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Abstract 

 

 In this paper, we introduce the notion of -complement of intuitionistic fuzzy 

graph structure = (A, B1, B2,..., Bk) where  is a permutation on {B1, B2,...,Bk} 

and obtain some results. We also define some elementary definitions like self 

complementary, totally self complementary, strong self complementary 

intuitionistic fuzzy graph structure and study their properties.  
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I. Introduction 
 

                 The concept of intuitionistic fuzzy graph structure  = (A, B1, B2,...,Bk) 

is introduced and studied by the authors in [6]. Zadeh [7] in 1965 introduced the 

notion of fuzzy sets. Then Rosenfeld [8] gave the idea of fuzzy relations and 

fuzzy graph in 1975. Atanassov [5] proposed the first definition of intuitionistic 

fuzzy graph. E. Sampatkumar in [1] has generalized the notion of graph G = (V, 

E)  to graph structure G = (V, R1, R2, ..., Rk) where  R1, R2, ..., Rk are relations on 

V  which are mutually disjoint and each Ri , i =  1, 2, 3, ........, k is symmetric and 

irreflexive.  T. Dinesh and T. V. Ramakrishnan [2] introduced the notion of fuzzy  
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graph structure and studied their properties. In this paper, we will introduce and 

study  - complement of intuitionistic fuzzy graph structure  .  

 

2. Preliminaries 
 

              In this section, we review some definitions that are necessary to 

understand the content of this paper. These are mainly taken from [2], [7], [8], [9], 

[10] and [11]. 

 

Definition (2.1) [11]: G = (V, R1, R2,...,Rk) is a graph structure if V is a non 

empty set and R1, R2,...,Rk are relations on V which are mutually disjoint such that 

each Ri , i=1, 2, 3, ... ,k, is symmetric and irreflexive. 

 

Definition (2.2) [9, 10]: An intuitionistic fuzzy graph is of the form G = (V, E) 

where 

(i) V = {v1, v2, ..., vn} such that 1 : V  [0,1] and  1 : V  [0,1] denote the 

degree of membership and non membership of the element vi ∈ V, respectively 

and 0  1(vi) + 1 (vi )  1,   for every vi  ∈ V , (i = 1,2,….,n), 

(ii)  E  V × V where  2: V× V   [0,1] and 2 : V× V   [0,1]    are such that     

2 1 1 2 1 1( , ) min{ ( ), ( )}   and  ( , ) max{ ( ), ( )} i j i j i j i jv v µ v µ v v v v v    

 and 0  2 (vi , vj )+ 2 (vi , vj)  1,   for every (vi ,vi ) ∈ E , (i, j = 1,2,….,n).  

 

Definition (2.3) [8]:  Let G = (V, R1, R2, ...., Rk) be a graph structure and A, B1, 

B2,….., Bk be intuitionistic fuzzy subsets (IFSs) of V, R1, R2, ..., Rk respectively 

such that   

 

A A A( , )   ( ) ( )   and ( , ) ( ) ( )   , V and 1,2,..., .
i iB B Au v µ u µ v u v u v u v i k         

 Then  = (A, B1, B2, …., Bk) is an IFGS of G. 

 

Example (2.4) [8]: Consider the graph structure G = (V, R1, R2, R3), where  V = { 

u0, u1, u2, u3, u4} and  R1 ={ (u0, u1 ), (u0, u2 ), (u3, u4)}, R2 ={(u1, u2 ), (u2, u4)},  R3 

= {(u2, u3), (u0,  u4)} are the relations on V. Let  A = {< u0, 0.5,0.4 >,  < u1, 

0.6,0.3>, < u2 , 0.2,0.6 >, <u3,0.1,0.8> , <u4, 0.4,0.3> } be an IFS on V and B1 = 

{(u0, u1), 0.5,0.3 > , < (u0, u2), 0.1,0.3 >, < (u3, u4), 0.1,0.2 >},  B 2 = {< (u1, u2 ), 

0.2,0.1 >, < (u2, u4 ), 0.1,0.2 >}, B 3 ={< (u2, u3 ), 0.1,0.5 >, ,< (u0, u4 ) , 0.3,0.2 >} 

are intuitionistic fuzzy relations on V. 

