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Abstract

As we know, the coefficients of impulsive Lasota-Wazewska model
are always assumed to be continuous, say, periodic and almost periodic.
In this paper we consider the case when the coefficients are piecewise
almost periodic, and establish an existence and uniqueness theorem of
piecewise almost periodic positive solution for this model.
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1 Introduction

In 1976, Wazewska-Czyzewska and Lasota [1] introduced the following reduced
Lasota-Wazewska model:

x′(t) = −αx(t) + βe−γx(t−h), (1.1)

which describes the dynamics of red blood cells production, where x(t) denotes
the number of red blood cells in the circulation, α > 0 is average part of
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red blood cells population being destroyed in the time unit, β > 0 is the
constant connected with demand for oxygen, γ > 0 characterizes excitability of
haematopoietic system, and h is the time delay of the haematopoietic system.
Then being regarded as an important general biological system, this model and
its various generalized forms have been extensively studied by lots of author(see
e.g. [2–5]).

The theory of impulsive differential equation has been well developed in
recent years (see [6–10]). If the impulsive factors of the environment are in-
corporated into the biological dynamic models, the models must be governed
by impulsive differential equations. As a result, lots of works are devoted to
the study of the following impulsive Lasota-Wazewska model with multiple
time-varying delays (see e.g. [11–13]):x′(t) = −α(t)x(t) +

m∑
j=1

βj(t)e
−γj(t)x(t−ηj(t)), t 6= tk,

∆x(tk) = x(tk + 0)− x(tk − 0) = αkx(tk) + νk.

(1.2)

We notice that the coefficients α, βj, γj, ηj, j = 1, 2, · · · ,m are always as-
sumed to be continuous in the literature. However, we have to face the case
when the coefficients are discontinuous. This is natural in the real life. For
instance, in the dynamics of red blood cells production, the red blood cells
population being destroyed, the demand for oxygen or the excitability of
haematopoietic system may also be changed instantaneously because of the
instantaneously changes of the environment. As a result, the model (1.2) with
discontinuous coefficients is an interesting and important topic to study. This
is the main motivation for this work. We consider system (1.2) in the case
when the coefficients are piecewise almost periodic, and establish an existence
and uniqueness theorem of piecewise almost periodic positive solution for this
model.

2 Preliminaries

A positive solution x(t) of (1.2) means that x(t) satisfies (1.2) and x(t) >
0, t ∈ R. Throughout this paper, we denote by T the set of real sequences
T = {ti}i∈Z such that σ = infi∈Z(ti+1 − ti) > 0 and κ = supi∈Z(ti+1 − ti) <∞.
For T ∈ T, let PCT (R) be the space of bounded piecewise continuous functions
φ : R→ R such that φ is continuous at t for t /∈ {ti} and φ(ti) = φ(t−i ), i ∈ Z.
For convenience, we set φ− = inft∈R φ(t).

Definition 2.1 ( [14]) A function φ ∈ PCT (R) is said to be piecewise almost
periodic if the following conditions are fulfilled:
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(i) {tji = ti+j− ti}i∈Z, j = 0,±1,±2, · · · are equipotentially almost periodic,
i.e. for any ε > 0, there exists a relatively dense set of ε-periods, that
are common to all the sequences {tji}i∈Z, j = 0,±1,±2, · · · .

(ii) For ε > 0, there exists a positive number δ = δ(ε) such that if t′, t′′ ∈
(ti−1, ti] for some i ∈ Z and |t′ − t′′| < δ, then |φ(t′)− φ(t′′)| < ε.

(iii) For ε > 0, there exists a relatively dense set Qε ⊂ R such that if τ ∈ Qε,
then |φ(t+ τ)− φ(t)| < ε for all t ∈ R, |t− ti| > ε, i ∈ Z. The number τ
is called ε-period of φ.

