International Mathematical Forum, Vol. 13, 2018, no. 3, 117 - 122 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2018.71195

Extended Centerality in a Complex

Banach Algebra

As'ad Y. As'ad

Department of Mathematics Islamic University of Gaza, Palestine

Copyright \bigcirc 2018 As'ad Y. As'ad. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we define and study the extended center, the extended quasi center, the extended σ -quasi center and the extended ρ -quasi center of a complex Banach algebra, where we get some results that are similar to known results concerning center, quasi center, σ -quasi center and ρ -quasi center of a complex Banach algebra.

Keywords: Centrality, extended centrality, complex Banach algebra

1. Introduction

The purpose of this paper is to study extended centrality in a complex Banach algebra, where we get some result concerning these concepts. Most of these results and their proofs are similar to that for As'ad, C. Le Page and Rennison in [2], [6], [7], [8] and [9].

Throughout this paper all linear spaces and algebras are assumed to be defined over $\not\in$ the field of complex numbers, A will denote a unital complex Banach algebra and the center of A is $Z(A) = \{ a \in A : ax = xa \text{ for all } x \in A \}$.

In [7] and [8] Rennison defined the set of all quasi central elements in A by Q(A)

118 As'ad Y. As'ad

 $= \underset{k \geq 1}{\cup} Q(k, A), \text{ where } Q(k, A) = \{ a \in A: \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \text{ for all } x \in A \text{ and all } \lambda \in \emptyset \}, \text{ and the set of all } \sigma\text{-quasi central elements in } A \text{ by } \underset{k \geq 1}{\cup} Q_{\sigma}(k, A), \text{ where } Q_{\sigma}(k, A) = \{ a \in A: \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \text{ for all } x \in A \text{ and all } \lambda \in \rho_A(a) \}, \text{ then he show that } Z(A) \subseteq Q(A) \subseteq Q_{\sigma}(A). \text{ In [4] Hussein and } As \text{ and defined the set of all } \rho\text{-quasi central elements in } A \text{ by } Q_{\rho}(A) = \underset{k \geq 1}{\cup} Q_{\rho}(k, A), \text{ where } Q_{\rho}(k, A) = \{ a \in A: \| x (\lambda - a) \| \leq k \| (\lambda - a) x \| \text{ for all } x \in A \text{ and all } \lambda \in \sigma_A(a) \}, \text{ and they show that } Q(A) \subseteq Q_{\rho}(A). \text{ In [2] As ad defined the extended center of a group } G \text{ by:}$

 $Z_e(G) = \{ g \in G : gx = xg, \text{ for all } x \in G \text{ except for a finite number} \}.$

2. Extended Centerality

Definition 2.1. Let A be a unital complex Banach algebra.

- 1. The extended center of A is $Z_e(A) = \{ a \in A : ax = xa, for all x \in A \text{ except for a finite number} \}$.
- 2. The extended quasi center of A is $Q_e(A) = \bigcup_{k \ge 1} Q_e(k, A)$, where $Q_e(k, A) = \{a \in A : \|x(\lambda a)\| \le k \|(\lambda a)x\|$ for all $x \in A$ except for a finite number and for all $\lambda \in \emptyset$.
- 3. The extended σ -quasi center of A is $Q_{\sigma e}(A) = \bigcup_{k \geq 1} Q_{\sigma e}(k, A)$, where $Q_{\sigma e}(k, A) = \{a \in A: ||x(\lambda a)|| \leq k ||(\lambda a)x|| \text{ for all } x \in A \text{ except for a finite number and for all } \lambda \in \rho_A(a) \}$.
- 4. The extended ρ -quasi center of A is $Q_{\rho e}(A) = \bigcup_{k \geq 1} Q_{\rho e}(k, A)$, where $Q_{\rho e}(k, A) = \{ a \in A : || x (\lambda a) || \leq k || (\lambda a) x ||$ for all $x \in A$ except for a finite number and for all $\lambda \in \sigma_A(a) \}$.

We start by the following proposition that is an elementary consequence of the definitions.

Proposition 2.2. If A is a unital complex Banach algebra then,

- (i) $Z_{e}(A) \subseteq Q_{e}(A) \subseteq Q_{\sigma e}(A)$, and $Q_{e}(A) \subseteq Q_{\sigma e}(A)$.
- (ii) $Q_{e}(A) = Q_{\sigma_{e}}(A) \cap Q_{\sigma_{e}}(A)$.

(iii) $Z_e(A)$ is a unital normed subalgebra of A, $Z(A) \subseteq Z_e(A)$, $Q(A) \subseteq Q_e(A)$, $Q_\sigma(A) \subseteq Q_{\sigma e}(A)$, and $Q_\sigma(A) \subseteq Q_{\sigma e}(A)$.

Proof.

We prove the first part of (iii) (which is similar to the proof of Theorem 2.2(i) in [2]) and left the others to the reader.

