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Abstract

There are distinct equations in the literature referred to as the Lamé equa-
tions. The equations are the Lamé equation in the algebraic form, Lamé equa-
tion in the Jacobi form, Lamé equation in the Weierstrass form, among others.
It is well known that Lamé equation may be linked to one another through
suitable variable transformations. The link between their solutions has not
yet been investigated. The purpose of the present note is to establish a link
between the solution of Lamé equation in its Weierstrass form which extends
to an elliptic function and the solution of Lamé equation in the Jacobi form.
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1 Introduction

The Lamé equation in the Weierstrass form is given by{
d2

dz2
− n(n+ 1)℘(z; g2, g3)−B

}
Ψ(z) = 0, (1.1)

where ℘(z; g2, g3) is the Weierstrass elliptic ℘-function and g2 and g3 are invariant
parameters satisfying the equation ℘′(z)2 = 4℘(z)3 − g2℘(z) − g3, and B is the

1Corresponding author



294 U. N. Bassey and U. S. Idiong

accessory parameter which plays the role of the eigenvalue. In this classical setting,
n is a positive integer. The linearly independent solutions of equation (1.1), when
n = 1, are given in terms of Weierstrass sigma σ(z) and zeta ζ(z) elliptic functions
as

Ψ±(z) =
σ(z ± ε)
σ(z)σ(ε)

exp (∓zζ(ε)) . (1.2)

Here, ε is a parameter connected with B by means of transcendental equation ℘(ε) =
B. In Bassey and Idiong [4], some exactly solvable potentials were constructed giving
rise to solutions of equation (1.1) which could be written in terms of some classical
orthogonal polynomials.

The Jacobi form of Lamé equation is given by{
d2

du2
− n(n+ 1)k2sn2(u)− E

}
Ψ(u) = 0. (1.3)

Here, k ∈ (0, 1) is the modulus parameter, sn(u) is the Jacobi amplitude sine function
and E is the eigenvalue. In what follows, H(u),Θ(u) and Z(u) denote the Jacobi
Eta, Theta and Zeta functions, respectively. The linearly independent solutions of
equation (1.3) are given as

Ψ±(u) =
H(u± α)

Θ(u)Θ(α)
exp (∓uZ(α)) , (1.4)

where dn2α = E − k2 and dn(·) is the delta amplitude function (see Ince [7], p.
395).

As it is well known (cf: Whittaker and Watson [8], p.555), the equations (1.1)
and (1.3) may be linked to one another through variable transformations. In section
3 of the present paper, we establish a link between the solutions of these equations
presented in (1.2) and (1.4). In section 2, we present the necessary preliminaries
that are required.

2 Preliminaries

In this section, we set down necessary notations and preliminary definitions con-
cerning elliptic functions (and their relationship with each other) which are required
in the sequel. We present, for the sake of completeness, a transformation of the
Lamé equation from the Weierstrass form to the Jacobi form. Definition 2.1 below
is found in Whittaker and Watson ([8], § 21.11, p.463).

2.1 Definition. Let ωj (j = 1, 2, 3) be the elliptic periods of the Weierstrass elliptic
functions mentioned in section 1 above and let τ = ω2

ω1
be a complex constant with
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the imaginary part, =(τ) > 0. We define the parameter q := eiπτ (i =
√
−1) so that

|q| < 1. Then, the function ϑ(z, q) defined by the series

ϑ(z, q) =
∞∑

n=−∞

(−1)nqn
2

e2niz (2.1)

is called the qua function of variable z.
If M ∈ R+, then when |z| ≤M, we have

|qn2

einz| ≤ |q|n2

e2nM < e2nM ,

n being a positive integer. Equation (2.1) can be re-written as

ϑ(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nz,

and

ϑ(z + π, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2n(z + π)

= 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2n(z + π)

= 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nz

= ϑ(z, q). (2.2)

Furthermore, we have

ϑ(z + πτ, q) =
∞∑

n=−∞

(−1)nqn
2

e2ni(z+πτ)

=
∞∑

n=−∞

(−1)nqn
2

e2inze2πτ

=
∞∑

n=−∞

(−1)nqn
2

q2ne2inz

=
∞∑

n=−∞

(−1)nqn
2+2ne2inz

=
∞∑

n=−∞

(−1)nq−1qn
2+2n+1e−i2ze2i(n+1)z

= q−1e−i2z
∞∑

n=−∞

(−1)nq(n+1)2e2i(n+1)z

= q−1e−i2zϑ(z, q). (2.3)
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Thus, ϑ(z, q) is a quasi-periodic function of z. In equations (2.1) and (2.3) above,
1 and q−1e−i2z are called periodic factors associated with the periods π and πτ
respectively. It is customary to write ϑ4(z, q) in place of ϑ(z, q) while the other
three qua functions are ϑ3, ϑ2 and ϑ1, and as we see below all the ϑi (i = 1, 2, 3)
may be expressed in relation to ϑ4. Now, ϑ3 is related to ϑ4 as follows.

