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Abstract

There are distinct equations in the literature referred to as the Lamé equa-
tions. The equations are the Lamé equation in the algebraic form, Lamé equa-
tion in the Jacobi form, Lamé equation in the Weierstrass form, among others.
It is well known that Lamé equation may be linked to one another through
suitable variable transformations. The link between their solutions has not
yet been investigated. The purpose of the present note is to establish a link
between the solution of Lamé equation in its Weierstrass form which extends
to an elliptic function and the solution of Lamé equation in the Jacobi form.
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1 Introduction

The Lamé equation in the Weierstrass form is given by

(o nn+ Doteigng) - B v =0 (11)

where ©(z; go, g3) is the Weierstrass elliptic p-function and go and gs are invariant
parameters satisfying the equation ¢/(2)? = 4p(2)® — g29(2) — g3, and B is the
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accessory parameter which plays the role of the eigenvalue. In this classical setting,
n is a positive integer. The linearly independent solutions of equation (1.1), when
n = 1, are given in terms of Weierstrass sigma o(z) and zeta ((z) elliptic functions

V() = 2o e (2((6). (12)

Here, ¢ is a parameter connected with B by means of transcendental equation p(e) =
B. In Bassey and Idiong [4], some exactly solvable potentials were constructed giving
rise to solutions of equation (1.1) which could be written in terms of some classical
orthogonal polynomials.

The Jacobi form of Lamé equation is given by

{% —n(n+ 1)k*sn?(u) — E} U(u) = 0. (1.3)

Here, k € (0,1) is the modulus parameter, sn(u) is the Jacobi amplitude sine function
and F is the eigenvalue. In what follows, H(u),©(u) and Z(u) denote the Jacobi
Eta, Theta and Zeta functions, respectively. The linearly independent solutions of
equation (1.3) are given as

U (u) = % exp (FuZ(w)), (1.4)

where dn’a = E — k? and dn(-) is the delta amplitude function (see Ince [7], p.
395).

As it is well known (cf: Whittaker and Watson [8], p.555), the equations (1.1)
and (1.3) may be linked to one another through variable transformations. In section
3 of the present paper, we establish a link between the solutions of these equations
presented in (1.2) and (1.4). In section 2, we present the necessary preliminaries
that are required.

2 Preliminaries

In this section, we set down necessary notations and preliminary definitions con-
cerning elliptic functions (and their relationship with each other) which are required
in the sequel. We present, for the sake of completeness, a transformation of the
Lamé equation from the Weierstrass form to the Jacobi form. Definition 2.1 below
is found in Whittaker and Watson ([8], § 21.11, p.463).

2.1 Definition. Let w; (j = 1,2, 3) be the elliptic periods of the Weierstrass elliptic
functions mentioned in section 1 above and let 7 = z—f be a complex constant with
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the imaginary part, S(7) > 0. We define the parameter q := €™ (i = /—1) so that

lg| < 1. Then, the function ¥(z, q) defined by the series

[e.9]

Izq)= Y (—1)"g" ™™

n=—oo

is called the qua function of variable z.
If M € RT, then when |z| < M, we have

|qn2€inz| S |q|n2€2nM < 62nM’

n being a positive integer. Equation (2.1) can be re-written as
Iz,q) =1+2 Z(—l)“q”2 cos 2nz,
n=1
and

Hz+mq) = 1+2 Z(—l)”q”2 cos2n(z + )
n=1

= 1+2 Z(—l)”q”z) cos2n(z + )

n=1

= 1+2 Z(—l)"q”2 cos 2nz

Furthermore, we have

Wetmrg) = Y (<1)grem
— Z (_1)nqn2 62inz627r’r

_ Z (_1)nqn2 q2ne2inz

n=-—oo
o0

— Z (_1)nqn2+2n62in2
n=—00
oo
— Z (—1)g g+ i2e i)z
n=—00
[e.e]

—1_—i2z n _ (n 2 2i(n z
= q 16 2 Z(_l) q( +1) 62(+1)

n=—oo

= ¢ 'e*(z,q).

(2.1)

(2.2)

(2.3)
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Thus, 9(z,
1 and g~ le

—1i2z
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q) is a quasi-periodic function of z. In equations (2.1) and (2.3) above,
are called periodic factors associated with the periods 7m and 77

respectively. It is customary to write ¥4(z,¢q) in place of ¥(z,q) while the other
three qua functions are 93,9, and 1, and as we see below all the 9; (i = 1,2,3)
may be expressed in relation to 4. Now, ¥3 is related to 1, as follows.

