A) and(G,A)u
(F,A) v (G,A), we get (G,A), (F,A) ∈ U . Hence U ∈ (̂F,A) and

U ∈ (̂G,A) and therefore U ∈ (̂F,A) ∩ (̂G,A).

On the other hand, suppose U ∈ (̂F,A) ∩ (̂G,A). Then (F,A) ∈ U and

(G,A) ∈ U . Thus (F,A) u (G,A) ∈ U and so U ∈ ̂(F,A) u (G,A).

(b) U ∈ ̂(F,A) t (G,A)
⇔ (F,A) t (G,A) ∈ U
⇔ IA�[(G,A) t (F,A)] /∈ U
⇔ [IA�(G,A)] u [IA�(G,A)] /∈ U
⇔ IA�(G,A) /∈ U or IA�(F,A) /∈ U
⇔ (G,A) ∈ U or (F,A) ∈ U
⇔ U ∈ (̂G,A) or U ∈ (̂F,A)

⇔ U ∈ (̂G,A) ∪ (̂F,A).
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(c) U ∈ ̂(G,A)c

⇔ (G,A)c ∈ U
⇔ (G,A) /∈ U
⇔ U /∈ (̂G,A) ⇔ U ∈ B(X, τ, A)�(̂G,A)

(d) (̂G,A) = φ
⇔ (G,A) /∈ U where U is any soft ultrafilter in B(X, τ, A)
⇔ (G,A) = 0A.

(e) (̂G,A) = B(X, τ, A)
⇔ (G,A) ∈ U where U is any soft ultrafilter in B(X, τ, A)
⇔ (G,A) ∈ 1A.

Proposition 3.7. B = {(̂G,A) : (G,A) ∈ SS(X,A)} is a basis for a topology
on B(X, τ, A).

Proof. Let U ∈ B(X, τ, A), then U 6= φ. Pick (G,A) ∈ U , then U ∈ (̂G,A).

let (̂G,A), (̂F,A) ∈ B and U ∈ (̂G,A) u (̂F,A). By Lemma (3.6), (̂G,A) u
(̂F,A) = ̂(G,A) u (F,A) ∈ B. Hence U ∈ ̂(G,A) u (F,A) ∈ B.

The following Theorem describes some of the basic topological properties
of B(X, τ, A).

Theorem 3.8. Let (X, τ, A) be a soft topological space

(a) B(X, τ, A) is a compact Hausdorff space .

(b) the mapping e : X → B(X, τ, A) is injective and e[X] is a dense subset of
B(X, τ, A).

Proof. (a) Suppose U and V are distinct elements of B(X, τ, A). If (G,A) ∈
U�V , then 1A�(G,A) ∈ V so by Proposition (3.7), (̂G,A) and ̂(G,A)c

are disjoint open subsets of B(X, τ, A) containing U and V respectively.
Thus B(X, τ, A) is T2 space.

By lemma (3.6).c, we observe that the sets of the form (̂G,A) are also a
base for the closed sets.
Next, we show B(X, τ, A) is compact. So consider a family A of sets of

the form (̂G,A) with the finite intersection property and show that A has
a nonempty intersection .

Let B = {(G,A) ∈ SS(X,A) : (̂G,A) ∈ A}. If F ∈ Pf (B), then there is

some U ∈ ∩(G,A)∈F (̂G,A).
and so uF ∈ U and thus uF 6= 0A.
That is B has the soft finite intersection property. So by Theorem (3.5)

pick V ∈ B(X, τ, A) with B ⊆ V . So for each (̂G,A) ∈ A, (G,A) ∈ V .

Hence V ∈ (̂G,A) for each (̂G,A) ∈ A. Thus V ∈ ∩A.
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(b) If x, y ∈ X are distinct, 1A�(x,A) ∈ e(y)�e(x). So e(y) 6= e(x). Hence
e is injective.

If (̂G,A) is a non empty basic open subset of B(X, τ, A), then (G,A) 6= 0A.
So there exists at ∈ A such that t ∈ G(at). Therefore (G,A) ∈ e(t) and

consequently, e(t) ∈ (̂G,A). Thus e(t) ∈ (̂G,A) ∩ e[X].

4 Main Results

In this section we show that B(X, τ, A) is the soft Stone-Čech Compact-
ification of the soft discrete topological space (X, τ, A). We remind the
reader that we are assuming that all hypothesized topological spaces and
soft topological spaces are Hausdorff.

Definition 4.1. Let X be a soft discrete topological space. A soft Stone-
Čech Compactification of (X, τ, A) is a pair (e, Z) such that:

(a) Z is a compact space.

(b) e is an embedding of (X, τ, A) into Z.

(c) e[X] is dense in Z and

(d) giving any soft compact space Y and any continuous soft mapping
ϕfS : (X, τ, A) → (Y, τY , B), there exists a continuous g : Z → Y
such that g ◦ e = f.
(That is the following diagram commutes).

X
e //

g◦e
  

Z

g
��

Y

Proposition 4.2. Let (Y, τ, B) be a soft compact Hausdorff space. Then
(Y, τ, B) is soft regular space.

Proof. Let x ∈ (V,B) where (V,B) is open set. We want to show that
there exists a soft open set (U,B) in (Y, τ, B) such that x ∈ (U,B) v
(U,B) v (V,B)
For any y ∈ 1B�(V,B), we have x 6= y, so there exists (Wy, B) a nhood
of y and (Uy, B) a nhood of x such that (Wy, B) u (Uy, B) = 0B → (∗)
Now {(Wy, B) : y ∈ 1B�(V,B)} is a cover of 1B�(V,B) which is a
soft compact (soft closed in soft Hausdorff space is soft compact). So
let (Wy1 , B), ...., (Wyn , B) be a finite cover of 1B�(V,B). Let (U,B) =
uni=1(Uyi, B) which is a nhood of x. Now from (∗) we get (Uyi , B) v
1B�(Wyi , B).
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Also 1B�(V,B) v tni=1(Wyi , B)⇒ uni=1IB�(Wyi , B) v (V,B).

