A Non-linear System of Parabolic Type PDEs for Epidemic Models

Humberto Serrano

Universidad Distrital Francisco José De Caldas Bogotá, Colombia

Copyright © 2017 Humberto Serrano. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The present paper shows the existence of solutions to a system of reaction-diffusion PDE's

$$L_i[u_i] = f_i(x, t, u_1, u_2)$$
 $i = 1, 2 \text{ en } \overline{\Omega} \times [0, s],$

with the following initial and boundary conditions

$$B_i[u_i] = h_i(x,t)$$
 $i = 1, 2 \text{ en } \partial\Omega \times [0,s],$
 $u_1(x,0) = u_0(x) \text{ y } u_2(x,0) = v_0(x) \text{ en } \overline{\Omega}.$

 L_i denote uniformly parabolic operators in $\overline{\Omega} \times [0, s]$, $u_1 = u_1(x, t)$; $u_2 = u_2(x, t)$ represent both the susceptible population and the infective population, respectively; $f_i(x, t, u_1, u_2) = -a_i u_i \mp c_i G(u_2) u_1 + q_i(x, t)$, where a_i , c_i are positive constants that represent the reaction rates and q_i are possible external sources. The function $f_i : \overline{\Omega} \times [0, s] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is regular enough for each i = 1, 2; Ω is an open, bounded and connected set $\Omega \subset \mathbb{R}^N$, $N \ge 1$; $G(u_2)$ is a functional that will be defined bellow.

1 Introduction

A *small* set of individuals that host an infectious disease (infective population) is introduced into a larger population of individuals that are likely to contract

such a disease (susceptible population). Recent studies about this model can be found in [4], [7]. In [4], the basic epidemic model is described by:

$$u_t - \nabla(D_1 \nabla u) = -a_1 u - c_1(G(v))u + q_1(x, t) \text{ in } \overline{\Omega} \times [0, s], \tag{1}$$

$$v_t - \nabla(D_2 \nabla v) = -a_2 v + c_2(G(v))u + q_2(x, t) \text{ in } \overline{\Omega} \times [0, s], \tag{2}$$

$$u(x,0) = u_0(x) \text{ y } v(x,0) = v_0(x) \text{ in } \overline{\Omega},$$
 (3)

$$u(x,t) = h_1(x,t)$$
 y $v(x,t) = h_2(x,t)$ in $\partial \Omega \times [0,s]$, (4)

where u(x,t) is the susceptible population and v(x,t) is the infective population, D_1 and D_2 are the diffusion coefficients, a_1, a_2, c_1, c_2 represent the reaction rates, q_1 and q_2 are continuous, non-negative functions defined in $\overline{\Omega} \times [0, s]$, are possible external sources. This paper considers a more general problem than that in (1)–(4), given by

$$L_1[u] = -a_1 u - c_1(G(v))u + q_1(x,t) \text{ in } \overline{\Omega} \times [0,s],$$
 (5)

$$L_2[v] = -a_2v + c_2(G(v))u + q_2(x,t) \text{ in } \overline{\Omega} \times [0,s],$$
 (6)

$$u(x,0) \equiv 0 \text{ y } v(x,0) \equiv 0 \text{ in } \overline{\Omega},$$
 (7)

$$u(x,t) \equiv 0 \text{ y } v(x,t) \equiv 0 \text{ in } \partial\Omega \times [0,s],$$
 (8)

where $L_1[u]$ and $L_2[v]$ are uniformly parabolic operators in $D_s = \overline{\Omega} \times [0, s]$. The functional G(v) is defined as follows:

$$G(v)(x,t) = \int_{\Omega} g(x,y)v(y,t)dy,$$
(9)

for every function $v \in C(D_s)$, where g is a continuous positive function defined in $\overline{\Omega} \times \overline{\Omega}$.