V3(z,q)

Let G =] 2,(1

2,(1)

_ Z (_ 1)nqn2 e2niz ginm

_ Z (_1)2nqn2€2niz

n=—0oo

o)
2 .
— E qn 62nzz

n=—oo

= 1+ ZX:Q”2 cos 2nz.

n=1

— ¢*"). Then, in its product form, 3 may be written as

VU3(z,q) =G H(l +2¢*"  cos 22 + ¢'"7?).

Also, Y1(z, q) is related to J4(z,

191(27(]) =

n=1
q) as follows.

T
—Z€Z 194(2 + 7,(])

ez Z (_1)nqn262ni(z+%)

n=—oo
o

. gy L i 2
_Zezzq4 2 (_1)ne2nzzqn +n
n=-—00
0

Y (-

n=—oo

n n +n+4e(2n+1)

oo

22 (=

n=—oo

QZ n n-l—

(n+ )2 (2n+1)iz

) sin(2n 4 1)z.

(2.4)

(2.5)
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The product form of ¥,(z, q) is expressed as

H(z,q) = 2qu sin z H(l — 2q2”—1 cos 2z + q4n>.
n=1
Then we can write J5(z, q) as
T
Ua(z,q) = 191(z—|-§,q)

= 2 nqn+3)” gin(2n + 1 E
Z sm(n+ )(z+2)
Z P sin((2n + 1)z + nr + )

= 2 Z "cos(2n + 1)z. (2.6)

The product form of J5(z, q) is given as

Va(2,q) = 2qu CoS 2 H(l + 262 cos 2z + ™).

n=1

The function ¥4 also has its infinite product form given as
=G H(l —2¢"" " cos 2z 4 ¢*"7?).

It is now convenient for us to consider the Jacobi elliptic functions in terms of
qua functions.

2.2 Definition (Whittaker and Watson [8],§21.69, p.479). The Jacobi Theta func-
tion, ©(u), is defined, in terms of qua function, by

O(u) := V4(udd3?(0)|7). (2.7)
It is a periodic function with periods 2K and 2iK’. Also,
O(u + K) := o (udd32(0)|7). (2.8)

Here and hereafter, K = K(k?) and K’ = K(k?) are, respectively, the complete
elliptic integrals of the first kind and its complement, given as

2\ .__ ' dt .
)‘_/o VI =2)(1 - k)
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2y . ' dt
K )'_/o VI —2)(1—k282)

where k is the modulus and £’ is the complementary modulus which obey the equa-
tion k% + k' = 1 (see Akhiezer[2], p.78). The Jacobi eta function H(u) is defined
as

H(u) = —ig 15 O(u + iK') = 9 (ud32(0)|7). (2.9)
and

H(u+ K) := 9o (udz2(0)|7). (2.10)

2.3 Definition (Baker [3], Chapter IX, p.74). The Jacobi elliptic sine amplitude,
cosine amplitude and delta amplitude functions are respectively defined, in terms of
Theta and Eta functions, as

1 H(u)
sn(u, k) Jiow) ke (0,1) (2.11)
en(u, k) = %—H(g(Z)K> (2.12)
dn(u, k) = ﬁ% (2.13)

2.4 Definition (Byrd [5],§1035.01, p.310). The Weierstrass elliptic p-function is
defined, in terms of the qua function, as

1 v(0) d z
_ v'(0)  d* 2 2.14
p(z|wr, w2) 12w7 97(0)  d2? lnﬁl(2w1> 244

2.5 Definition (Whittaker and Watson [8],§21.43, p.473). The Weierstrass sigma
function is defined, in terms of qua function, as

2w 22 11 s Tz
o(z|lwy,ws) = Tlexp (771_) 540 H(l —¢*) <2—w1|7') . (2.15)
n=1

2(,01
Here, 7 = 2 € C such that I(7) > 0 and 7 = —%%.
To complete this section, we show that Lamé equation in the Weierstrass form

may be linked to the Jacobi form through variable transformation. Now, we know
(Whittaker and Watson [8], §22.351, p.505) that

0(2; 92, 93) = €3 + (e1 — e3)ns’ (/e — €3 ). (2.16)

By setting u = zy/e; — e3, we obtain

d? d?
Rl Gt et 217)
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The Lamé equation (1.1), by expressions (2.17) and (2.16), now transforms into the
equation

{(el — 63)% — [n(n+1) (es + (e1 — e3)ns*(u)) + B] )} U(u) = 0. (2.18)

The last equation may be re-written as

—_— 2 J—
T n(n + 1)ns*(u) p—

d? 1 B
{ n(n+ 1)es + }\Il(u)zo.
We know also (Whittaker and Watson [8], §22.34, p.507) that
sn(u +iK') = k™ 'nsu = ns*u = k?sn*(u + iK’).