Here  A A A( , )   ( ) ( )    and  ( , ) ( ) ( ) 
i iB B Au v µ u µ v u v u v           ∀ u, v ∈ V and i 

=1, 2, 3. 

   is an intuitionistic fuzzy graph structure. 

 

Definition (2.5) [7]: The complement of a fuzzy graph G = (, µ) is a fuzzy graph 

G = ( ,  ) where   =      and     (u, v) = (u) ∧ (v) - µ(u, v), ∀ u, v ∈  V. 
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Definition (2.6) [7]: Consider the fuzzy graphs G1 = (1, µ1) and G2 = (2, µ2) 

with 1*= V1 and 2*= V2. An isomorphism between G1 = (1, µ1) and G2 is a one 

to one function h from V1 onto V2 that satisfies   
1 2( ) ( ( ))u h u 

 
 and 

1 2( , ) ( ( ), ( ))u v h u h v   , ∀ u,v ∈ V  

 

3.  -Complement of Intuitionistic Fuzzy Graph Structure 

 

Definition (3.1): Let  = (A, B1, B2,...,Bk) be an intuitionistic  fuzzy graph 

structure of  graph structure G = (V, R1, R2,...,Rk). Let    denotes the permutation 

on the set {R1, R2,....,Rk} and also the corresponding permutation on {B1, 

B2,...,Bk} i.e.,  (Bi) = Bi
 = Bj ( i.e.,  

iB  = 
jB  and           

iB  = 
jB ) if and 

only if   (Ri) = Rj , then the  - complement of   is denoted G  and is given  by 

G = (A, B1
  ,B2

,...,Bk
) where for each i = 1, 2, 3,…, k, we have

 
A A A( ) ( ) ( )  ( )( )  and ( ) ( ) ( )  ( )( ) . 

i j i jB B B A B

j i j i

uv µ u µ v uv uv u v uv      
 

      

 
Example (3.2): Consider an intuitionistic fuzzy graph structure  = (A, B1, B2) 

such that V = { u0, u1, u2, u3, u4, u5}. Let  R1 = { (u0, u1 ), (u0, u2 ), (u3, u4)}, R2 

={(u1, u2 ), (u4, u5)}, A = {< u0, 0.8,0.2 >,  < u1, 0.9,0.1>, < u2 , 0.6,0.3 >, <u3, 

0.5,0.4> , <u4, 0.6,0.1> , <u5, 0.7,0.2 > }, B1 = { (u0, u1 ), 0.8,0.1 > , < (u0, u2 ), 

0.5,0.3 >, < (u3, u4 ), 0.4,0.2 >}, B 2 = { < (u1, u2 ), 0.6,0.2 >,    <( u4, u5),0.5,0.1 >} 

.  

                             

Let  be a permutation on the set {B1, B2} defined by  (B1) = B2 and  (B2) 
 = B1, 

then  

1 1 1 1

2 2 2

A A A

A A 2 A

( ) ( ) ( )    ( ) ; ( ) ( ) ( )  ( )  and

( ) ( ) ( )    ( ) ; ( ) ( ) ( )  ( ). Thus, we have

B B B A B

B B B A B

uv µ u µ v uv uv u v uv

uv µ u µ v uv uv u v uv

 

 

     

     

     

     

                   

1 1 1 1 1

1 2 2 2 2

0 1 0 1 0 2 0 2 3 4

3 4 1 2 1 2 4 5 4 5

( ) 0 ;   ( ) 0.1  and     ( ) 0.1  ;  ( ) 0, ( ) 0.1 ; 

 ( ) 0.2  and  ( ) 0     ; ( ) 0.1, ( ) 0.1 ;  ( ) 0.1. 

B B B B B

B B B B B

u u u u u u u u u u

u u u u u u u u u u

    

    

    

    

    

    

 

Remark (3.3): Here in the above example, we can check that ( )G  =   i.e., the  

- complement of  - complement of   is . 

Theorem (3.4): If  is a cyclic permutation on {B1, B2,...,Bk} of order m (1 m  

k), then .
m

G G


  
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m    

1 2 1 2Proof.  Since = identity permutation. Hence,  ,  , , ..., ,  , , ...,  ( ) ( ) .k k

m m m m
A B B B B GA B BG

   
   

 

Proposition (3.5): Let  = (A, B1, B2,...,Bk) be an intuitionistic fuzzy graph 

structure of  graph structure G = (V, R1, R2, ..., Rk) and  let  and  be two 

permutations on {B1, B2, ..., Bk}, then  

  ( ) ( )
. In  particular  if and only if   and  are inverse of each other.

o o
G G G G


    

  

 

Proof: Straight forward.  