Denote by APT (R) the space of piecewise almost periodic functions, which is
a Banach space endowed with the sup norm ‖ · ‖. We always assume that
α, βj, γj ∈ APT (R), j = 1, 2, · · · ,m are nonnegative with α− = inft∈R α(t) > 0,
and {αk}k∈Z, {νk}k∈Z are almost periodic with −1 < αk < 0, k ∈ Z. We denote
ᾱ = infk∈Z αk and ‖ν‖ = supk∈Z |νk|.

Together with (1.2), we consider the linear system{
x′(t) = −α(t)x(t), t ∈ R, t 6= tk,

∆x(tk) = αkx(tk), k ∈ Z.
(2.1)

Similar as that in [6], we can get the Cauchy matrix (actually one order) of
(2.1):

W (t, s) =


e−

∫ t
s α(θ)dθ, tk−1 < s ≤ t ≤ tk,

k∏
j=m

(1 + αj)e
−
∫ t
s α(θ)dθ, tm−1 < s ≤ tm ≤ tk < t ≤ tk+1,

and the solution of system (2.1) are in the form x(t; t0, x0) = W (t, t0)x0 for
t0, x0 ∈ R.

The following lemma can be obtained by a slight modification of the proof
of [11, Lemma 1.7], and we omit the details.

Lemma 2.1 Let u ∈ APT (R). For ε > 0, there exist ε1 ∈ (0, ε), relatively
dense sets Ω ⊂ R and Q ⊂ Z such that for τ ∈ Ω, q ∈ Q, t ∈ R with
|t− ti| > ε, i ∈ Z and k ∈ Z, the following relations are fulfilled:

(a) |ρ(t+ τ)− ρ(t)| < ε, where ρ = α, u, βj, γj, j = 1, 2, . . . ,m.

(b) |αk+q − αk| < ε, |νk+q − νk| < ε.

(c) |tqk − τ | < ε1.
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Lemma 2.2 For t, s ∈ R with t ≥ s, we have 0 < W (t, s) ≤ e−α
−(t−s).

Moreover, for ε > 0, let Ω be as in Lemma 2.1, there exists a constant λ > 0
such that for τ ∈ Ω, |t− tk| > ε, |s− tk| > ε, k ∈ Z,

|W (t+ τ, s+ τ)−W (t, s)| ≤ λεe−α
−(t−s)/2. (2.2)

Proof. By a direct calculation we can get that 0 < W (t, s) ≤ e−α
−(t−s) for

t, s ∈ R with t ≥ s. To prove the rest of this lemma, we use the notations in
Lemma 2.1. Let τ ∈ Ω, q ∈ Q and |t − tk| > ε, |s − tk| > ε, k ∈ Z. It follows
from Lemma 2.1 that

|t+ τ − tk+q| > ε− ε1 > 0 and |s+ τ − tk+q| > ε− ε1 > 0, k ∈ Z. (2.3)

Let N be the smallest integer bigger than (t − s)/σ. Then there are at most
N points in [s, t] ∩ T and

N ≤ 1 +
t− s
σ
≤ 1 +

2

σα−
eα
−(t−s)/2 ≤

(
1 +

2

σα−

)
eα
−(t−s)/2 ,M0e

α−(t−s)/2.

(2.4)
Now we have two cases to be considered: [s, t] ∩ T = ∅ and [s, t] ∩ T =
{r1, r2, · · · , tp} for some integer p ≤ N .

Case 1. Assume that [s, t] ∩ T = ∅. By (2.3) and Lemma 2.1, we can get
that [s+ τ, t+ τ ] ∩ T = ∅ and

|α(θ + τ)− α(θ)| < ε for θ ∈ [s, t]. (2.5)

It is easy to verify that the following inequality holds:

|1− e±ab| ≤ eab for a > 0, 0 < b ≤ 1. (2.6)

We may assume that ε < min{α−/2, α−/(4‖α‖/σ+2)}. Then by the definition
of W , (2.5) and (2.6),

|W (t+ τ, s+ τ)−W (t, s)| = |e−
∫ t+τ
s+τ α(θ)dθ − e−

∫ t
s α(θ)dθ|

= |1− e−
∫ t
s (α(θ)−α(θ+τ))dθ|e−

∫ t
s α(θ)dθ

≤ |1− e±ε(t−s)|e−α−(t−s)

≤ (2/α−)εeα
−(t−s)/2e−α

−(t−s)

= (2/α−)εe−α
−(t−s)/2.