ϑ3(z, q) = ϑ4(z +
π

2
, q)

=
∞∑

n=−∞

(−1)nqn
2

e2ni(z+
π
2
)

=
∞∑

n=−∞

(−1)nqn
2

e2nizeinπ

=
∞∑

n=−∞

(−1)2nqn
2

e2niz

=
∞∑

n=−∞

qn
2

e2niz

= 1 + 2
∞∑
n=1

qn
2

cos 2nz. (2.4)

Let G =
∏∞

n=1(1− q2n). Then, in its product form, ϑ3 may be written as

ϑ3(z, q) = G
∞∏
n=1

(1 + 2q2n−1 cos 2z + q4n−2).

Also, ϑ1(z, q) is related to ϑ4(z, q) as follows.

ϑ1(z, q) = −iei(z+
πτ
4
)ϑ4(z +

πτ

2
, q)

= −ieize
πτ
4
)

∞∑
n=−∞

(−1)nqn
2

e2ni(z+
πτ
2
)

= −ieizq
1
4

∞∑
n=−∞

(−1)ne2nizqn
2+n

= −i
∞∑

n=−∞

(−1)nqn
2+n+ 1

4 e(2n+1)iz

= 2
∞∑

n=−∞

(−1)nq(n+
1
2
)2e(2n+1)iz

= 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin(2n+ 1)z. (2.5)
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The product form of ϑ1(z, q) is expressed as

ϑ1(z, q) = 2Gq
1
4 sin z

∞∏
n=1

(1− 2q2n−1 cos 2z + q4n).

Then we can write ϑ2(z, q) as

ϑ2(z, q) = ϑ1(z +
π

2
, q)

= 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin(2n+ 1)(z +

π

2
)

= 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin((2n+ 1)z + nπ +

π

2
)

= 2
∞∑
n=0

(−1)n cos(2n+ 1)z. (2.6)

The product form of ϑ2(z, q) is given as

ϑ2(z, q) = 2Gq
1
4 cos z

∞∏
n=1

(1 + 2q2n−1 cos 2z + q4n).

The function ϑ4 also has its infinite product form given as

ϑ4(z, q) = G
∞∏
n=1

(1− 2q2n−1 cos 2z + q4n−2).

It is now convenient for us to consider the Jacobi elliptic functions in terms of
qua functions.

2.2 Definition (Whittaker and Watson [8],§21.69, p.479). The Jacobi Theta func-
tion, Θ(u), is defined, in terms of qua function, by

Θ(u) := ϑ4(uϑ
−2
3 (0)|τ). (2.7)

It is a periodic function with periods 2K and 2iK′. Also,

Θ(u+ K) := ϑ2(uϑ
−2
3 (0)|τ). (2.8)

Here and hereafter, K ≡ K(k2) and K′ ≡ K(k′2) are, respectively, the complete
elliptic integrals of the first kind and its complement, given as

K(k2) :=

∫ 1

0

dt√
(1− t2)(1− k2t2)

;
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K(k′2) :=

∫ 1

0

dt√
(1− t2)(1− k′2t2)

,

where k is the modulus and k′ is the complementary modulus which obey the equa-
tion k2 + k′2 = 1 (see Akhiezer[2], p.78). The Jacobi eta function H(u) is defined
as

H(u) := −iq−
1
4 ei

πu
2K Θ(u+ iK′) = ϑ1(uϑ

−2
3 (0)|τ). (2.9)

and
H(u+ K) := ϑ2(uϑ

−2
3 (0)|τ). (2.10)

2.3 Definition (Baker [3], Chapter IX, p.74). The Jacobi elliptic sine amplitude,
cosine amplitude and delta amplitude functions are respectively defined, in terms of
Theta and Eta functions, as

sn(u, k) :=
1√
k

H(u)

Θ(u)
, k ∈ (0, 1) (2.11)

cn(u, k) :=

√
k′

k

H(u+ K)

Θ(u)
(2.12)

dn(u, k) :=
√
k′

Θ(u+ K)

