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Abstract

In this paper, we introduce the notion of ¢-complement of intuitionistic fuzzy
graph structure G = (A, Bi, Bo,..., Bk) where ¢ is a permutation on {B1, B>,...,Bk}
and obtain some results. We also define some elementary definitions like self

complementary, totally self complementary, strong self complementary
intuitionistic fuzzy graph structure and study their properties.
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l. Introduction

The concept of intuitionistic fuzzy graph structure G = (A, Ba, By,...,Bk)
is introduced and studied by the authors in [6]. Zadeh [7] in 1965 introduced the
notion of fuzzy sets. Then Rosenfeld [8] gave the idea of fuzzy relations and
fuzzy graph in 1975. Atanassov [5] proposed the first definition of intuitionistic
fuzzy graph. E. Sampatkumar in [1] has generalized the notion of graph G = (V,
E) to graph structure G = (V, Ry, Ry, ..., R) where Ry, Ro, ..., Rk are relations on
V which are mutually disjoint and each Ri ,i= 1,2, 3, ....... , kK i1s symmetric and
irreflexive. T. Dinesh and T. V. Ramakrishnan [2] introduced the notion of fuzzy



242 Vandana Bansal and P.K. Sharma

graph structure and studied their properties. In this paper, we will introduce and
study ¢ - complement of intuitionistic fuzzy graph structure G .

2. Preliminaries

In this section, we review some definitions that are necessary to
understand the content of this paper. These are mainly taken from [2], [7], [8], [9],
[10] and [11].

Definition (2.1) [11]: G = (V, Ry, R2,...,Rk) is a graph structure if V is a non
empty set and Ry, Ro,...,Rkare relations on V which are mutually disjoint such that
each Ri, i=1, 2, 3, ... k, is symmetric and irreflexive.

Definition (2.2) [9, 10]: An intuitionistic fuzzy graph is of the form G = (V, E)
where

(i) V = {v1, V2, ..., Va} such that w1 : V— [0,1] and vy1: V— [0,1] denote the
degree of membership and non membership of the element vi € V, respectively
and 0 < pu(vi) +vy1 (vi) <1, foreveryvi eV, (i=12,....n),

(i) EcV xV where po: VxV — [0,1]and y2: VXV — [0,1] are such that
1 (v, vi) < mindp (), (v} and p, (vi,v;) < max{y, (v;), 7.(v;)}

and 0 <z (vi, vj)+vy2 (vi,v) <1, forevery(vi,vi)€EE,(i,j=1,2,....,n).

Definition (2.3) [8]: Let G = (V, Ry, Ry, ...., Rk) be a graph structure and A, By,
Bo......, Bk be intuitionistic fuzzy subsets (IFSs) of V, R1, Rz, ..., Rk respectively
such that

g (UV) <SP (U) AR (V) and v (U,V) Sv,(U) vva(v) VuveVandi=12,...k.
Then G = (A, By, By, ..., By) is an IFGS of G.

Example (2.4) [8]: Consider the graph structure G = (V, R1, Rz, R3), where V ={
Uo, Uz, U2, U3, Us} and R1 ={ (uo, u1), (Uo, U2), (U3, us)}, R2 ={(ug, u2), (U2, us)}, R
= {(uz, u3), (Uo, us)} are the relations on V. Let A = {< up, 0.5,0.4 >, < uy,
0.6,0.3>, < uz, 0.2,0.6 >, <u3,0.1,0.8>, <u4, 0.4,0.3> } be an IFS on V and B; =
{(uo, u1), 0.5,0.3 >, < (Uo, U2), 0.1,0.3 >, < (u3, Usg), 0.1,0.2 >}, B2 ={<(ug, u2),
0.2,0.1 >, < (uz, us), 0.1,0.2 >}, B3z ={< (U2, uz), 0.1,0.5 >, ,< (Uo, Us4) , 0.3,0.2 >}
are intuitionistic fuzzy relations on V.

Here g (U,V) SPR(U) AL (V) and vy (U,V) v, (U) via(v)  Yu,veVandi
=1, 2, 3.

. G is an intuitionistic fuzzy graph structure.