That is (2.2) holds with λ = 2/α−.
Case 2. Assume that [s, t] ∩ T = {r1, r2, · · · , rp} for some integer p ≤ N .

By (2.3) and Lemma 2.1, we have [s+ τ, t+ τ ]∩T = {r1+q, r2+q, · · · , rp+q} and

|αj+q − αj| < ε, j = 1, · · · , p. (2.7)
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Set Uts =
⋃p
k=1[rk − ε, rk + ε]. Then the measure mUts ≤ 2Nε ≤ 2(1 + (t −

s)/σ)ε. By Lemma 2.1,

|α(θ + τ)− α(θ)| < ε for θ ∈ [s, t] \ Uts.

Thus we have∣∣∣∣∫ t

s

(α(θ)− α(θ + τ))dθ

∣∣∣∣ ≤ (∫
[s,t]∩Uts

+

∫
[s,t]\Uts

)
|α(θ)− α(θ + τ)|dθ

≤ ‖α‖mUts + (t− s)ε
≤ 2‖α‖ε+ (2‖α‖/σ + 1)(t− s)ε.

Then by (2.6),

|e−
∫ t+τ
s+τ α(θ)dθ − e−

∫ t
s α(θ)dθ| = |e−

∫ t
s (α(θ+τ)−α(θ))dθ − 1|e−

∫ t
s α(θ)dθ

≤ |e±(2‖α‖ε+(2‖α‖/σ+1)(t−s)ε) − 1|e−α−(t−s)

≤ 4‖α‖/σ + 2

α−
εe‖α‖α

−/(2‖α‖/σ+1)+α−(t−s)/2e−α
−(t−s)

=
4‖α‖/σ + 2

α−
e‖α‖α

−/(2‖α‖/σ+1)εe−α
−(t−s)/2

,M1εe
−α−(t−s)/2. (2.8)

For the convenience, denote Λ =
∏p

j=1(1 + αj) and Λq =
∏p

j=1(1 + αj+q).
Noticing that (1 + αk) ∈ (0, 1) for k ∈ Z, then by (2.4) and (2.7),

|Λq − Λ| ≤
N∑
j=k

|αj+q − αj| < Nε ≤M0εe
α−(t−s)/2. (2.9)

Thus by the definition of W , (2.8) and (2.9),

|W (t+ τ, s+ τ)−W (t, s)| =
∣∣∣Λqe

−
∫ t+τ
s+τ α(θ)dθ − Λe−

∫ t
s α(θ)dθ

∣∣∣
≤ |Λq − Λ|e−

∫ t
s α(θ)dθ +

∣∣∣e− ∫ t+τs+τ α(θ)dθ − e−
∫ t
s α(θ)dθ

∣∣∣
≤M0εe

α−(t−s)/2e−α
−(t−s) +M1εe

−α−(t−s)/2

= (M0 +M1)εe
−α−(t−s)/2.

Then (2.2) holds with λ = M0 +M1.

3 Existence of piecewise almost periodic solu-

tions

Lemma 3.1 Let u ∈ APT (R) with u(t) ≥ 0, t ∈ R and

F (t) =

∫ t

−∞
W (t, s)βj(s)e

−γj(s)u(s+h)ds
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for some j ∈ {1, · · · ,m}. Then F ∈ APT (R).