 

Definition (3.6):  Let = (A, B1, B2,...,Bk) and  = (A, B1, B2,...,Bk) be two 

IFGSs on graph structures  G = (V, R1, R2,...,Rk)  and  G = (V, R1, R2,...,Rk) 

respectively, then  is isomorphic to  if there exists a bijective mapping  f : 

V V and a permutation  on {B1, B2, ...,Bk } such that  (Bi) = Bj  and   

(1) ∀ u ∈ V,  
'( ) ( ( ))A Au f u      and 

'( ) ( ( ))A Au f u       

(2) ∀ (uv) ∈ Ri  ,    uv   ( ( ) ( ))
i jB B f u f v    and  uv   ( ( ) ( )).

i jB B f u f v     

In particular, if V = V, A = A  and Bi = Bi for all i = 1, 2, 3, …, k, then the 

above two IFGSs  and 
 
are identical. 

 

Remark (3.7):  Note that identical IFGSs are always isomorphic, but converse is 

not true. (In example (3.10), IFGSs   and G


  are isomorphic but not identical).
 
  

 

Example (3.8): Consider the two intuitionistic fuzzy graph structures  = (A, B1, 

B2) and  = (A, B1, B2) such that V ={u0, u1, u2, u3, u4, u5} and V = { u0, u1, 

u2, u3, u4, u5}. Let A = {< u0, 0.8,0.2 >,  < u1, 0.9,0.1>, < u2 , 0.6,0.3 >, <u3, 

0.5,0.4> , <u4, 0.6,0.1> , <u5, 0.7,0.2 > } be IFS on V  and A = {<u0, 0.7,0.2 > ,< 

u1, 0.8,0.2 >,  < u2, 0.9,0.1>, < u3 , 0.6,0.3 >, <u4, 0.5,0.4> , <u5, 0.6,0.1>} be 

IFS on V. Let  B1 = { (u0, u1 ), 0.8,0.1 > , < (u0, u2 ), 0.5,0.3 >, < (u3, u4 ), 0.4,0.2 

>}, B 2 = { < (u1, u2 ), 0.6,0.2 >,<( u4, u5),0.5,0.1 > be IFRs on V and B1 = { (u1, 

u2), 0.8,0.1 > , < (u1, u3 ), 0.5,0.3 >, < (u4, u5 ), 0.4,0.2 >}, B 2 = { < (u2, u3 ), 

0.6,0.2 >,<( u5, u0),0.5,0.1 > be IFRs on V  as shown in Fig 1 and Fig 2 

respectively. 
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Then it can be easily verified that = (A, B1, B2) and  = (A, B1, B2) are 

IFGSs. Let  be a   permutation on {B1, B2} such that (Bi) = Bi  and h : V  V 

be a map defined  by  

 

 

                                           
1  if   k =  0,1, 2, 3, 4

( )
 if   k =  5.

k

k

k

u
h u

u


 

 


   

 

Then it can be easily checked that  

   

       

A A(1) ( )   ( )  and ( )   ( )     u V 

2   ( ( ) ( ))    ( ( ) ( )),  V V ,  and  i= 1, 2.
i i i i

A k k A k k k

B B B B

u µ h u u h u

uv h u h v and uv h u h v u v

  

   

 

 

   

    

 

Hence    . 

 

Definition (3.9): Consider an IFGS  of graph structure G and  is a permutation 

on the set {B1, B2,...,Bk} then  is  - self complementary if   is isomorphic to 

G  and  is strong - self complementary if  is identical to G . 

 

Example (3.10): Consider an IFGS  = (A, B1, B2) such that  V ={ u1, u2, u3, u4}. 

Let  A = {< u1, 0.6,0.1>, < u2 , 0.8,0.2>, <u3, 0.6,0.1>, < u4 , 0.8,0.2>}and     B1 = 

{< (u1, u2), 0.3,0.1>, < (u4, u1), 0.3,0.1>}, B 2 = {< (u2, u3), 0.3, 0.1>, < (u4, u3), 

0.3, 0.1>}.  