Θ(u)
(2.13)

2.4 Definition (Byrd [5],§1035.01, p.310). The Weierstrass elliptic ℘-function is
defined, in terms of the qua function, as

℘(z|ω1, ω2) :=
1

12ω2
1

ϑ′′′1 (0)

ϑ′1(0)
− d2

dz2

(
lnϑ1(

z

2ω1

)

)
(2.14)

2.5 Definition (Whittaker and Watson [8],§21.43, p.473). The Weierstrass sigma
function is defined, in terms of qua function, as

σ(z|ω1, ω2) =
2ω1

π
exp

(
η1z

2

2ω1

)
· 1

2
q

1
4

∞∏
n=1

(1− q2n)−3ϑ

(
πz

2ω1

|τ
)
. (2.15)

Here, τ = ω2

ω1
∈ C such that =(τ) > 0 and η1 = − π2

12ω1

ϑ′′′1 (0)

ϑ′1(0)
.

To complete this section, we show that Lamé equation in the Weierstrass form
may be linked to the Jacobi form through variable transformation. Now, we know
(Whittaker and Watson [8], §22.351, p.505) that

℘(z; g2, g3) = e3 + (e1 − e3)ns2(z
√
e1 − e3 ). (2.16)

By setting u = z
√
e1 − e3, we obtain

d2

dz2
= (e1 − e3)

d2

du2
. (2.17)
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The Lamé equation (1.1), by expressions (2.17) and (2.16), now transforms into the
equation{

(e1 − e3)
d2

du2
− [n(n+ 1)

(
e3 + (e1 − e3)ns2(u)) +B]

)}
Ψ(u) = 0. (2.18)

The last equation may be re-written as{
d2

du2
− n(n+ 1)ns2(u)− n(n+ 1)e3 +B

e1 − e3

}
Ψ(u) = 0.

We know also (Whittaker and Watson [8], §22.34, p.507) that

sn(u+ iK′) = k−1nsu =⇒ ns2u = k2sn2(u+ iK′).

Thus, we have {
d2

du2
− n(n+ 1)k2sn2(u+ iK′)− E

}
Ψ(u) = 0, (2.19)

where E =
n(n+ 1)e3 +B

e1 − e3
. Since sn(u+iK′) = sn(u), then equation (2.19) becomes

{
d2

du2
− n(n+ 1)k2sn2(u)− E

}
Ψ(u) = 0.

The variable transformation of Lamé equation in the Jacobi form to the equation in
the Weierstrass form is obtained in Erdelyi et.al.([6], §15.2, pp.55-56).

We are now ready to present the main result of this paper.

3 Main Result

The aim of this section is to establish Theorem 3.1 below.

3.1 Theorem. The solution of Lamé equation in the Weierstrass form is equal to
the solution of the equation in the Jacobi form multiplied by an elliptic function.

Proof. We know (Abramowitz and Stegun [1],§18.10.7-8, p. 650) that

ζ(z) =
ηz

ω
+
π

ω

ϑ′1(ν)

ϑ1(ν)
, (3.1)

σ(z) =
2ω

π
exp

(
ηz2

2ω

)
ϑ1(ν)

ϑ′1(0)
. (3.2)
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Here and hereafter, ν =
πz

2ω
and

ϑ′1(0) = ϑ2(0)ϑ3(0)ϑ4(0)

= 2Gq
1
4

∞∏
n=1

(1 + 2q2n + q4n) ·G
∞∏
n=1

(1− 2q2n−1 + q4n−2)

·G
∞∏
n=1

(1 + 2q2n−1 + q4n−2)

= 2G3q
1
4

∞∏
n=1

(1 + q2n)2(1− q2n−1)2(1 + q2n−1)2

= 2q
1
4

∞∏
n=1

(1− q2n)3(1 + q2n)2(1− q2n−1)2(1 + q2n−1)2

= 2q
1
4

∞∏
n=1

(1− q2n)(1− q4n)2(1− q4n−2)2.