Proof: For the convenient of whiting, we denote lj(s) = e−γj(s)u(s+h), s ∈
R, j = 1, 2, · · · ,m. Then 0 < lj(s) ≤ 1. It is easy to see that F is uniformly
continuous.

For ε > 0, there exists η > σ such that e−ηα
−
/α− < ε. LetN be the smallest

integer bigger than η/σ. Then for t ∈ R, we may assume that T ∩ [t− η, t] =
{r1, r2, · · · , rp}, (T − h) ∩ [t − η, t] = {r′1, r′2, · · · , r′p′} with p, p′ ≤ N . Here
T − h = {tk − h}k∈Z. Set

At =

p⋃
k=1

[
rk −

ε

4N
, rk +

ε

4N

] p′⋃
k=1

[
r′k −

ε

4N
, r′k +

ε

4N

]
.

Obviously, the measure mAt ≤ ε. By Lemma 2.1 and 2.2, for ε/(4N), there
exists a relatively dense set Ω ⊂ R such that for τ ∈ Ω,

|ρ(s+ τ)− ρ(s)| < ε/(4N), where ρ = α, u, βj, γj, j = 1, 2, . . . ,m,

|W (t+ τ, s+ τ)−W (t, s)| ≤ λε/(4N)e−α
−(t−s)/2 ≤ λε/(4N),

for t ∈ R with |t − ti| > ε/(4N) and |s − ti| > ε/(4N), i ∈ Z. Noticing
that W (t, s), lj(s) ∈ (0, 1], then for τ ∈ Ω, |t − ti| > ε > ε/(4N), i ∈ Z,
s ∈ [t− η, t] \ At,

|W (t+ τ, s+ τ)βj(s+ τ)lj(s+ τ)−W (t, s)βj(s)lj(s)|
≤ ‖βj‖|W (t+ τ, s+ τ)−W (t, s)|+ |βj(s+ τ)− βj(s)|+ ‖βj‖|lj(s+ τ)− lj(s)|
≤ ‖βj‖λε/(4N) + ε/(4N) + ‖βj‖|γj(s+ τ)u(s+ h+ τ)− γj(s)u(s+ h)|
≤ (‖βj‖λ+ 1)ε/(4N) + ‖βj‖|(‖u‖|γj(s+ τ)− γj(s)|+ ‖γj‖|u(s+ h+ τ)− u(s+ h)|)
≤ (‖βj‖(λ+ ‖u‖+ ‖γj‖) + 1)ε/(4N),

and hence∫ t

t−η
|W (t+ τ, s+ τ)βj(s+ τ)lj(s+ τ)−W (t, s)βj(s)lj(s)|ds

≤
∫
[t,t−η]∩At

‖βj‖ds+

∫
[t,t−η]\At

(‖βj‖(λ+ ‖u‖+ ‖γj‖) + 1)ε/(4N)ds

≤ ‖βj‖ε+ (‖βj‖(λ+ ‖u‖+ ‖γj‖) + 1)ηε/(4N)

≤ [‖βj‖+ (‖βj‖(λ+ ‖u‖+ ‖γj‖) + 1)σ/4]ε ,M2ε.
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Therefore, by Lemma 2.2, for τ ∈ Ω, |t− ti| > ε, i ∈ Z,

|F (t+ τ)− F (t)| =
∣∣∣∣∫ t+τ

−∞
W (t+ τ, s)βj(s)lj(s)ds−

∫ t

−∞
W (t, s)βj(s)lj(s)ds

∣∣∣∣
≤
∫ t

−∞
|W (t+ τ, s+ τ)βj(s+ τ)lj(s+ τ)−W (t, s)βj(s)lj(s)|ds

≤
∫ t−η

−∞
‖βj‖e−α

−(t−s)ds+M2ε

= ‖βj‖
e−ηα

−

α−
+M0ε ≤ (‖βj‖+M2)ε.

This implies that F ∈ APT (R).

