
International Mathematical Forum, Vol. 13, 2018, no. 1, 9 - 13
HIKARI Ltd, www.m-hikari.com

https://doi.org/10.12988/imf.2018.71299

How to Make a Proof of

Halting Problem More Convincing:

A Pedagogical Remark

Benjamin W. Robertson1, Vladik Kreinovich1,
and Olga Kosheleva2

Departments of 1Computer Science and 2Teacher Education
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

Copyright c© 2018 Benjamin W. Robertson, Vladik Kreinovich and Olga Kosheleva.

This article is distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Abstract

As an example of an algorithmically undecidable problem, most text-
books list the impossibility to check whether a given program halts on
given data. A usual proof of this result is based on the assumption that
the hypothetical halt-checker works for all programs. To show that a
halt-checker is impossible, we design an auxiliary program for which
the existence of such a halt-checker leads to a contradiction. However,
this auxiliary program is usually very artificial. So, a natural question
arises: what if we only require that the halt-checker work for reasonable
programs? In this paper, we show that even with such a restriction,
halt-checkers are not possible – and thus, we make a proof of halting
problem more convincing for students.

Mathematics Subject Classification: 03D35 68Q01 97Q80

Keywords: halting problem, 10th Hilbert problem, Russell’s paradox, set
theory, pedagogical notes



10 B. Robertson, V. Kreinovich, and O. Kosheleva

1 Formulation of the Problem

Halting problem: reminder. A computer science degree means acquiring
both the practical skills needed to design and program software and the theo-
retical knowledge describing which computational tasks are possible and which
are not. Different programs include different examples of problems for which
no computational solution is possible, but all of them include – with proof –
the very first example of such a problem: the halting problem, according to
which no algorithm is possible that, given a program p and data d, always
checks whether p halts on d; see, e.g., [2].

Some textbooks describe this result in terms of Turing machines but, in our
opinion, this result is much clearer to students when it is described in terms
of programs – i.e., something with which are very familiar – rather than in
terms of Turing machines, a new concept that they have just learned in the
corresponding theoretical course and with which they are not yet very familiar.

Let us therefore concentrate on the formulation of this result in terms of
programs.

How this result is usually proved. To come up with a proof, we first
need to describe both the program and the data in terms of natural numbers.
This description is almost straightforward. Indeed, in the computer, no matter
what symbols we type, any program or data is represented as a sequence of 0s
and 1s.

In principle, we can just take the corresponding sequence of 0s and 1s,
and interpret it as a binary number: e.g., 100 would be interpreted as 4, 101
as 5, etc. However, this does not provide us with a perfect representation,
since in this case, two different sequences of 0s and 1s, e.g., 1 and 001, are
represented by the same natural number – and so, based on this number, it is
impossible to uniquely reconstruct the corresponding program. To avoid this
non-uniqueness, we can append 1 in front the sequence of 0s and 1s. This
way, 1 becomes 11 which is the number 3, while 0011 becomes 1001 which is
a different natural number 9.

Once this representation is agreed upon, we can then prove, by contradic-
tion, that the desired halt-checker h(p, d) is not possible. Indeed, if it was
possible, then we could write the following auxiliary program:

procedure auxiliary(i):

if h(i,i) then

loop forever

else

return 0

where loop forever means invoking a non-halting while-loop, such as

while(true}) i = i;



Halting problem: pedagogical remark 11

The proof is straightforward. Indeed, our auxiliary program corresponds to
some integer i0.

• If this program halts on the number i0, then h(i0, i0) is true and hence,
our auxiliary program loops forever – which contradicts to our assump-
tion that it halts.

• Similarly, if the auxiliary program does not halt, this means that h(i0, i0)
is false and thus, our auxiliary program returns 0 – which contradicts to
our assumption that it does not halt.

In both possible cases, we get a contradiction, which means that our assump-
tion – that a halting program h(p, d) is possible – is wrong. Thus, no such
halting program is possible.

A natural question. What this proof shows that if we require that a program
h(p, d) correctly checks halting for all possible programs p and data d. To prove
this, we consider a weird example of an auxiliary program – a program which
was invented for the sole purpose of proving this result. What if we limit
ourselves to program which are more reasonable (in some natural sense)? Will
this result still hold?

This question makes perfect sense in view of the analogy with bar-
ber’s paradox and Russell’s paradox in set theory. Most textbooks
emphasize that the main idea behind the above proof comes from the origins
of set theory. The corresponding construction can be informally described by
the known barber’s paradox, when a military barber attached to a detachment
is commanded to shave those and only those who do not shave themselves. This
is clearly a paradox:

• if he shaves himself, then he is not allowed to do it, and

• vice versa, if he does not shave himself, then he is commanded to shave
himself.

