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Abstract

If a function d is metric, a well-known result is that d/(1 + d) is
also metric. We consider m-ary analogs of the binary notion of semi-
metric, called hemi-metrics and super-metrics. The metrics are totally
symmetric maps from Xm+1 into R≥0. It is shown that, if d is super-
metric, then d/(1 + d) is also super-metric.
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1 Hemi-metrics and super-metrics

A metric is a function that defines a distance between two elements of a set.
We consider generalizations of the notion of metric in the direction of distances
between three or more elements.

Deza and Rosenberg [4] introduced the following notion. Let m be a posi-
tive integer and X a set with at least m+2 elements. A function d : Xm+1 → R
is called m-hemi-metric if (see, also [1,2,5]):

1. d is non-negative, i.e., d(x1, . . . , xm+1) ≥ 0 for all x1, . . . , xm+1 ∈ X.

2. d is totally symmetric, i.e., satisfies d(x1, . . . , xm+1) =
d(xπ(1), . . . , xπ(m+1)) for all x1, . . . , xm+1 ∈ X and for any permutation π
of {1, . . . ,m+ 1}.
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3. d is zero conditioned, i.e. d(x1, . . . , xm+1) = 0 if and only if x1, . . . , xm+1

are not pairwise distinct.

4. For all x1, . . . , xm+2 ∈ X, d satisfies the m-simplex inequality :

d(x1, . . . , xm+1) ≤
m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2). (1)

The notion of m-hemi-metric is an m-ary analog of the binary notion of semi-
metric. An important special case of the m-hemi-metric is the following notion
obtained for m = 2. A function d : X3 → R is called a 2-metric if d is non-
negative, totally symmetric, zero conditioned, and satisfies the tetrahedron
inequality :

d(x1, x2, x3) ≤ d(x1, x2, x4) + d(x1, x3, x4) + d(x2, x3, x4). (2)

Interpreting d(x1, x2, x3) as the area of the triangle with vertices x1, x2 and x3,
the tetrahedron inequality specifies that the area of each triangle face of the
tetrahedron formed by x1, x2, x3 and x4 does not exceed the sum of the areas
of the remaining faces. Alternative axiom systems are considered in [6-11].

Deza and Dutour [3] introduced the following notion. Let s be a positive
real number. A function d : Xm+1 → R is called (m, s)-super-metric if d is non-
negative, totally symmetric, zero conditioned, and satisfies the (m, s)-simplex
inequality

sd(x1, . . . , xm+1) ≤
m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2). (3)

An (m, s)-super-metric is an m-hemi-metric if s ≥ 1. Furthermore, a m-hemi-
metric is a (m, 1)-super-metric and a semi-metric is a (1, 1)-super-metric.

For the ordinary metric, a well-known result is that, if d is metric, then
d/(1 + d) and min {1, d} are also metric. In Section 2 we present an analogous
result for the function d/(1+d) for hemi-metrics and super-metrics. In Section
3 we present an analogous result for the function min {1, d} for hemi-metrics
and the (2, 2)-super-metric.

2 Function d/(1 + d)

Lemma 2.1 considers the notion of m-hemi-metric. Lemma 2.3 considers the
notion of (m, s)-super-metric for s ≥ 1. Lemma 2.2 is used in the proof of
Lemmas 2.3 and 3.2.

Lemma 2.1. Let d be m-hemi-metric. Then d/(1 + d) is m-hemi-metric.
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Proof. Non-negativity of d/(1 + d) follows from the non-negativity of d. Fur-
thermore, total symmetry and axiom 3 follow from the identity

d(x1, . . . , xm+1)

1 + d(x1, . . . , xm+1)
= 1− 1

1 + d(x1, . . . , xm+1)
, (4)

and the fact that d is totally symmetric and zero conditioned. Thus, we must
show that d/(1 + d) satisfies (1).

Because d/(1 + d) is strictly increasing in d, and since d satisfies (1), we
have

d(x1, . . . , xm+1)

1 + d(x1, . . . , xm+1)
≤

m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 +
m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

=
m∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 +
m+1∑
j=1

d(x1, . . . , xj−1, xj+1, . . . , xm+2)

. (5)

Furthermore, for all i ∈ {1, . . . ,m+ 1} we have the inequality

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 +
m+1∑
j=1

d(x1, . . . , xj−1, xj+1, . . . , xm+2)

≤ d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 + d(x1, . . . , xi−1, xi+1, . . . , xm+2)
. (6)

Summing (6) over all i ∈ {1, . . . ,m+ 1}, and combining the resulting inequal-
ity with inequality (5), completes the proof.