 

 
 

Let  be a permutation on the set {B1, B2} defined by  (B1) = B2 and  (B2) = B1, 

then                      

1 1 1 1

2 2 2 2

1 2 1 2 4 1 4 1

2 3 2 3 4 3 4 3

( ) 0.3  ;  ( ) 0.1,   and  ( ) 0.3 ;  ( ) 0.1  

and  ( ) 0.3     ; ( ) 0.1   and  ( ) 0.3     ; ( ) 0.1.

B B B B

B B B B

u u u u u u u u

u u u u u u u u

   

   

   

   

   

   

 

Let there exists a one - one and onto map h: V V defined by  

1 3 2 4  3 1 4 2( )   ;   ( )   ;  ( )     and ( )  h u u h u u h u u h u u    . Then  
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       

       

       

   

1 A 3 A 1 1 A 3 A 1

2 A 4 A 2 2 A 4 A 2

3 A 1 A 3 3 A 1 A 3

4 A 2 A 4

( ( ))   0.6   and ( ( ))   0.1 ;  

( ( ))   0.8 =  and ( ( ))   0.2 ;

( ( ))   0.6 =  and ( ( ))   0.1    ;

( ( ))   0.8 =  and 

A A

A A

A A

A

h u µ u µ u h u u u

h u µ u µ u h u u u

h u µ u µ u h u u u

h u µ u µ u

   

   

   



     

    

    

     4 A 2 A 4( ( ))   0.2 .A h u u u    

 

       

       

   

1 2 1 1 2 1

1 2 1 1 2 1

2 1 2

1 2 3 4 1 2 1 2 3 4 1 2

1 4 3 2 1 4 1 4 3 2 1 4

2 3 4 1 2 3

( ( ) ( ))     0.3  and ( ( ) ( )) 0.1 ;

( ( ) ( ))     0.3 = and ( ( ) ( )) 0.1 ;

( ( ) ( ))   0.3   and

B B B B B B

B B B B B B

B B B

h u h u µ u u µ u u h u h u u u u u

h u h u µ u u µ u u h u h u u u u u

h u h u µ u u µ u u

 

 



   

   



     

    

      

       
2 1 2

2 1 2 2 1 2

2 3 4 1 2 3

4 3 2 1 4 3 4 3 2 1 4 3

( ( ) ( )) 0.1 ;

( ( ) ( ))     0.3    and ( ( ) ( )) 0.1 .

B B B

B B B B B B

h u h u u u u u

h u h u µ u u µ u u h u h u u u u u



 

  

   

  

     

 

  is - self complementary. 

 

Definition (3.11): Consider an IFGS  of graph structure G then  

(1)  is self complementary(SC) if   is isomorphic to G  for some permutation 

.  

(2)  is strong self complementary(SSC) if  is identical to G  for some 

permutation  other than the identity permutation.  

(3)  is totally self complementary (TSC) if   is isomorphic to G  for every 

permutation . 

(4)  is totally strong self complementary (TSSC) if   is identical to G  for 

every permutation , where  is a permutation on the set {B1, B2,...,Bk}. 

 

Remark (3.12):  Totally self complementary  self complementary and totally 

strong self complementary  strong self complementary, but converse is not true, 

as is obvious from the following example (3.14). 

 

Remark (3.13):                 TSSC                  SSC 

 

       TSC                     SC 

 

Example (3.14) : Consider an intuitionistic fuzzy graph structure  = (A, B1, B2) 

such that  V = { u1, u2, u3, u4}. Let  R1 = { (u1, u2 ), (u4, u1)}, R2 ={(u2, u3), (u4, 

u3)}, A = {< u1, 0.4,0.2 >, < u2 , 0.5,0.1>, <u3, 0.4,0.2 >, < u4 , 0.5,0.1>}, B1 = { < 

(u1, u2 ), 0.2,0.1 >, < (u4, u1 ), 0.2,0.1 >}, B2 =  { < (u2, u3 ), 0.2, 0.1 >, < (u4, u3 ), 

0.2, 0.1 >}. Let  be a permutation on the set {B1, B2} defined by  (B1) = B2  and 

 (B2) = B1, then 
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1 1 1 1

2 2 2 2

1 2 1 2 4 1 4 1

2 3 2 3 4 3 4 3

( ) 0.2  ;  ( ) 0.1,   and  ( ) 0.2 ;  ( ) 0.1  

and  ( ) 0.2     ; ( ) 0.1   and  ( ) 0.2     ; ( ) 0.1.