Definition (2.5) [7]: The complement of a fuzzy graph G = (o, p) is a fuzzy graph
G=(,u)where G =c and H(u,v)=oc()Ac(v)-upnU,Vv),Vuve V.
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Definition (2.6) [7]: Consider the fuzzy graphs Gi = (o1, 1) and Gz = (o2, u2)
with 61*= V1 and o2*= V2. An isomorphism between G1 = (o1, u1) and G2 is a one
to one function h from Vi onto V; that satisfies o,(u) = o,(h(u)) and

£4(U,v) = 21, (h(u),h(v)) ,YUVvEeEV

3. ¢ -Complement of Intuitionistic Fuzzy Graph Structure

Definition (3.1): Let ¢ = (A, Bi, Bo,...,.Bk) be an intuitionistic fuzzy graph
structure of graph structure G = (V, Ry, Ry,...,Rk). Let ¢ denotes the permutation
on the set {Ri, Ro,...,Rk} and also the corresponding permutation on {Bg,

Bz,...Bi} ie, ¢(B) =Bi*=Bj(ie, gu, = Mg, and ¢ve = vg,) if and
only if ¢(Ri) =Rj, then the ¢ - complement of & is denoted G and is given by
G’= (A, B1® ,B2,...,Bk?) where foreach i = 1, 2, 3,..., k, we have

! (UV) = 1 (U) A 1 (V) =2 (gt YY) N Vg (UV) = v/, (U) v (V)= (Vg J(WV) -

j#i j#

Example (3.2): Consider an intuitionistic fuzzy graph structure G = (A, B1, By)

such that V = { uo, Uz, U2, U3, U4, Us}. Let R1 = { (Uo, Uz), (Uo, U2), (us, us)}, R2
={(ug, u2), (us, us)}, A = {< up, 0.8,0.2 >, <uy, 0.9,0.1>, < uz, 0.6,0.3 >, <us,
0.5,0.4> , <u4, 0.6,0.1> , <us, 0.7,0.2 > }, B1 = { (Uo, u1), 0.8,0.1 >, < (Uo, U2),
0.5,0.3>,<(u3, us),0.4,02>} B2={<(ug, u2),0.6,0.2> <(us Us),05,0.1>}

W (0.80.2) 1(0.5.0.4) :(0.6.0.1)
Bi0.4.0.2)
1(0.5.0.3)
Bi(0.8.0.1 B:0.5.0.1

i(0.9.0.1) B-(0.6.0.2) W (0.6.0.3) 5(0.7.0.2)

Fig 1

Let ¢ be a permutation on the set {B1, B2} defined by ¢ (B1) = B2and ¢ (B2) = By,
then

/Uquj (uv) = Ha u)A Ha (v) —Hg, (w); V|31¢ (uv) = Va u) v Va (v) Vg, (uv) and

g, (UV) = Py (U) A H (V)= 2, (W) 5 v (V) =V, (U) vV, (V)—vg, (UV). Thus, we have

H5"(UgU) =0 v (Ug) =0.1 and 4z *(Ugu,) = 0.1 ; v (Ugl,) =0, 245 ” (Ugu,) =0.1;

Ve (U,) =02 and 1 *(uu,) =0 ;v *(Upu,) = 0.1, 245 *(u,us) =015 v *(u,ug) = 0.1,

Remark (3.3): Here in the above example, we can check that (G?)?=G i.e., the ¢
- complement of ¢ - complement of G is G

Theorem (3.4): If ¢is a cyclic permutation on {B1, B>,...,B«} of order m (1< m <
K), then G?™ = G.
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m

<M m -
Proof. Since ¢" = identity permutation. Hence, 6’ - (A Bl¢ ,Bz¢ ,...,BK¢ )=(A B,,B,,...,B,)=G.

Proposition (3.5): Let ¢ = (A, B, Bz,...,.Bx) be an intuitionistic fuzzy graph
structure of graph structure G = (V, Ry, Rz, ..., Rk) and let ¢ and y be two
permutations on {Bz, By, ..., Bk}, then

(é“’)w —G@%) 10 particular 6% —G if and only if ¢ and y are inverse of each other.

Proof: Straight forward.

Definition (3.6): Let G = (A, By, Ba,....B) and G' = (A', B'1, B'2,...,B'x) be two
IFGSs on graph structures G = (V, Ry, R2,...,Rx) and G’ = (V’, RY, R?',...,RK)
respectively, then G is isomorphic to G' if there exists a bijective mapping f:
V— V' and a permutation ¢ on {B1, B>, ...,Bk } such that ¢(Bi) = B'; and

(D VYUEV, u(u) =, (T(u)) and v,(u)=v,(f(u))

(V) ERi, u (uv)= g, (F(u) F(v)) and vy (uv)= v, (T(u) f (V).