For convenience, we denote

K =

∑m
j=1 ‖βj‖
α−

+
‖ν‖

1− e−σα−
,

K =
(1− e−‖α‖σ)(1− e−α−σ)

‖α‖(1− (1 + ᾱ)e−‖α‖κ)

m∑
j=1

β−j e
−‖γj‖K − ‖νk‖.

Theorem 3.1 Assume that K > 0 and
∑m

j=1 ‖βj‖ < α−. Then equation (1.2)
has a unique positive solution u ∈ APT (R) such that 0 < u(t) ≤ K, t ∈ R.

Proof: Let B = {u ∈ APT (R) : 0 ≤ u(t) ≤ K, t ∈ R}. For u ∈ B, define

Γu(t) =

∫ t

−∞
W (t, s)

m∑
j=1

βj(s)e
−γj(s)u(s+h)ds+

∑
tk<t

W (t, τk)νk = Γ1u(t)+Γ2u(t),

where Γ1u(t) and Γ2u(t) denote the integral term and the sum term, respec-
tively. Then the proof is completed if Γ has a unique fixed point in B.

By Lemma 2.2 and the definition of W , we can get that

|Γu(t)| ≤
∫ t

−∞
e−α

−(t−s)
m∑
j=1

‖βj‖ds+
∑
tk<t

e−α
−(t−tk)νk ≤

∑m
j=1 ‖βj‖
α−

+
‖ν‖

1− e−σα−
= K.
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Assume that t ∈ (tn, tn+1] for some n ∈ Z, then by the definition of W ,∫ t

−∞
W (t, s)ds =

(∫ t

tn

+
n∑

k=−∞

∫ tk

tk−1

)
W (t, s)ds

≥
∫ t

tn

e−‖α‖(t−s)ds+
n∑

k=−∞

∫ tk

tk−1

n∏
j=k

(1 + αj)e
−‖α‖(t−s)ds

=
1− e−‖α‖(t−tn)

‖α‖
+

n∑
k=−∞

n∏
j=k

(1 + αj)
e−‖α‖(t−tk)(1− e−‖α‖(tk−tk−1))

‖α‖

≥ 1− e−‖α‖σ

‖α‖

(
1 +

n∑
k=−∞

(1 + ᾱ)n−k+1e−‖α‖κ(n−k+1)

)

=
1− e−‖α‖σ

‖α‖(1− (1 + ᾱ)e−‖α‖κ)
.

Noticing that K > 0, we have

Γu(t) ≥
m∑
j=1

β−j e
−‖γj‖K

∫ t

−∞
W (t, s)ds−

∑
tk<t

e−α
−(t−tk)‖ν‖

≥ 1− e−‖α‖σ

‖α‖(1− (1 + ᾱ)e−‖α‖κ)

m∑
j=1

β−j e
−‖γj‖K − ‖ν‖

1− e−σα−
> 0.

Meanwhile, by Lemma 3.1, we get that Γ1u ∈ APT (R). To prove that Γu ∈ B,
we need only to prove that Γ2u ∈ APT (R).

In fact, by Lemma 2.2 and the definition of W , it is easy to see that the
sum in Γ2 is convergent uniformly in t ∈ R, and Γ2u satisfies the condition
(ii) of Definition 2.1. Next we use the notations in Lemma 2.1. For ε > 0, let
τ ∈ Ω, q ∈ Q. For t ∈ R with |t− ti| > ε, and tk ∈ T with tk < t. Assume that
[tk, t]∩ T = {tk, tk+1, · · · , tp} for some integer p ≥ k. Then p− k ≤ (t− tk)/σ.
It is easy to get from Lemma 2.1 that [tk+q, t+τ ]∩T = {tk+q, tk+q+1, · · · , tp+q}
and

|α(θ+τ)−α(θ)| < ε, |αi+q−αi| < ε, |νi+q−νi| < ε, |tk+q−tk−τ | < ε1 < ε (3.1)

