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Abstract 

 

In this paper we define and study the extended center, the extended quasi center, 

the extended -quasi center and the extended -quasi center of a complex Banach 

algebra, where we get some results that are similar to known results concerning 

center, quasi center, -quasi center and -quasi center of a complex Banach 

algebra. 
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1. Introduction 
 

The purpose of this paper is to study extended centrality in a complex Banach 

algebra, where we get some result concerning these concepts. Most of these 

results and their proofs are similar to that for As'ad, C. Le Page and Rennison in 

[2], [6], [7], [8] and [9]. 

Throughout this paper all linear spaces and algebras are assumed to be defined 

over ¢ the field of complex numbers,  A will denote a unital complex Banach 

algebra and the center of  A  is  Z(A) = { aA : ax = xa  for all  xA }. 

In [7] and [8] Rennison defined the set of all quasi central elements in A by Q(A) 
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= 
1


k

Q(k, A), where Q(k, A) = { aA: || x (  - a ) ||   k || (  - a ) x ||  for all xA 

and  all  ¢ }, and the set of all -quasi central elements in A by 
1


k

(k,A)Q , 

where (k,A)Q  = { aA : || x (  - a ) ||   k || (  - a ) x ||   for all xA and all 

 ( )A a  }, then he show that  Z(A)  Q(A)  (A)Q . In [4] Hussein and  As’ad 

defined the set of all -quasi central elements in A by (A)Q = 
1


k

(k,A)Q , 

where  (k,A)Q  = { aA : || x (  - a ) ||   k || (  - a ) x ||   for all xA and  all  

 ( )A a  }, and they show that  Q(A)  (A)Q . In [2] As’ad defined the extended 

center of a group G by:  

Z e(G) = { gG : gx = xg,   for all xG  except for a finite number}. 

 

2. Extended Centerality 
 

Definition 2.1.  Let  A be a unital complex Banach algebra. 

1. The extended center of  A is Z e(A) = { aA : ax = xa,   for all xA  except 

for a finite number}.  

2. The extended quasi center of A is Qe(A) = 
1


k

Qe(k, A), where Qe(k, A) = { 

aA : || x (  - a ) ||   k || (  - a ) x ||    for all xA except for a finite number 

and  for all  ¢ }. 

3. The extended -quasi center of A is (A)eQ = 
1


k

(k,A)eQ , where (k,A)eQ ={ 

aA: || x (  - a ) ||   k || (  - a ) x ||   for all xA except for a finite number and 

for all   ( )A a  }. 

4. The extended -quasi center of A is (A)eQ = 
1


k

(k,A)eQ , where (k,A)eQ  = { 

aA: || x (  - a ) ||   k || (  - a ) x ||   for all xA except for a finite number and 

for  all   ( )A a  }. 

 

We start by the following proposition that is an elementary consequence of the 

definitions.   

Proposition 2.2.  If A is a unital complex Banach algebra then,  

(i) Z e(A)  Q e(A)  (A)eQ , and  Q e(A)  (A)eQ . 

(ii) Q e(A) = (A)eQ  (A)eQ . 
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(iii) Z e(A) is a unital normed subalgebra of A,  Z(A)  Z e(A), Q(A)  Q e(A), 

(A)Q  (A)eQ , and (A)Q  (A)eQ . 

 

Proof. 

         We prove the first part of (iii) (which is similar to the proof of Theorem 

2.2(i) in [ 2 ] ) and left the others to the reader.  

Since A has a unity, say e then eZe(A) and hence Ze(A)  . Now, let a, 

bZe(A) and  be a scalar. Then there are elements a1, a2, …. , an  and  b1, b2, …. 

, bm  in  A  such that  xa  =  ax   for all xA \ { a1, a2, …. , an }  and  xb  =  bx   for 

all xA \ { b1,  b2, …. , bm }.  Hence (a + b)x = x(a + b)  and (ab)x = x(ab) for 

all xA \ { a1, a2, …., an, b1, b2, …, bm }. Hence (a + b) and ab belong to Ze(A). 

Therefore, Ze(A) is a a unital normed subalgebra of A 

 

Proposition 2.3.  Let a be an element of a complex Banach algebra A, then 

aQe(A) if and only if there is a constant  L such that || ax – xa || ≤  L || (λ – a)x ||  

for all xA except a finite number of elements and for all λ¢. 

 

Proof.  

Let aQe(A), then there is  k ≥ 1 such that, for all xA except a finite number of 

elements and for all λ¢ we have, || x(λ –  a) || ≤ k|| (λ – a)x || from which we 

have, || ax – xa || = || x(λ – a) – (λ – a)x || ≤ || x(λ – a) || + || (λ – a)x || ≤  k|| (λ – a)x 

|| + || (λ – a)x || = L || (λ – a)x ||  where, L = k + 1. 