Now, by using expressions (3.1) and (3.2), we have

σ(z + ε)

σ(z)σ(ε)
exp(−zζ(ε)) =

2ω

π
exp

(
η(z + ε)2

2ω

)
ϑ1

(
z+ε
2π

)
ϑ′1(0)

× π2

4ω2
exp

(
−ηz

2

2ω

)
ϑ′1(0)

ϑ1

(
πz
2ω

)
× exp

(
−ηε

2

2ω

)
ϑ′1(0)

ϑ1

(
πε
2ω

) exp

(
−z
(
ηε

ω
+

π

2ω

ϑ′1(
πε
2ω

)

ϑ1(
πε
2ω

)

))

=
π

2ω
exp

(
2ηzε

2ω

) ϑ1

(
π(z+ε)

2ω

)
ϑ′1(0)

ϑ1

(
πz
2ω

)
ϑ1

(
πε
2ω

) exp

(
−zηε

ω
− πz

2ω

ϑ′1
(
πε
2ω

)
ϑ1

(
πε
2ω

))

=
π

2ω

ϑ1

(
π(z+ε)

2ω

)
ϑ′1(0)

ϑ1

(
πz
2ω

)
ϑ1

(
πε
2ω

) exp

(
−πz

2ω

ϑ′1(
πε
2ω

)

ϑ1(
πε
2ω

)

)
=

π

2ω

ϑ1

(
ν + πε

2ω

)
ϑ′1(0)

ϑ1

(
πz
2ω

)
ϑ1

(
πε
2ω

) exp

(
−ν

ϑ′1(
πε
2ω

)

ϑ1(
πε
2ω

)

)
. (3.3)

Following Whittaker and Watson( [8], §21.62, pp. 479-480) we write

ϑ1(uϑ
−2
3 (0)|τ) = −iq−

1
4 ei

πu
2K Θ(u+ iK) = H(u). (3.4)

Now by replacing uϑ−23 by (u+ α)ϑ−23 (0) ≡ ν + πε
2ω

in equation (3.4), we get

ϑ1(ν +
πε

2ω
|τ) = ϑ1((u+ α)ϑ−23 (0)|τ) = H(u+ α), (3.5)
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where, ϑ3(0) =

(
2K

π

) 1
2

= 1 + 2q+ 2q4 + 2q9 + . . . (Whittaker and Watson [8],

§21.61, p.479). Thus, we see that ϑ−23 (0) = π
2K
, ν = πu

2K
, πα
2K

= πε
2ω

and α = εK
ω

.
Therefore, we can now re-write equation (3.3) using (3.5) as

σ(z + ε)

σ(z)σ(ε)
exp(−zζ(ε)) =

ϑ−23 (0)α
ε
ϑ′1(0)H(u+ α) exp

(
−u π

2K

ϑ′1( πα2K)
ϑ1( πα2K)

)
ϑ1(uϑ

−2
3 (0)|τ)ϑ1(αϑ

−2
3 (0)|τ)

=
α

ε
·
ϑ−23 (0)ϑ′1(0)H(u+ α) exp

(
−uϑ−23 (0)

ϑ′1(αϑ
−2
3 (0)|τ)

ϑ′1(αϑ
−2
3 (0)|τ)

)
ϑ1(uϑ

−2
3 (0)|τ)ϑ1(αϑ

−2
3 (0)|τ)

=
αϑ′1(0)ϑ−23 (0)

ε

H(u+ α) exp (−uZ(α)) exp
(
−u d

dα
(ln sn(α, k)

)
ϑ1(uϑ

−2
3 (0)|τ)ϑ1(αϑ

−2
3 (0)|τ)

= Af(u, α)
H(u+ α)

Θ(u)Θ(α)
exp (−uZ(α)) , (3.6)

where A =
αϑ′1(0)ϑ−23 (0)

kε
and

f(u, α) = ns(u, k)ns(α, k) exp

(
−u d

dα
(ln sn(α, k))

)
= ns(u, k)ns(α, k) exp (−u cs(α, k))

because by (2.11) and (3.4)

ϑ1(αϑ
−2
3 (0)|τ) = H(α) =

√
kΘ(α)sn(α, k).

By replacing ε with −ε in equation (3.6) the complementary solution of equation
(1.1) is obtained as

σ(z − ε)
σ(z)σ(ε)

exp(zζ(ε)) = Af(u, α)
H(u− α)

Θ(u)Θ(α)
exp (uZ(α)) . (3.7)

Hence, combining the two linearly independent solutions (3.6) and (3.7) we have

σ(z ± ε)
σ(z)σ(ε)

exp(∓zζ(ε)) = Af(u, α)
H(u± α)

Θ(u)Θ(α)
exp (∓uZ(α)) .

Hence the result.

4 Conclusion

In this paper, the theory of elliptic functions has been adapted in the study of
the relationship between solutions of Lamé equations in the Weierstrass and Jacobi
forms. The solutions have been found to be equal up to a multiplicative elliptic
function.
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