Lemma 2.2. Suppose s > 1 and let d be (m, s)-super-metric. Then d
satisfies the inequality

(s− 1)d(x1, . . . , xm+1) ≤
m+1∑
i=2

d(x1, . . . , xi−1, xi+1, . . . , xm+2). (7)

Proof. Interchanging the roles of x1 and xm+2 in (3), and dividing the result
by s, we obtain

d(x2, . . . , xm+2) ≤
1

s

m+2∑
i=2

d(x1, . . . , xi−1, xi+1, . . . , xm+2). (8)

Adding inequalities (3) and (8) yields(
s− 1

s

)
d(x1, . . . , xm+1) ≤

(
1 +

1

s

)m+1∑
i=2

d(x1, . . . , xi−1, xi+1, . . . , xm+2), (9)

which is equivalent to (7).



864 Matthijs J. Warrens

Lemma 2.3. Suppose s ≥ 1 and let d be (m, s)-super-metric. Then d/(1+d)
is (m, s)-super-metric.

Proof. The case s = 1 is proved in Lemma 2.1. Therefore, suppose s > 1. The
proof of non-negativity, total symmetry and axiom 3 is analogous to the proof
of Lemma 2.1. We must show that d satisfies (3).

Because d/(1 + d) is strictly increasing in d, and since d satisfies (3), we
have

d(x1, . . . , xm+1)

1 + d(x1, . . . , xm+1)
≤

1

s

m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 +
1

s

m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

. (10)

After multiplying both sides of (10) by s, we may write the result as

sd(x1, . . . , xm+1)

1 + d(x1, . . . , xm+1)
≤

m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 +
1

s

m+1∑
j=1

d(x1, . . . , xj−1, xj+1, . . . , xm+2)

. (11)

Due to Lemma 2.2, combined with the total symmetry of d, we have for all
i ∈ {1, . . . ,m+ 1},

(s− 1)d(x1, . . . , xi−1, xi+1, . . . , xm+2) ≤
m+1∑
j=1

d(x1, . . . , xj−1, xj+1, . . . , xm+2)

− d(x1, . . . , xi−1, xi+1, . . . , xm+2). (12)

Adding d(x1, . . . , xi−1, xi+1, . . . , xm+2) to both sides of (12), and dividing the
result by s, we have for all i ∈ {1, . . . ,m+ 1},

d(x1, . . . , xi−1, xi+1, . . . , xm+2) ≤
1

s

m+1∑
j=1

d(x1, . . . , xj−1, xj+1, . . . , xm+2). (13)

Furthermore, using (13), we have, for all i ∈ {1, . . . ,m+ 1}, the inequality

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 +
1

s

m+1∑
j=1

d(x1, . . . , xj−1, xj+1, . . . , xm+2)

≤ d(x1, . . . , xi−1, xi+1, . . . , xm+2)

1 + d(x1, . . . , xi−1, xi+1, . . . , xm+2)
. (14)

Summing (14) over all i ∈ {1, . . . ,m+ 1}, and combining the result with (11),
completes the proof.
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3 Function min {1, d}
Lemma 3.1 considers the notion of m-hemi-metric. Lemma 3.2 considers the
notion of (2, 2)-super-metric.

Lemma 3.1. Let d be m-hemi-metric. Then min {1, d} is m-hemi-metric.

Proof. Non-negativity, symmetry and axiom 3 of min {1, d} follow from the
analogous properties of d. Thus, we must show that min {1, d} satisfies (1).
We go through the various cases.

Suppose there is an j ∈ {1, . . . ,m+ 1} such that

d(x1, . . . , xm+1) ≤ d(x1, . . . , xj−1, xj+1, . . . , xm+2). (15)

In this case we have

min {1, d(x1, . . . , xm+1)} ≤ min {1, d(x1, . . . , xj−1, xj+1, . . . , xm+2)}

≤
m+1∑
i=1

min {1, d(x1, . . . , xi−1, xi+1, . . . , xm+2)} . (16)

Thus, we may assume that, for all i ∈ {1, . . . ,m+ 1}, we have

d(x1, . . . , xm+1) ≥ d(x1, . . . , xi−1, xi+1, . . . , xm+2). (17)

Suppose d(x1, . . . , xm+1) ≤ 1. In this case we have, for all i ∈ {1, . . . ,m+ 2},

min {1, d(x1, . . . , xi−1, xi+1, . . . , xm+2)} = d(x1, . . . , xi−1, xi+1, . . . , xm+2),

and it follows that min {1, d} satisfies (1) because d satisfies (1).
Next, suppose d(x1, . . . , xm+1) > 1. Furthermore, suppose there is an j ∈