for θ ∈ R, |θ− tj| > ε, i, j ∈ Z. Set Utk =
⋃p
j=k[tj−ε, tj +ε]. Then the measure

mUtk ≤ 2(p− k + 1)ε ≤ 2ε+ 2(t− tk)ε/σ, and we have∣∣∣∣∫ t

tk

(α(θ + τ)− α(θ))dθ

∣∣∣∣ ≤ (∫
[tk,t]∩Utk

+

∫
[tk,t]\Utk

)
|α(θ + τ)− α(θ)|dθ

≤ ‖α‖(2ε+ 2(t− tk)ε/σ) + (t− tk)ε
, 2‖α‖ε+M3(t− tk)ε.



Impulsive Lasota-Wazewska model with discontinuous coefficients 849

Thus by (3.1),∣∣∣∣∣
∫ t+τ

tk+q

α(θ)dθ −
∫ t

tk

α(θ)dθ

∣∣∣∣∣ ≤
∫ tk+τ

tk+q

α(θ)dθ +

∫ t

tk

|α(θ + τ)− α(θ)|dθ

≤ ‖α‖ε+ 2‖α‖ε+M3(t− tk)ε
= 3‖α‖ε+M3(t− tk)ε.

So by (2.6) (we may assume that ε < α−/(2M3)),∣∣∣∣e− ∫ t+τtk+q
α(θ)dθ − e−

∫ t
tk
α(θ)dθ

∣∣∣∣ =

∣∣∣∣∣e−
(∫ t+τ

tk+q
α(θ)dθ−

∫ t
tk
α(θ)dθ

)
− 1

∣∣∣∣∣ e− ∫ ttk α(θ)dθ
≤
∣∣e±(3‖α‖+M3(t−tk))ε − 1

∣∣ e−α−(t−tk)
≤ 2M3

α−
εe3‖α‖α

−/(2M3)+α−(t−tk)/2e−α
−(t−tk)

,M4εe
−α−(t−tk)/2.

Denote Λ′ =
∏N

j=k(1 + αj) and Λ′q =
∏N

j=k(1 + αj+q). As (2.9), we can get

|Λ′q − Λ′| ≤M5εe
α−(t−tk)/2

for some constant M5 > 0. Now by the definition of W and the fact that
|Λq| ≤ 1,

|W (t+ τ, tk+q)−W (t, tk)| =
∣∣∣∣Λqe

−
∫ t+τ
tk+q

α(θ)dθ − Λe
−
∫ t
tk
α(θ)dθ

∣∣∣∣
≤
∣∣∣∣e− ∫ t+τtk+q

α(θ)dθ − e−
∫ t
tk
α(θ)dθ

∣∣∣∣ |Λq|+ |Λq − Λ|e−
∫ t
tk
α(θ)dθ

≤M4εe
−α−(t−tk)/2 +M5εe

α−(t−tk)/2e−α
−(t−tk)

= (M4 +M5)εe
−α−(t−tk)/2.

Then by (3.1) and Lemma 2.2,

|Γ2(t+ τ)− Γ2(t)| =

∣∣∣∣∣∑
tk<t

(W (t+ τ, tk+q)νk+q −W (t, tk)νk)

∣∣∣∣∣
≤
∑
tk<t

(|W (t+ τ, tk+q)−W (t, tk)||νk+q|+ |W (t, tk)||νk+q − νk|)

≤
∑
tk<t

(
‖ν‖(M4 +M5)εe

−α−(t−tk)/2 + εe−α
−(t−tk)

)
≤ (‖ν‖(M4 +M5) + 1)ε

∑
tk<t

e−α
−(t−tk)/2

≤ ‖ν‖(M4 +M5) + 1

1− e−σα−/2
ε.
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This implies that Γ2u ∈ APT (R), and then Γ is from B to B.
Let φ, ϕ ∈ B, t ∈ R, by Lemma 2.2

|Γφ(t)− Γϕ(t)| ≤
∫ t

−∞
W (t, s)

m∑
j=1

βj(s)
∣∣e−γj(s)φ(s+h) − e−γj(s)ϕ(s+h)∣∣ ds

≤
∫ t

−∞
e−α

−(t−s)
m∑
j=1

‖βj‖‖φ− ϕ‖ds ≤
∑m

j=1 ‖βj‖
α−

‖φ− ϕ‖.

