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Abstract

In this paper we define and study the extended center, the extended quasi center,
the extended o-quasi center and the extended p-quasi center of a complex Banach
algebra, where we get some results that are similar to known results concerning
center, quasi center, c-quasi center and p-quasi center of a complex Banach
algebra.
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1. Introduction

The purpose of this paper is to study extended centrality in a complex Banach
algebra, where we get some result concerning these concepts. Most of these
results and their proofs are similar to that for As'ad, C. Le Page and Rennison in
[2], [6], [7], [8] and [9].

Throughout this paper all linear spaces and algebras are assumed to be defined
over ¢ the field of complex numbers, A will denote a unital complex Banach
algebra and the center of A is Z(A)={acA:ax=xa forall xeA}.

In [7] and [8] Rennison defined the set of all quasi central elements in A by Q(A)



118 As’ad Y. As’ad

= kL>J1Q(k,A),whereQ(k, A)={acA:||[x(r-a)| < k]| (Ar-a)x] forall xeA
and all Ae¢ }, and the set of all o-quasi central elements in A by ku>lQU(k,A),

where Q_(k,A) ={acA:||x(Ar-a)|< k| (A-a)x] forall xeA and all
Le p, (@) }, then he show that Z(A) < Q(A) =Q,_ (A). In [4] Hussein and As’ad
defined the set of all p-quasi central elements in A by Q (A)= ku>lQp(k,A),

where Q, (k,A) ={acA:[[x(A-a)[< k| (r-a)x]| forallxeAand all
Leo,(a) }, and they show that Q(A) =Q,(A). In [2] As’ad defined the extended

center of a group G by:
Ze(G)={geG:gx=xg, forall xeG except for a finite number}.

2. Extended Centerality

Definition 2.1. Let A be a unital complex Banach algebra.
1. The extended center of Ais Z¢(A) = {acA :ax =xa, forall xeA except
for a finite number}.

2. The extended quasi center of A is Qe(A) = Y Qe(k, A), where Qe(k, A) = {

acA:|Ix(r-a)||< k|[(r-a)x]| forall xeA except for a finite number
and forall Ae¢ }.
3. The extended c-quasi center of Aiis Q_, (A)= Y Q.. A), where Q_, (k,A)={

acA:||x(r-a)|< k][ (r-a)x]| forall xeA except for a finite number and
forall re p,(a) }.

4. The extended p-quasi center of Ais Q . (A)= &Qpe (k,A), where Q . (k,A) ={

acA:||x(r-a)|l< k|| (r-a)x]| forall xeA except for a finite number and
for all re o, (a) }.

We start by the following proposition that is an elementary consequence of the

definitions.
Proposition 2.2. If A is a unital complex Banach algebra then,

() Ze(A)=Qe(A) =Q,.(A), and Q(A) =Q . (A).

(i) Qe(A)=Q,. (A)NQ,. (A).
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(ili)  Ze(A) is a unital normed subalgebra of A, Z(A) < Z<(A), Q(A) < Q(A),
Q,(A) Q. (A),and Q,(A) Q. (A).

Proof.
We prove the first part of (iii) (which is similar to the proof of Theorem

2.2(1) in [ 2]) and left the others to the reader.

Since A has a unity, say e then ecZ¢(A) and hence Z¢(A) # ¢. Now, let a,
beZe(A) and o be a scalar. Then there are elements ay, az, ...., an and by, bo, ....
,bm In A suchthat xa = ax forall xeA\{as a,....,an} and xb = bx for
all xeA\ { by, by, ....,bm} Hence (ac. + b)x = x(ac. + b) and (ab)x = x(ab) for
all xeA\{ay az, ...., an, by, b2, ..., bm }. Hence (aa + b) and ab belong to Z¢(A).

Therefore, Ze(A) is a a unital normed subalgebra of AO

Proposition 2.3. Let a be an element of a complex Banach algebra A, then
aeQe(A) if and only if there is a constant L such that ||ax —xa || < L || (A —a)x ||
for all xe A except a finite number of elements and for all Ae¢.

Proof.

Let acQe(A), then there is k > 1 such that, for all xeA except a finite number of
elements and for all Ae¢ we have, || x(A — a) || < k|| (A — a)x || from which we
have, ||ax —xa || = || x(A —a) - (A —a)x [[ < [| x(A — @) || + || (A — a)x || < k]| (A —a)x
|+]|(A—a)x||=L| (A—a)x]| where, L=k + 1.