So (U,B) = uni=1(Uyi , B) v uni=1(Uyi , B) v uni=1[1B�(Wyi , B)] v (V,B).

Proposition 4.3. Let ϕfs : SS(X,A) → SS(Y,B). Then ϕfS(x,A) =
(F,B) is a soft closed set in (Y, τ, B)

Proof. Note that
F(b) = {

{f(x)} , s−1({b}) 6= ∅ ,
∅ , s−1({b}) = ∅ .

for all b ∈ B. We want to show ϕfS(x,A) = (F,B) is closed in (Y, τ, B).
Let y ∈ 1B�(F,B). So y /∈ F (b) for all b ∈ B. This implies that
y /∈ {f(x)}. So y 6= f(x). Since Y is T2 space , we can pick two soft
open sets (G,B), (T,B) such that y ∈ (G,B) and f(x) ∈ (T,B), (G,B)u
(T,B) = 0B. This implies that f(x) /∈ (G,B). Now f(x) ∈ (T,B) and
so f(x) ∈ T (b) for all b ∈ B. Hence, F (b) ⊆ T (b) for all b ∈ B, and so,
(F,B) v (T,B). Therefore, 1B \ (T,B) v 1B \ (F,B). So y ∈ (G,B) v
IB \ (T,B) v 1B \ (F,B). Hence 1B \ (F,B) is soft open set. Thus (F,B)
is a soft closed set .

Proposition 4.4. Let (X, τ, A) be a soft topological space and (Y, τY , B)
be a soft compact topological space, ϕfS : SS(X,A) → SS(Y,B). For

each P ∈ B(X, τ, A), let AP = {(ϕfS(G,A)) : (G,A) ∈ P}. Then, there
exists y ∈ Y such that (y,B) vuAP.

Proof. For each P ∈ B(X, τ, A), let S = {ϕfS(G,A)) : (G,A) ∈ P}. Now
for each (G,A) ∈ P, we have (G,A) v ϕ−1fS(ϕfS(G,A)). Since P is a

soft ultrafilter, ϕ−1fS(ϕfS(G,A)) ∈ P. Hence S ⊆ ϕfS(P) = {(G,B) ∈
SS(Y,B) : ϕ−1fS(G,B) ∈ P}. But by Theorem (2.12), ϕfS(P) is a soft
ultrafilter on Y . Since (Y, τY , B) is a soft compact space, we have for each
(G,A) ∈ P, (ϕfS(G,A)) is a soft compact set. So ϕfS(P) is a soft compact

ultrafilter on Y . Hence by Theorem (2.14), u{(F,B) : (F,B) ∈ ϕfS(P)}
is a singleton soft set, say,
u{(F,B) : (F,B) ∈ ϕfS(P)} = (y,B) for some y ∈ Y . Thus

(y,B) = u{(F,B) : (F,B) ∈ ϕfS(P} v uAP.

Theorem 4.5. Let (X, τ, A) be a soft discrete topological space. Then
(e,B(X, τ, A)) is the soft Stone-Čech Compactification of (X, τ, A).
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Proof. Condition (a), (b) and (c) of definition (4.1) hold by Theorem
(3.8). It remains for us to verify condition(d). Let Y be a soft compact
space and ϕfS : SS(X,A)→ SS(Y,B). For each U ∈ B(X, τ, A), let

AU = {(ϕfS(G,A)) : (G,A) ∈ U}. By Proposition(4.4), choose g(U) ∈
uAU . Then we have the following diagram:

(X, τ, A) e //

g◦e
&&

B(X, τ, A)

g

��

(Y, τY , B)

We need to show that the diagram commutes and that g is continuous.
For the first assertion, let x ∈ X, (x,A) ∈ e(x). So by Proposition (4.3),
g(e(x)) ∈ (ϕfS(x,A)) = ϕfS(x,A). Let ϕfS(x,A) = (F,B) ∈ SS(Y,B).
So g(e(x)) ∈ F (b) for all b ∈ B. So g(e(x)) ∈ ∪{f({x})} = ∪{f(x)} =
{f(x)}. So g ◦ e = f as required.
To see g is continuous, let (G,B) be a soft nhood of g(U) in Y . By
Proposition (4.2), Y is regular. So by Proposition (2.10), pick a soft
nhood (H,B) of g(U) with (H,B) v (G,B) and let (F,A) = ϕ−1fS(H,B).
We claim that (F,A) ∈ U . Suppose instead that IA�(F,A) ∈ U . Then
g(U) ∈ ϕfS(1A�(F,A)) and (H,B) is a nhood of g(U). So
(H,B) u ϕfS(1A�(F,A)) 6= 0B. But (H,B) u ϕfS(1A�(F,A))
= (H,B) u ϕfS[(ϕ−1fS(H,B))c]

= (H,B) u ϕfS[ϕ−1fS((H,B)c)] v (H,B) u (H,B)c = 0B. We have a con-

tradiction. Thus (̂F,A) is a nhood of U . We claim g((̂F,A))⊂̃(G,B). So

let q ∈ (̂F,A), so (F,A) ∈ q. Hence q ∈ (ϕfS(F,A)) v (H,B) v (G,B).

Hence g((̂F,A))⊂̃(G,B) .
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