Then it follows from the hypothesis of this theorem that Γ : B → B is con-
tracting. So Γ has a unique fixed point u ∈ B. This completes the proof.

Remark 3.1 (i) We note that model (1.2) with continuous almost periodic
coefficients is investigated in [11], and similar result was obtained, but the
solution considered there is not necessarily positive.

(ii) Denote

K ′ =
(1− e−α−σ)2

‖α‖

m∑
j=1

β−j e
−‖γj‖K − ‖νk‖.

Then K ≥ K ′, and Theorem 3.1 holds if the condition K > 0 is replaced by
K ′ > 0, which is stricter but simpler and easier to be verified.

We close this work by an example.

Example 3.1 Consider the following impulsive Lasota-Wazewska model:{
x′(t) = −α(t)x(t) + β1(t)e

−γ1(t)x(t−h) + β2(t)e
−γ2(t)x(t−h), t 6= τk,

∆x(τk) = x(τk + 0)− x(τk − 0) = αkx(τk) + νk,
(3.2)

where T = {τk} with τk = k + | sin k − sin
√

2k|/4, k ∈ Z, {αk} and {νk} are
nonnegative almost periodic sequence with −1 < αk < 0, k ∈ Z, ‖ν‖ = 1/4
and

α(t) =

{
10 + cos2 t, t ∈ (τ2n−1, τ2n], n ∈ Z,
10 + cos2 2t, t ∈ (τ2n, τ2n+1], n ∈ Z,

β1(t) =

{
3 + | sin

√
2t|, t ∈ (τ2n−1, τ2n], n ∈ Z,

3 + | sin
√

3t|, t ∈ (τ2n, τ2n+1], n ∈ Z,

β2(t) =

{
4 + | sin

√
5t|, t ∈ (τ2n−1, τ2n], n ∈ Z,

4 + | sin
√

7t|, t ∈ (τ2n, τ2n+1], n ∈ Z,

γ1(t) =

{
1/4 + | sin

√
3t|/4, t ∈ (τ2n−1, τ2n], n ∈ Z,

1/4 + | sin
√

5t|/4, t ∈ (τ2n, τ2n+1], n ∈ Z,

γ2(t) =

{
| sin
√

5t|/2, t ∈ (τ2n−1, τ2n], n ∈ Z,
| sin
√

7t|/2, t ∈ (τ2n, τ2n+1], n ∈ Z.
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It is easy to verify that α, β1, β2, γ1, γ2 ∈ APT (R). Moreover, we can get that
σ = infk∈Z(τk − τk−1) ≥ 1/2 and

α− = 10, ‖α‖ = 11, β−1 = 3, ‖β1‖ = 4, β−2 = 4, ‖β2‖ = 5, ‖γ1‖ = ‖γ2‖ = 1/2.

Then we have

K =
‖β1‖+ ‖β2‖

α−
+

‖ν‖
1− e−α−σ

≤ 9

10
+

1/4

1− e−10/2
< 1.2,

K ′ =
(1− e−α−σ)2

‖α‖

2∑
j=1

β−j e
−‖γj‖K−‖ν‖ ≥ (1− e−5)2

11
(3×e−0.6+4×e−0.6)−1/4 > 0,

and
‖β1‖+ ‖β2‖ = 9 < 10 = α−.

So by Remark 3.1 (ii), all the conditions of Theorem 3.1 is fulfilled, and then
(3.2) has a unique positive solution u ∈ APT (R) such that 0 < u(t) < K, t ∈ R.
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