Conversely, suppose that there is a constant L such that || ax —xa || < L|| (A —a)x ||

for all xe A except a finite number of elements and for all Ae¢. Then || x(A — a) ||
=[[(A-a)x+ax—xal[< [[(A-a) x| +|lax—xa| < [[(A-a)x [+ L||(A-a)x]|
=k || (A—a)x]||, where k=L +1.

Hence acQe(A) O

Similar results hold for Q_,(A) and Q,(A), these results are given in the

following two propositions, where their proofs are similar to the proof of
proposition 2.3.

Proposition 2.4. Let a be an element of a complex Banach algebra A, then
aeQ_, (A) if and only if there is a constant L such that || ax —xa || <L || (A—a)X ||

for all xe A except a finite number of elements and for all A€ p, (a).
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Proposition 2.5. Let a be an element of a complex Banach algebra A, then
aeQ , (A) if and only if there is a constant L such that ||ax —xa ||< L[| (A —a)x ||

for all xe A except a finite number of elements and for all A 5, (a) .

In the following theorem we show that Qe(1,A) = Z ¢(A). This result and its proof
is similar to the result Q(1,A) = Z(A) of C. Le Page in [6].

Theorem 2.6. Let A be a Banach algebra with unity over a complex field C and a
e Asuch that || x(A —a) || < || (A —a)x || forall x € A except a finite number of

elements and forall AL e¢. Thena € Z¢ (A).

Proof. Choose | A | > || a||. Since A is a Banach algebra, then | A |" > || a||" > a"].
Hence the spectral radius r(% ) = lim|| (%)n ||ﬁ< 1, and so (A — a)* exists and

(A —a)ly e Aforall y e A. By this and the assumption ( put x = (A — a)ly ) we
get that for all y € A except a finite number of elements we have

I —a)y* y(h = a)ll < Ik — @) —ay*yll =[] ).

Now for any fixed nonzero u e¢ and any positive integer n with In_l > |l al, by
7]

putting A = D in (1) we get ||(E —a)t y(ﬂ —a)|| <]y || which implies that
JZ H JZ
e = aytye —= a)ll<lyll
n n
By induction one can show that ||(e —ﬁ a)™y(e —ﬁ a)" || <|ly]| forall meN,

so that ||(e—§ a)™" y(e—ﬁ "=yl

Take the limit as n— oo and use the continuity of the norm to get || exp(ua) y exp(-
ua) || <y |l, but this inequility is also true for pn = 0, then one can easly see that
the function f: ¢ — A defined by f(u) = exp(ua) y exp(-ua) is bounded and entire.
Hence by Liuoville's Theorem f is constant. Then f(u) = exp(ua)y exp(—pa) =y.
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Since yeA was arbitrary in A except a finite number of elements, then, exp(ua)y
=y exp(pa) for all such y and so Z@y = yZ@. This implies that
= n! = n!

uay = yua for all ue¢, hence ay = ya for all y € A except a finite number of
elements. Therefore, a € Ze(A). O

Proposition 2.7. Let A be a complex Banach algebra with unity, k> 1 and A be
the set of all invertible elements in A. If acQe(k, A)YNA™, then aeQe(k|| a || || a*
I, A).

Proof. Let aeQe«(k, A)NA™L. Then a'eA, and for any pe¢\{0} and all xeA
except a finite number of elements we have, |x(u? —al)|| = || x(u — a) (u a)?}|| <
Ix(=a)l [ut[la* < k[ (w=a)x[|[pwh[[lat [ =k (na) (W —ahx || pt]]
atll=k[la@—ahx | |pllwt[lat < kflallfa® || (! —a®)x]. However,
neg\{0} iff pleg\{0}, then for any L ¢\{0} and all xeA except a finite
number of elements we have, || x(A—a?) || <kl a||la® ||| (A —a)x ]|

Again aeQe(k, A) implies that || xa™[| <[ x[[fla*]l <[lalllla*x[[]la*] <k] a]
|| ax || || &2 for all xeA except a finite number of elements. Together, || x(A — &
Hiskllalllat| |l —ahx| forall A e¢ and all xeA except a finite number of

elements. Therefore, ateQe(k|| a ||| a?|, A). O
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