In set theory context, this paradox was first described by the famous

philosopher Bertrand Russell who proposed to consider the set S
def
= {x : x 6∈ x}

of all the sets that are not elements of themselves (being an element of one-
self is not an impossibility: e.g., the set of all possible sets is clearly its own
element). Here:

• If S ∈ S, then, since S is an element of the class of all sets that do not
belong to themselves, we should have S 6∈ S.

• Vice versa, if S is not an element of S, then it should not have the
property S 6∈ S and thus, we would have S ∈ S.



12 B. Robertson, V. Kreinovich, and O. Kosheleva

In both cases, we have a contradiction.
This situation is indeed similar to the halting problem. However, in contrast

to the halting problem, for sets, we do not make a radical conclusion that sets
do not exist: it turns out that if we limit ourselves to reasonable sets, paradoxes
disappear, and we have a very reasonable theory – actually, set theory is, at
present, the foundation for all mathematics.

So, this analogy emphasizes the above natural question: what if we limit
ourselves to reasonable programs – like in set theory, when we limit ourselves
to reasonable sets — will we get a different result?

What we do in this paper. In this paper, we explain that – as is rather
easy to explain in class – the halt-checking program h(p, d) is not possible even
if we require that it only work for reasonable programs.

2 Halt-Checking Is Impossible Even If We

Limit Ourselves to Reasonable Programs

Main idea. The main idea behind our explanation is based on another algo-
rithmically unsolvable problem which is often presented in theoretical comput-
ing classes – the problem of checking whether a given Diophantine equation is
solvable.

A Diophantine equation is a equation of the type P (x1, . . . , xn) = 0, where
P (x1, . . . , xn) is a polynomial with integer coefficients, and we are looking for
solutions in which all xi are natural numbers. It is known that no algorithm
is possible that would check whether a given Diophantine equation has a so-
lution. This result is a solution to one of the 23 challenging mathematical
problems that David Hilbert, on behalf of the world’s mathematical commu-
nity, presented to the 20 century mathematicians – this problem (No. 10 on
Hilbert’s list) was eventually solved by Yuri Matiyasevich in 1970; see, e.g.,
[1].

How to transform this result into a more convincing proof of the
halting problem. For each polynomial P , we can use exhaustive search to
see if the corresponding polynomial equation has a solution in natural numbers:

• we start with Stage 0, on which we check whether P (x1, . . . , xn) = 0 for

any tuple for which
n∑

i=1
xi = 0 – there is actually only one such tuples

x1 = . . . = xn = 0, so this checking is easy;

• then, we perform Stage 1, i.e., we check whether P (x1, . . . , xn) = 0 for

any tuple for which
n∑

i=1
xi = 1 – there are n such tuples, with xi = 1 for

some i and xj = 0 for all j 6= i;



Halting problem: pedagogical remark 13

• after that, we perform Stage 2, i.e., we check whether P (x1, . . . , xn) = 0

for any tuple for which
n∑

i=1
xi = 2;

• . . .

• at Stage k of this algorithm, we check whether P (x1, . . . , xn) = 0 for any

tuple for which
n∑

i=1
xi = k;

• . . .

At each stage, we check finitely many tuples.
If the polynomial equation has a solution, this algorithm will find it. Thus,

this program is reasonable (definitely more reasonable than the program used
in the usual proof of halting problem).

On the other hand, if the original equation does not have a solution, then
this program will never halt. So, if it was possible to check whether any
such program halts or not, we would then be able to tell whether a given
Diophantine equation has a solution – and we know, from Matiyasevich’s result,
that this is not possible.

Thus, even if we limit ourselves to reasonable programs p, it is still not
possible to have a program that would check, for each such program p and
data d, whether p halts on d.

Comment. Of course, the impossibility of such a general result does not
preclude us from sometimes being able to check whether a program halts:
such checks are indeed possible for many specific classes of programs.

Acknowledgments. This work was supported in part by the National
Science Foundation grant HRD-1242122 (Cyber-ShARE Center of Excellence).

References

[1] Yu. Matiyasevich, Hilbert’s 10th Problem (Foundations of Computing),
MIT Press, Cambridge, Massachusetts, 1993.

[2] M. Sipser, Introduction to the Theory of Computation, Cengage Learning,
Boston, Massachusetts, 2012.

Received: December 22, 2017; Published: January 5, 2018