In particular, if V=V, A=A" and Bi =By’ foralli =1, 2, 3, ..., k, then the
above two IFGSs G and G are identical.

Remark (3.7): Note that identical IFGSs are always isomorphic, but converse is
not true. (In example (3.10), IFGSs G and G’ are isomorphic but not identical).

Example (3.8): Consider the two intuitionistic fuzzy graph structures G = (A, Bx,
B>) and G'= (A, B'1, B'2) such that VV ={uo, us, Uz, us, us, us} and V' = { uo’, ur’,
uz’, us’, us’, us'}. Let A = {< uo, 0.8,0.2 >, <uy, 0.9,0.1> < uz, 0.6,0.3 >, <us,
0.5,0.4>, <us4, 0.6,0.1> , <us, 0.7,0.2 >} be IFSon V and A’ = {<u¢’, 0.7,0.2 > <
us’, 0.8,0.2 >, <u, 0.9,0.1> <us’, 0.6,0.3 >, <us, 0.50.4>, <us’, 0.6,0.1>} be
IFSon V. Let B1={(Uo, u1), 0.8,0.1 >, < (uo, uz2), 0.50.3 >, < (us, us), 0.4,0.2
>}, Bo={<(ug u2), 0.6,0.2 >,<( ug, us),0.5,0.1 > be IFRs on V and B1" = { (uz’,
uz), 0.8,0.1 >, < (u1’,us’), 0.5,0.3>, < (us, us"), 0.4,0.2 >} B2 ={ < (uz, us’),
0.6,0.2 >,<( us', uo'),0.5,0.1 > be IFRs on V' as shown in Fig 1 and Fig 2
respectively.

u4'(0.5.0.4) U00.6.0.1)
Bi(0.4.0.2)

B 0.5.0.1)

w0901 B 060.2) 1300.6.0.3) 1y(0.7.0.2)

Fig 2
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Then it can be easily verified that G = (A, B1, B2) and G' = (A, By, B'2) are

IFGSs. Let ¢ be a permutation on {B1, B2} such that ¢(Bi) =B’i andh:V — V'
be a map defined by

u., if k=01,2,3,4
h(uk): r -
u, if k= 5.

Then it can be easily checked that
(D) za(u) =Hy (h(uk)) and v, (U, ) =v,u (h(uk)) Vu eV
(2) ptg, (uv)= g (h(U)h(v)) and v (Uv)= v (h(U)N(V)), ¥ (uv) eV xV , and i=1, 2.

o~

Hence G =G

Definition (3.9): Consider an IFGS & of graph structure G and ¢ is a permutation
on the set {B1, B>,...,B«} then G is ¢ - self complementary if ¢ is isomorphic to
G? and § is strong ¢- self complementary if & is identical to G .

Example (3.10): Consider an IFGS @ = (A, Bs, By) such that V ={ u1, Uz, Us, us}.
Let A={<uy 0.6,0.1> <u., 0.8,0.2>, <us, 0.6,0.1>, <us4, 0.8,0.2>}and B;=
{< (ug, u2), 0.3,0.1>, < (ug, u1), 0.3,0.1>}, B2 = {< (u2, uz), 0.3, 0.1>, < (u4, uz),
0.3, 0.1>}.

B1(0.3.0.1)

11(0.6,0.1) 12(0.8,0.2)
B1(0.3,0.1) B2(0.3.0.1)
14(0.8,0.2) B2(03,0.1) 13(0.6,0.1)

Let ¢ be a permutation on the set {B1, B2} defined by ¢ (B1) = B2and ¢ (B2) = By,
then

s (UU,) =03 ; v’ (uu,)=0.1, and s °(uu,)=0.3; vy ’(uu,)=0.1
and 5 *(UU;) =0.3 5 v *(Uu,) =0.1 and g4 *(U,u;) =0.3 ;5 v *(U,u,) =0.1.

Let there exists a one - one and onto map h: V —V defined by
h(u,) =u,; h(u,) =u, ; h(u,) =u, and h(u,) =u,. Then
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#a(h(u,)) = HA(UB») 0.6= “A(ul) and VA(h(ul)):VA(U3)=O'1=VA(U )

a(00,)) =4 (1) =08 =, () andl v (B(u,)) =V, (u,) = 0.2 = v, (1, );

ta(h(uy)) = UA(ul) 0.6 = UA(us) and v, (h(u,)) VA(U1 0.1= VA( 3)'
(

)=
ta(h(u,)) =p, (u,) =0.8 =p, (u, ) and vA(h(u4)) =va(U,)=0.2=v,(u,).