Since A has a unity, say e then $e \in Z_e(A)$ and hence $Z_e(A) \neq \phi$. Now, let a, $b \in Z_e(A)$ and α be a scalar. Then there are elements a_1, a_2, \ldots, a_n and b_1, b_2, \ldots , b_m in A such that xa = ax for all $x \in A \setminus \{a_1, a_2, \ldots, a_n\}$ and xb = bx for all $x \in A \setminus \{b_1, b_2, \ldots, b_m\}$. Hence $(a\alpha + b)x = x(a\alpha + b)$ and (ab)x = x(ab) for all $x \in A \setminus \{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m\}$. Hence $(a\alpha + b)$ and ab belong to $Z_e(A)$. Therefore, $Z_e(A)$ is a a unital normed subalgebra of $A\Box$

Proposition 2.3. Let a be an element of a complex Banach algebra A, then $a \in Q_e(A)$ if and only if there is a constant L such that $||ax - xa|| \le L ||(\lambda - a)x||$ for all $x \in A$ except a finite number of elements and for all $\lambda \in e$.

Proof.

Let $a \in Q_e(A)$, then there is $k \ge 1$ such that, for all $x \in A$ except a finite number of elements and for all $\lambda \in \emptyset$ we have, $\parallel x(\lambda - a) \parallel \le k \parallel (\lambda - a)x \parallel$ from which we have, $\parallel ax - xa \parallel = \parallel x(\lambda - a) - (\lambda - a)x \parallel \le \parallel x(\lambda - a) \parallel + \parallel (\lambda - a)x \parallel \le k \parallel (\lambda - a)x \parallel + \parallel (\lambda - a)x \parallel = L \parallel (\lambda - a)x \parallel$ where, L = k + 1. Conversely, suppose that there is a constant L such that $\parallel ax - xa \parallel \le L \parallel (\lambda - a)x \parallel$ for all $x \in A$ except a finite number of elements and for all $\lambda \in \emptyset$. Then $\parallel x(\lambda - a) \parallel$

$$= \| (\lambda - a)x + ax - xa \| \le \| (\lambda - a) x \| + \| ax - xa \| \le \| (\lambda - a) x \| + L \| (\lambda - a)x \|$$

$$= k \| (\lambda - a)x \|, \text{ where } k = L + 1.$$

Hence $a \in Q_e(A) \square$

Similar results hold for $Q_{\sigma e}(A)$ and $Q_{\rho e}(A)$, these results are given in the following two propositions, where their proofs are similar to the proof of proposition 2.3.

Proposition 2.4. Let a be an element of a complex Banach algebra A, then $a \in Q_{\sigma_e}(A)$ if and only if there is a constant L such that $\| ax - xa \| \le L \| (\lambda - a)x \|$ for all $x \in A$ except a finite number of elements and for all $\lambda \in \rho_A(a)$.

120 As'ad Y. As'ad

Proposition 2.5. Let a be an element of a complex Banach algebra A, then $a \in Q_{\rho e}(A)$ if and only if there is a constant L such that $\| ax - xa \| \le L \| (\lambda - a)x \|$ for all $x \in A$ except a finite number of elements and for all $\lambda \in \sigma_A(a)$.

In the following theorem we show that $Q_e(1,A) = Z_e(A)$. This result and its proof is similar to the result Q(1,A) = Z(A) of C. Le Page in [6].

Theorem 2.6. Let A be a Banach algebra with unity over a complex field C and a \in A such that $\| x(\lambda - a) \| \le \| (\lambda - a)x \|$ for all $x \in$ A except a finite number of elements and for all $\lambda \in \not e$. Then $a \in Z_e(A)$.

Proof. Choose $\mid \lambda \mid > \parallel a \parallel$. Since A is a Banach algebra, then $\mid \lambda \mid^n > \parallel a \parallel^n \geq \parallel a^n \parallel$.

Hence the spectral radius $r(\frac{a}{\lambda}) = \lim_{n \to \infty} ||(\frac{a}{\lambda})^n||^{\frac{1}{n}} < 1$, and so $(\lambda - a)^{-1}$ exists and

 $(\lambda - a)^{-1}y \in A$ for all $y \in A$. By this and the assumption (put $x = (\lambda - a)^{-1}y$) we get that for all $y \in A$ except a finite number of elements we have

$$\|(\lambda - a)^{-1} y(\lambda - a)\| \le \|(\lambda - a)(\lambda - a)^{-1} y\| = \|y\|$$
(1).

Now for any fixed nonzero $u \in c$ and any positive integer n with $\frac{n}{|\mu|} > ||a||$, by

putting
$$\lambda = \frac{n}{\mu}$$
 in (1) we get $\|(\frac{n}{\mu} - a)^{-1}y(\frac{n}{\mu} - a)\| \le \|y\|$ which implies that

$$\|(e - \frac{\mu}{n} a)^{-1} y(e - \frac{\mu}{n} a)\| \le \|y\|.$$

By induction one can show that $\|(e - \frac{\mu}{n} \ a)^{-m} \ y(e - \frac{\mu}{n} \ a)^m \| \le \| \ y \|$ for all $m \in \mathbb{N}$,

so that
$$\|(e - \frac{\mu}{n} a)^{-n} y(e - \frac{\mu}{n} a)^n\| \le \|y\|$$
.