Conversely, suppose that there is a constant L such that || ax – xa || ≤  L|| (λ – a)x ||  

for all xA except a finite number of elements and for all λ¢. Then || x(λ –  a) || 

= || (λ – a)x + ax – xa || ≤  || (λ – a) x || + || ax – xa ||  ≤  || (λ – a) x || + L|| (λ – a)x ||  

= k || (λ – a)x ||, where  k = L + 1. 

Hence aQe(A)   

 

Similar results hold for (A)eQ  and (A)eQ , these results are given in the 

following two propositions, where their proofs are similar to the proof of 

proposition 2.3. 

 

Proposition 2.4.  Let a be an element of a complex Banach algebra A, then 

a (A)eQ  if and only if there is a constant  L such that || ax – xa || ≤ L || (λ – a)x ||  

for all xA except a finite number of elements and for all λ ( )A a . 
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Proposition 2.5.  Let a be an element of a complex Banach algebra A, then 

a (A)eQ  if and only if there is a constant  L such that || ax – xa || ≤ L || (λ – a)x ||  

for all xA except a finite number of elements and for all λ ( )A a . 

 

In the following theorem we show that Qe(1,A) = Z e(A). This result and its proof  

is similar to the result Q(1,A) = Z(A) of C. Le Page in [6].  

  

Theorem 2.6.  Let A be a Banach algebra with unity over a complex field C and a 

 A such that  || x(λ − a) || ≤ || (λ − a)x ||  for all x  A except a finite number of 

elements  and for all λ ¢.  Then a  Z e (A). 

 

Proof. Choose | λ | > || a ||. Since A is a Banach algebra, then | λ | n > || a || n ≥ || a n||. 

Hence the spectral radius   r(
a


 ) = 

1

lim || ( ) ||nn

n

a


< 1, and so (λ − a)-1 exists and             

(λ − a)-1y  A for all y  A. By this and the assumption ( put x = (λ − a)-1y ) we 

get that for all y  A except a finite number of elements we have 

||(λ − a)-1 y(λ − a)|| ≤ ||(λ − a)(λ − a)-1y||  = || y ||                                                   (1). 

Now for any fixed nonzero u ¢ and any positive integer n with 
| |

n


 > || a ||, by 

putting λ = 
n


 in (1) we get  ||(

n


 − a)-1 y(

n


 − a)|| ≤ || y ||  which implies that 

||(e −
n


 a)-1 y(e −

n


 a)|| ≤ || y ||. 

By induction one can show that  ||(e −
n


 a)-m y(e −

n


 a)m || ≤ || y ||  for all mN, 

so that  ||(e −
n


 a)-n y(e −

n


 a)n || ≤ || y ||.    

Take the limit as n→ ∞ and use the continuity of the norm to get || exp(a) y exp(-

a) || ≤ || y ||, but this inequility is also true for   = 0, then one can easly see that 

the function f: ¢ → A defined by  f() = exp(a) y exp(-a) is bounded and entire. 

Hence by Liuoville's Theorem f  is constant. Then f() = exp(a)y exp(−a) = y.  
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Since yA was arbitrary in A except a finite number of elements, then, exp(a)y 

= y exp(a)  for all such y and so 
0 0

( ) ( )

! !

n na a
y y

n n

  

  . This implies that 

ay = ya for all ¢, hence ay = ya for all y  A except a finite number of 

elements. Therefore, a  Ze(A).  

 

Proposition 2.7.  Let A be a complex Banach algebra with unity, k ≥ 1 and A-1 be 

the set of all invertible elements in A. If aQe(k, A)∩A-1, then a-1Qe(k|| a || || a-1 

||, A). 

 

Proof. Let aQe(k, A)∩A-1. Then a-1A, and for any μ¢\{0} and all xA  

except a finite number of elements we have, ||x(μ-1 − a-1)|| = || x(μ − a) (μ a)-1|| ≤ 

||x(μ − a)|| | μ-1 | || a-1 || ≤  k || (μ − a) x || | μ-1 | || a-1 || = k || (μ a) (μ-1 − a-1)x || | μ-1 | || 

a-1 || = k || a(μ-1 − a-1)x || | μ | | μ-1 | || a-1 || ≤  k || a || || a-1 || || (μ-1 − a-1)x ||.  However, 

μ¢\{0}  iff   μ-1¢\{0}, then for any λ ¢\{0} and all xA except a finite 

number of elements we have, || x(λ − a-1) || ≤ k || a || || a-1 || || (λ − a-1)x ||. 

Again  aQe(k, A) implies that  || xa-1|| ≤ || x || || a-1||  ≤ || a || || a-1x || || a-1||  ≤ k || a || 

|| a-1x || || a-1||  for all xA except a finite number of elements. Together, || x(λ − a-

1) || ≤ k || a || || a-1 || || (λ − a-1)x || for all λ ¢ and all xA except a finite number of 

elements.  Therefore, a-1Qe(k|| a || || a-1 ||, A).  
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