B B B B

B B B B

u u u u u u u u

u u u u u u u u

   

   

   

   

   

   

 

Let there exists a one - one and onto map h: V V defined by                  

1 3 2 4  3 1 4 2( )   ; ( )   ; ( )    and ( )  h u u h u u h u u h u u     

 

       

       

       

   

1 A 3 A 1 1 A 3 A 1

2 A 4 A 2 2 A 4 A 2

3 A 1 A 3 3 A 1 A 3

4 A 2 A 4

( ( ))   0.4   and ( ( ))   0.1 ;  

( ( ))   0.5   and ( ( ))   0.2 ;

( ( ))   0.4 =  and ( ( ))   0.1   ;

( ( ))   0.5  and (

A A

A A

A A

A A

h u µ u µ u h u u u

h u µ u µ u h u u u

h u µ u µ u h u u u

h u µ u µ u h

   

   

   

 

     

     

    

      4 A 2 A 4( ))   0.2 .u u u   

 

       

       

   

2 2 2 2 2 2

2 2 2 2 2 2

1 1 1

1 2 3 4 1 2 1 2 3 4 1 2

1 4 3 2 1 4 1 4 3 2 1 4

2 3 4 1 2 3

( ( ) ( ))     0.2   and ( ( ) ( )) 0.1 ;

( ( ) ( ))     0.2 = and ( ( ) ( )) 0.1 ;

( ( ) ( ))   0.2     a

B B B B B B

B B B B B B

B B B

h u h u µ u u µ u u h u h u u u u u

h u h u µ u u µ u u h u h u u u u u

h u h u µ u u µ u u

 

 



   

   



     

    

      

       
1 1 1

2 2 2 1 2 2

2 3 4 1 2 3

4 3 2 1 4 3 4 3 2 1 4 3

nd ( ( ) ( )) 0.1 ;

( ( ) ( ))     0.2     and ( ( ) ( )) 0.1 .

B B B

B B B B B B

h u h u u u u u

h u h u µ u u µ u u h u h u u u u u



 

  

   

  

     

 

  is - self complementary and hence   is self complementary. 

Let  be another permutation on the set {B1, B2} defined by  (B1) = B1  and  

(B2) = B2,  

Let there exists a one - one and onto map h: V V such that 

1 1 2 4 3 3 4 2( )   , ( )   , ( )  and ( )   .Thenh u u h u u h u u h u u      is not isomorphic to G . 

  is not totally self complementary. 

 

Theorem (3.15): Let  be self complementary IFGS, for some permutation  on 

the set {B1, B2,...,Bk} then for each i = 1, 2, 3 ,….. k, we have 

 

A A

A

( ) ( )( ) ( ( ) ( ))   and 

( ) ( )( )  ( ( ) ( )) .  

i j

i j

B B

u v u v j i u v

B B A

u v u v j i u v

uv uv µ u µ v

uv uv u v

 

   

   

   

  

  

  

  

                                                

Proof:  Given  = (A, B1, B2,...,Bk) is - self complementary IFGS. Therefore, 

there exists a one - one and onto map h: V V such that  

A A( ( ))   ( ) and ( ( ))   ( )A Ah u µ u h u u    , where 

 ( ( ) ( ))   ( )   and ( ( ) ( ))   ( )   u, v  and j 1,2,...,k.
j j j jB B B Bh u h v µ uv h u h v uv V       

 

By definition of - complement of IFGS, we have 
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   

 

A A

A

( ( ) ( )) ( ) ( )   ( )( ( ) ( )) and 

( ( ) ( )) ( ( )) ( )   ( )( ( ) ( ))

i j

i j

B B

j i

B A B

j i

h u h v µ h u µ h v h u h v

h u h v h u h v h u h v





 

   





  

  





A A

A

( ) ( ) ( ) ( )( ( ) ( ))  and 

( ) ( ) ( )  ( )( ( ) ( )) . 

i j

i j

B B

j i

B A B

j i

uv µ u µ v h u h v

uv u v h u h v

 