Take the limit as $n \to \infty$ and use the continuity of the norm to get $\| \exp(\mu a) \ y \exp(-\mu a) \| \le \| \ y \|$, but this inequility is also true for $\mu = 0$, then one can easly see that the function $f: \not c \to A$ defined by $f(\mu) = \exp(\mu a) \ y \exp(-\mu a)$ is bounded and entire. Hence by Liuoville's Theorem f is constant. Then $f(\mu) = \exp(\mu a) \ y \exp(-\mu a) = y$.

Since $y \in A$ was arbitrary in A except a finite number of elements, then, $\exp(\mu a)y = y \exp(\mu a)$ for all such y and so $\sum_{0}^{\infty} \frac{(\mu a)^n}{n!} y = y \sum_{0}^{\infty} \frac{(\mu a)^n}{n!}$. This implies that $\mu ay = y \mu a$ for all $\mu \in \mathfrak{c}$, hence ay = y a for all $y \in A$ except a finite number of elements. Therefore, $a \in Z_e(A)$. \square

Proposition 2.7. Let A be a complex Banach algebra with unity, $k \ge 1$ and A^{-1} be the set of all invertible elements in A. If $a \in Q_e(k, A) \cap A^{-1}$, then $a^{-1} \in Q_e(k||a|| ||a^{-1}||, A)$.

Proof. Let $a \in Q_e(k, A) \cap A^{-1}$. Then $a^{-1} \in A$, and for any $\mu \in \mathfrak{c} \setminus \{0\}$ and all $x \in A$ except a finite number of elements we have, $\|x(\mu^{-1} - a^{-1})\| = \|x(\mu - a) \ (\mu \ a)^{-1}\| \le \|x(\mu - a)\| \ \|\mu^{-1}\| \|a^{-1}\| \le k \| \ (\mu - a) \ x \| \ \|\mu^{-1}\| \|a^{-1}\| = k \| \ (\mu \ a) \ (\mu^{-1} - a^{-1})x \| \ \|\mu^{-1}\| \|a^{-1}\| = k \| \ (\mu \ a) \ (\mu^{-1} - a^{-1})x \| \ \|\mu^{-1}\| \|a^{-1}\| = k \| \ a(\mu^{-1} - a^{-1})x \| \ \|\mu^{-1}\| \|a^{-1}\| \le k \| \ a \| \|a^{-1}\| \| \ (\mu^{-1} - a^{-1})x \|.$ However, $\mu \in \mathfrak{c} \setminus \{0\}$ iff $\mu^{-1} \in \mathfrak{c} \setminus \{0\}$, then for any $\lambda \in \mathfrak{c} \setminus \{0\}$ and all $x \in A$ except a finite number of elements we have, $\|x(\lambda - a^{-1})\| \le k \| \ a \| \|a^{-1}\| \| \|(\lambda - a^{-1})x \|.$ Again $a \in Q_e(k, A)$ implies that $\|xa^{-1}\| \le \|x\| \|a^{-1}\| \le \|a\| \|a^{-1}x\| \|a^{-1}\| \le k \|a\| \|a^{-1}\| \|a^$

References

- [1] A. Y. As'ad, The ρ-quasi center of a Banach algebra II, *Journal of Islamic University*, **16** (1999), 46-55.
- [2] A.Y. As'ad, The Extended Center of Group, *An-Najah University Journal*, **22** (2008), 67-76.
- [3] F. F. Bonsal and J. Duncan, *Complete Normed Algebras*, Springer, Berlin, 1973. https://doi.org/10.1007/978-3-642-65669-9
- [4] D. Hussein and A.Y. As'ad, The ρ-quasi center of a Banach algebra, *Arabian Journal for Science and Engineering*, **16** (1991), no. 4, 471-474.

122 As'ad Y. As'ad

[5] A. S. Khalil, Closure Properties of Quasi Center of A complex Banach Algebra, 2004.

- [6] C. Le Page, Sur quelques conditions entrainant la commutativite dans lesalgebres de Banach, C.R. Acad. Sci. Paris Ser, A-B, **265** (1967), 235-237.
- [7] J. F. Rennison, Conditions related to centrality in a Banach algebra. J. London Math. Soc., **26** (1982), 155-168. https://doi.org/10.1112/jlms/s2-26.1.155
- [8] J.F. Rennison, Conditions related to centrality in a Banach algebra II, J. London Math. Soc., **35** (1987), 499-513. https://doi.org/10.1112/jlms/s2-35.3.499
- [9] J.F. Rennison, Closure properties of the quasi-centre of a Banach algebra, *Math. Proc. Camb. Phil. Soc.*, **108** (1990), 355-364. https://doi.org/10.1017/s0305004100069218
- [10] W. Rudin, Functional Analysis, Mc. Graw-Hill, New York, 1982.

Received: December 11, 2017; Published: February 12, 2018