H ?(h(u,)h(u,)) = Mg, (Ust )=0.3=pg (uu )andv (U)h(u,)) =g (ust,)=0.1=v, (Uu,);
#5” (h(U)h(u,)) =Hg, (Usu,)=0.3 =pg (U, )and v *(h(u)h(u,)) = vy (Ugu,)=0.1=v, (uy,);
ﬂBz¢( 2)h(u3 =Hg (U4U1):O-3: Hg, (uzus) ande¢( (u,)h(u )) (4U1):0-12V52(u2u3);
ﬂBZ¢(h h(us :uBl (U2U1)20.3: UBZ (u4u3) andVB ¢(h(u4)h( )) ( 2ul):o'1:‘/82 (U4U3)-

.. G is ¢- self complementary.

Definition (3.11): Consider an IFGS & of graph structure G then
(1) G is self complementary(SC) if G is isomorphic to G? for some permutation

&.

(2) G is strong self complementary(SSC) if G is identical to G’ for some
permutation ¢ other than the identity permutation.

(3) G is totally self complementary (TSC) if ¢ is isomorphic to G’ for every
permutation ¢.

(4) G is totally strong self complementary (TSSC) if ¢ is identical to G’ for
every permutation ¢, where ¢is a permutation on the set {B1, Bo,...,Bx}.

Remark (3.12): Totally self complementary = self complementary and totally

strong self complementary = strong self complementary, but converse is not true,
as is obvious from the following example (3.14).

Remark (3.13): TSSC ———> SSC

! !

TSC =—> SC

Example (3.14) : Consider an intuitionistic fuzzy graph structure @ = (A, B, By)
such that V = { u1, uz, uz, us}. Let Ry = { (u1, u2), (us, u1)}, R2 ={(u2, us), (us,
u)}, A={<ug 04,02 > <u,05,0.1> <u3 04,0.2> <us, 05015} B1 ={<
(uz, u2), 0.2,0.1 >, < (ug, u1), 0.2,0.1 >}, B2 = {<(uz, uz), 0.2, 0.1 >, < (ug, U3z),
0.2, 0.1 >}. Let ¢ be a permutation on the set {B1, B.} defined by ¢ (B1) = B2 and
¢ (B2) = By, then
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t”(Uu,) =02 ; v ?(uu,)=0.1, and z”(u,u)=0.2; vg’(uu,)=0.1
and 5 *(UU;) =02 ;v ?(Uuy) =01 and g ?(u,u,) =02 ; vy *(uu;)=0.1.

Let there exists a one - one and onto map h: V —V defined by
h(u,) =uy;h(u,) =u, ; h(u,) =u, and h(u,) =u,

1 (0(0) =y (05) = 0.4 = 1, (1) and v (h(,)) =v, (U) =01 = v ()
/uA(h(UZ))=“A(u4)=O'5=uA(UZ) and v, (h(u,)) VA( ) 0.2= VA( )
14y (0(U)) b (1) = 04 =4 (U,) and v, (NW)) =i (1) = 0L ()
/uA(h(uzl)):uA(u2):O'5:uA( )and VA(h(U4)) VA( ) 0.2= VA( )

#s,” (h(U)N(U,)) =Hg, (Ugu,)=0.2 =y (U, ) andvg *(h(u)h(u,)) = vy (U, )=0.1=v, (uu,);
H, ¢(h(u1)h(u4) Mg, (UsU,)=0.2 =pg (u,u,)andv, ¢(h(ul (u)) =V, (Ust,)=0.1=vy (uu,);
g, (N(U,)N(U,)) =g (UY; ) =0.2 =g (UyU,) and vy * (h(u,)h(u,)) = vy (U,Uy) =0.1= vy (U,U,);
ts,” (N( u4)h(u3 ) Mg, (Ul )=0.2 =5 (u,uy) and vy *(h(u,)h(uy)) =vg, (Ul ) =0.1=vg (U,U,).

.. G is ¢- self complementary and hence G is self complementary.

Let ¢ be another permutation on the set {B1, B2} defined by ¢ (B1) = B1 and ¢
(B2) = B,

Let there exists a one - one and onto map h: V —V such that

h(u,) =u,, h(u,) =u, , h(u,) =u,and h(u,) =u,. Then & is not isomorphic to G*.
.. G is not totally self complementary.