{1, . . . ,m+ 1} such that d(x1, . . . , xj−1, xj+1, . . . , xm+2) ≥ 1. In this case we
have

min {1, d(x1, . . . , xm+1)} = 1 = min {1, d(x1, . . . , xj−1, xj+1, . . . , xm+2)}

≤
m+1∑
i=1

min {1, d(x1, . . . , xi−1, xi+1, . . . , xm+2)} . (18)

Therefore, suppose that d(x1, . . . , xi−1, xi+1, . . . , xm+2) ≤ 1 for all
i ∈ {1, . . . ,m+ 1}. In this final case we have, since d satisfies (1),

min {1, d(x1, . . . , xm+1)} = 1 < d(x1, . . . , xm+1)

≤
m+1∑
i=1

d(x1, . . . , xi−1, xi+1, . . . , xm+2)

=
m+1∑
i=1

min {1, d(x1, . . . , xi−1, xi+1, . . . , xm+2)} . (19)

This completes the proof.
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Lemma 3.2. Let d be (2, 2)-super-metric. Then min {1, d} is (2, 2)-super-
metric.

Proof. Non-negativity, symmetry and axiom 3 of min {1, d} follow from the
analogous properties of d. Thus, we must show that min {1, d} satisfies

2d(x1, x2, x3) ≤ d(x1, x2, x4) + d(x1, x3, x4) + d(x2, x3, x4), (20)

which is a strong version of tetrahedron inequality (2) [6,8,9,11]. We go through
the various cases.

First, suppose d(x1, x2, x3) ≤ 1. In addition, suppose at least two of the
three quantities on the right-hand side of (20) ≥ 1. In this case we have

2 min {1, d(x1, x2, x3)} = 2d(x1, x2, x3) ≤ 2 = 1 + 1

≤ min {1, d(x1, x2, x4)}+ min {1, d(x1, x3, x4)}+ min {1, d(x2, x3, x4)} .

Furthermore, without loss of generality, suppose that d(x1, x2, x4) > 1 and
d(x1, x3, x4), d(x2, x3, x4) ≤ 1. In this case we have

min {1, d(x1, x2, x3)} = d(x1, x2, x3) ≤ 1 = min {1, d(x1, x2, x4)} . (21)

We also have, using Lemma 2.2,

min {1, d(x1, x2, x3)} = d(x1, x2, x3) ≤ d(x1, x3, x4) + d(x2, x3, x4)

= min {1, d(x1, x3, x4)}+ min {1, d(x2, x3, x4)} . (22)

Combining (21) and (22) gives the desired inequality.
Moreover, suppose all three quantities on the right-hand side of (20) ≤ 1.

In this case we have, since d satisfies (20),

2 min {1, d(x1, x2, x3)} = 2d(x1, x2, x3)

≤ d(x1, x2, x4) + d(x1, x3, x4) + d(x2, x3, x4)

= min {1, d(x1, x2, x4)}+ min {1, d(x1, x3, x4)}+ min {1, d(x2, x3, x4)} .

Second, suppose d(x1, x2, x3) > 1. In addition, suppose at least two of the
three quantities on the right-hand side of (20) ≥ 1. In this case we have

2 min {1, d(x1, x2, x3)} = 2 = 1 + 1

≤ min {1, d(x1, x2, x4)}+ min {1, d(x1, x3, x4)}+ min {1, d(x2, x3, x4)} .

Furthermore, without loss of generality, suppose that d(x1, x2, x4) ≥ 1 and
d(x1, x3, x4), d(x2, x3, x4) ≤ 1. In this case we have

2 min {1, d(x1, x2, x3)} = 2 < d(x1, x2, x3) + min {1, d(x1, x2, x4)} . (23)
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We also have, using Lemma 2.2,

d(x1, x2, x3) ≤ d(x1, x3, x4) + d(x2, x3, x4)

= min {1, d(x1, x3, x4)}+ min {1, d(x2, x3, x4)} . (24)

Combining (23) and (24) gives the desired inequality.
Finally, suppose all three quantities on the right-hand side of (20) ≤ 1. In

this case we have, since d satisfies (20),

2 min {1, d(x1, x2, x3)} = 2 < 2d(x1, x2, x3)

≤ d(x1, x2, x4) + d(x1, x3, x4) + d(x2, x3, x4)

= min {1, d(x1, x2, x4)}+ min {1, d(x1, x3, x4)}+ min {1, d(x2, x3, x4)} .

This completes the proof.
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