Thus, we have
d2

n(n+ 1)es + B
€1 — €3

where E = . Since sn(u+iK’) = sn(u), then equation (2.19) becomes

{dd_; —n(n+1)k*n2(u) — E } U(u) = 0.

The variable transformation of Lamé equation in the Jacobi form to the equation in
the Weierstrass form is obtained in Erdelyi et.al.([6], §15.2, pp.55-56).
We are now ready to present the main result of this paper.

3 Main Result

The aim of this section is to establish Theorem 3.1 below.

3.1 Theorem. The solution of Lamé equation in the Weierstrass form is equal to
the solution of the equation in the Jacobi form multiplied by an elliptic function.

Proof. We know (Abramowitz and Stegun [1],§18.10.7-8, p. 650) that

LA
C(Z) = U—i_;ﬁl(u)’ (31)

o(z) = %“’exp (Z-f) Zigz (3.2)
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Here and hereafter, v = 72r_z and
w

29/1 (0) = Uy (0)193 (0)194(0)

_ 2qu H(l + 2q2n + q4n> . GH(l _ 2q2n71 _'_q4n72)

n=1 n=1

GH 1+2q2n 1 q4n 2)

n=1
)

_ 2G3q% H(l F @M1 — @21+ 22

n=1
00

— 2q% H(l — (L + P — )21+ 22

n=1
00

= 2¢1 [T = )1 = ¢™)2(1 — ¢ 2)2

n=1

Now, by using expressions (3.1) and (3.2), we have

LS ep(oxge) = Zew ("’(2221)2) 19/1 )
G2 (%) a g
ENE A e w5
o (5 a5 250)
(

TGS K

2 0, (2) 01 (52) D\ 2w
_ a0 ()
2w 9 (52) 0 (5) p( 1%(%))' (3.3)

Following Whittaker and Watson( [8], §21.62, pp. 479-480) we write
O (ud52(0)|7) = —ig ie' O (u + iK) = H(u). (3.4)

Now by replacing ud3? by (u+ «)¥3%(0) = v + = in equation (3.4), we get

e

(v + o= Im) = Di((u+ a)d5(0)|r) = H(u + a), (3-5)
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1
2K\ ?
where, 93(0) = <—> =1+2¢+2¢" +2¢° +. .. (Whittaker and Watson [8],
™
§21.61, p.479). Thus, we see that ¥5%(0) = 5, v = %, 2% = 2% and o = &,

Therefore, we can now re-write equation (3.3) using (3.5) as

952(0) 20}, (0)H (u + a) exp (_ulﬂ’l(;))
exp(_ZC(é)) = 191 (Uﬁg2(0)|7')191 (04193T2(0)|7')

_ , _ 9 (a3 2(0)|7
’193 2(0)191 (O)H(U + Oé) exp <—U193 2(0)W>

o(z+¢e)
o(z)o(e)

€ O1(ud3?(0)] 7)1 (a5 (0)]7)
_ a?, (0)052(0) H(u + a) exp (—uZ(a)) exp (—u=t (In sn(a, k))
e O1(ud3?(0)] 7)1 (a5 (0)]7)
— Af(u,a) gg)g {3 exp (—uZ(a)) , (3.6)
where A = %ﬁﬁm) and

flu,a) = ns(u, k)ns(a, k) exp (—u%(ln sn(a, k)))
= ns(u, k)ns(a, k) exp (—ucs(a, k))
because by (2.11) and (3.4)
01 (a32(0)|7) = H(a) = VEO(a)sn(a, k).

By replacing ¢ with —e in equation (3.6) the complementary solution of equation
(1.1) is obtained as

o(z—¢) H(u— o)

o(2)o(e) exp(z((e)) = Af(u, Q)W exp (uZ(a)). (3.7)
Hence, combining the two linearly independent solutions (3.6) and (3.7) we have
o(z£¢) H(u+ «)
m eXP(q:ZC(E» = Af(u7 @)W exp (ZFUZ(CO) .
Hence the result. .

4 Conclusion

In this paper, the theory of elliptic functions has been adapted in the study of
the relationship between solutions of Lamé equations in the Weierstrass and Jacobi
forms. The solutions have been found to be equal up to a multiplicative elliptic
function.
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