Theorem (3.15): Let G be self complementary IFGS, for some permutation ¢ on
the set {B1, B»,...,B«} then foreachi=1, 2, 3 ,..... k, we have

>t (UV) + 3037 (e, Y(UV) = 3 (B (W) A B (V) and

2 Ve, (UW)+ 2> > (fve dUV) = (Va(u) vva(V) .

Proof: Given G = (A, B1, Ba,...,Bk) is ¢- self complementary IFGS. Therefore,
there exists a one - one and onto map h: V —V such that

#(h(u)) =p, (u) and v, (h(u)) =v, (u) , where

ﬂBi¢(h(U)h(V))=HBj (uv) and ij"’(h(u)h(v)) =vg (W) Yu,veVandj=12,..k

By definition of ¢- complement of IFGS, we have
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g (h(Wh((V)) = ps (h(W)) A Ha (h(V)) =2 (dree, ) (h(u)h(v)) and

ve,” (h(WhW) = v (h) v v, (h(V)) -2 (v d)(h(u)h(v))
= e, (UV) = P, (U) A L (V) — 2 (224 ) (W(W) D (V) and
ve (UV) = v, (U) vy, (V)= (#vg )(h(u)h(V) .

j=i

Now, > 42 (UV) = 3 (A (U) A HA (V) =3 3 (225 )(h(W)N(V)) and

u=v u=v u=v  j=i

D Ve, (W) = (Vva(u) vva(V))—2 D (#ve ) (h(u)h(V))

u=v u=v u=v =i

= D> 15, (UV) = D (HA(U) AP (V)) =2 D> " (desg, ) (uv) and

ZVBi (uv) = Z(VA(U) vV VA (V))_ZZ(¢V51 Y(uv)
= > g, (V) + D> (Preg JUV) =D (Ha (W) A L (V) and

D Ve (W) + > > (Bvp Y(uv) =2 (Va(u) vva(W)).

u=v u=v =i u=v

Remark (3.16): The result of Theorem (3.15) holds for a strong self
complementary IFGS & by using the identity mapping as the isomorphism.

Corollary (3.17): If an IFGS & is totally self complementary, then
D2 (1 YU =D (MaU) AR (V) and DD (v (V) =D (vaU) vva(V)

uzv j U=V uzv u=v

Proof: By Theorem (3.15), we have
>t (W) + D03 (g JUV) = D (s (U) A (V) and

u#v u=v ji u#v
D ve (uv)+ZZ(¢ij)(uv) =Y (Va(u) vv,(v))  hold for every permuation 4.
u=v u=v i u=v

Using the identity permutation ¢, we have

D2 (B Juv) =D (M U) AR (V) and DD (#vg J(uv) =D (vau) vva(v)

[VEVA| u=v UV j u=v

I.e., the sum of the membership (non- membership) of all Bi- edges i= 1,2,3,.....k,
is equal to the sum of the minimum (maximum) of the membership (non-
membership) of the corresponding vertices.
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Corollary (3.18): If IFGS & is totally strong self complementary,then the above
result also holds.

Theorem (3.19): Inan IFGS &, if forallu, v € V, we have
Hp, (uv) + Z(¢,UBJ- Yuv) =, (U) A Hp (V) and Vg, (uv) + Z(¢V3j Yuv)=v,(u) vv, (V)’

j=i j=i

then G is self complementary for a permutation ¢ on the set {B1, B,...,Bk}.

Proof: Let h: V —V be the identity map. Therefore,
ta(h(u)) =pa (U) and v, (h(u)) =vA(U) .
By  definition of o- complement of IFGS, we have

e, (W) = s (h(u)) A s (1)) =2 (gt JOW(V)) = by (U) A b (V) = D (s Y (V)

= (g (V) + Y (Bt YY) = D (gt J(uV) = st (V)
and vy (h(U(v)) = v, (h(W) A vy (1(V) =2 (#ve YM(U)N(V))= Vi (U) A va (V)= (v, J(uV)
= (vg, (V) + X, (9v )(U)) = D (9 )(uv) = v (V).

. G is ¢- self complementary. Hence G is self complementary for some
permutation ¢.

Corollary (3.20): In an IFGS &G, if V u v € V, we have
#e, (UV) + D (t (V) = Ha (U) A s (V) and vy (uv) + D (gv )(Uv) = v, () vva (V),

i i
for every permutation ¢ on the set {B1, Bo,...,Bk} then G is totally self complemen-
tary.

4. Conclusion
The complement of intuitionistic fuzzy graph plays an important role in the
further development of the theory. Similarly the concept of ¢-complementary

IFGS is significant.
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