   





   

  





A A

A

,    ( ) ( ( ) ( ) )  ( )( ( ) ( ))  and 

( ) ( ( ) ( ) )  ( )( ( ) ( )) 

i j

i j

B B

u v u v u v j i

B A B

u v u v u v j i

Now uv µ u µ v h u h v

uv u v h u h v

 

   

   

   

  

  

  

  

A A

A

( ) ( ( ) ( ) )  ( )( )  and 

( ) ( ( ) ( ) )  ( )( )  

i j

i j

B B

u v u v u v j i

B A B

u v u v u v j i

uv µ u µ v uv

uv u v uv

 

   

   

   

   

  

  

  

A A

A

( ) ( )( )  ( ( ) ( ) )  and 

( ) ( )( )  ( ( ) ( ) ).

i j

i j

B B

u v u v j i u v

B B A

u v u v j i u v

uv uv µ u µ v

uv uv u v

 

   

   

   

   

  

  

  

 

Remark (3.16): The result of Theorem (3.15) holds for a strong self 

complementary IFGS ,  by using the identity mapping as the isomorphism.   

 

Corollary (3.17): If an IFGS  is totally self complementary, then 

A A A( )( ) ( ( ) ( ))   and ( )( )  ( ( ) ( ))   
j jB B A

u v j u v u v j u v

uv µ u µ v uv u v   
   

      
 

 

Proof: By Theorem (3.15), we have 

 A A

A

( ) ( )( ) ( u ( ))   and 

( ) ( )( )  ( ( ) ( )) , hold  for  every permuation .

i j

i j

B B

u v u v j i u v

B B A

u v u v j i u v

uv uv µ µ v

uv uv u v

 

    

   

   

  

  

  

  

 

Using the identity permutation , we have    

A A A( )( ) ( ( ) ( ))   and   ( )( )  ( ( ) ( ))
j jB B A

u v j u v u v j u v

uv µ u µ v uv u v   
   

      

 

i.e., the sum of the membership (non- membership) of all Bi- edges i= 1,2,3,….,k, 

is equal to the sum of the minimum (maximum) of the membership (non- 

membership) of the corresponding vertices.  

 



 -Complement of intuitionistic fuzzy graph structure                                        249 

 

 

Corollary (3.18): If IFGS  is totally strong self complementary,then the above 

result also holds. 

 

Theorem (3.19): In an IFGS  , if   for all u, v ∈ V, we have

       A A A( ) ( )( )  and ( ) ( )( ) ( ) ,
i j i jB B B B A

j i j i

uv uv µ u µ v uv uv u v     
 

      

then  is self complementary for a permutation  on the set {B1, B2,...,Bk}. 

 

Proof:  Let h: V V be the identity map. Therefore, 

A A( ( ))   ( ) and ( ( ))   ( )A Ah u µ u h u u    .  

 By definition of - complement of IFGS, we have  

   A A A A     ( ( ) ( )) ( ) ( )   ( )( ( ) ( ))  = ( ) ( ) ( )( )

                           ( ( ) ( )( )) ( )( ) ( )

i j j

i j j i

B B B

j i j i

B B B B

j i j i

h u h v µ h u µ h v h u h v µ u µ v uv

uv uv uv uv

  

   

 

 

    

   

 

 

   A A A A   ( ( ) ( )) ( ) ( )   ( )( ( ) ( )) = ( ) ( )  ( )( )

                            ( ( ) ( )( )) ( )( ) ( ).

i j j

i j j i

B B B

j i j i

B B B B

j i j i

and h u h v h u h v h u h v u v uv

uv uv uv uv

      

   

 

 

    

   

 

 

   is - self complementary. Hence  is self complementary for some 

permutation . 

 

Corollary (3.20):   In an IFGS , if   ∀ u, v ∈ V, we have

      A A A( ) ( )( ) u v and ( ) ( )( ) ( ) v ,
i j i jB B B B A

j i j i

uv uv µ µ uv uv u     
 

      

for every permutation  on the set {B1, B2,...,Bk} then  is totally self complemen- 

tary. 

 

4. Conclusion 
 

          The complement of intuitionistic fuzzy graph plays an important role in the 

further development of the theory. Similarly the concept of -complementary 

IFGS is significant.  
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