2 Definitions and Preliminaries

Let Ω be a bounded domain set $\Omega \subset \mathbb{R}^N$, $N \geq 1$, [0, s] a compact interval in \mathbb{R} , $x = (x_1, x_2, \dots, x_N) \in \mathbb{R}^N$, $N \geq 1$ and u is a real-valued function defined in $D_s = \overline{\Omega} \times [0, s]$. Let us denote $u \in C^{\alpha, \alpha/2}(D_s)$ with exponent α , $0 < \alpha < 1$ if the number

$$\overline{H}_{\alpha}(u) = \sup_{\substack{(x_1, y_1), (x_2, y_2) \in D_s \\ (x_1, y_1) \neq (x_2, y_2)}} \frac{|u(x_1, t_1) - u(x_2, t_2)|}{[|x_1 - x_2|^2 + |t_1 - t_2|]^{\alpha/2}} < \infty.$$

The set $C^{\alpha,\alpha/2}(D_s)$ is a Banach space with norm

$$||u||_{\alpha} = ||u||_{\infty} + \overline{H}_{\alpha}(u) \quad \text{where } ||u||_{\infty} = \max_{(x,t)\in D_s} |u(x,t)|.$$
 (10)

It is readily observable that, if $\overline{H}_{\alpha}(u) < \infty$ then $||u||_{\infty} < \infty$. u is denoted as uniformly continuous in D_s with exponent α if $u \in C^{\alpha,\alpha/2}(D_s)$. If $0 < \alpha < \beta < 1$, we have $C^{\beta,\beta/2}(D_s) \subset C^{\alpha,\alpha/2}(D_s)$. Let us write $u \in C^{2+\alpha,1+\alpha/2}(D_s)$ if $u, u_{x_i}, u_{x_ix_j}$, and u_t belongs to $C^{\alpha,\alpha/2}(D_s)$ for $1 \le i, j \le N$. The set $C^{2+\alpha,1+\alpha/2}(D_s)$ is a Banach space with norm defined by

$$||u||_{2+\alpha} = |||u||_{\alpha} + \sum_{i=1}^{N} ||u_{x_i}||_{\alpha} + \sum_{i=1}^{N} \sum_{j=1}^{N} ||u_{x_i x_j}||_{\alpha} + ||u_t||_{\alpha}.$$
(11)

Similarly $C^{1+\alpha,\alpha/2}(D_s)$ is defined as the set of all functions u defined in D_s , such that u, u_{x_i} and u_t for $1 \le i \le N$ belongs to $C^{\alpha,\alpha/2}(D_s)$; the norm la of u is defined by

$$||u||_{1+\alpha} = |||u||_{\alpha} + \sum_{i=1}^{N} ||u_{x_i}||_{\alpha} + ||u_t||_{\alpha}.$$
(12)

From (10), (11), (12) it can be inferred that

$$C^{2+\alpha,1+\alpha/2}(D_s) \subset C^{1+\alpha,\alpha/2}(D_s) \subset C^{\alpha,\alpha/2}(D_s)$$

The differential operators $L_k: C^{2+\alpha,1+\alpha/2}(D_s) \to C^{\alpha,\alpha/2}(D_s)$ are defined for each k=1,2 for

$$L_1[u] \equiv u_t - \left(\sum_{i=1}^N \sum_{j=1}^N a_{ij}(\cdot) u_{x_i x_j} + \sum_{i=1}^N b_i(\cdot) u_{x_i} + \tilde{c}_1(\cdot) u\right)$$
(13)

$$L_2[v] \equiv v_t - \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \overline{a}_{ij}(\cdot) v_{x_i x_j} + \sum_{i=1}^{N} \overline{b}_i(\cdot) v_{x_i} + \tilde{c}_2(\cdot) v\right)$$
(14)

, for all $(x,t) \in D_s$ and also for all $u,v \in C^{2+\alpha,1+\alpha/2}(D_s)$, where the coefficients of L_1 and L_2 are functions that belong to $C^{\alpha,\alpha/2}(D_s)$, $a_{ij}=a_{ji}$, $\overline{a}_{ij}=\overline{a}_{ji}$, for $1 \leq i,j \leq N$, $\tilde{c}_k(\cdot) \leq 0$ for k=1,2 in D_s . L_k is a linear, bounded operator for k=1,2, see [3]. The operators (13) and (14) are uniformly parabolic in D_s for k=1,2 see [5], [2], if matrices $(a_{ij}(x,t))$ and $(\overline{a}_{ij}(x,t))$ are positive definite in D_s and there exist constants $M_1>0$ and $M_2>0$ such that for all $(x,t)\in D_s$ and for all vector $\varepsilon=(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_N)\neq 0$, the following inequalities hold

$$\sum_{j=1}^{N} \sum_{i=1}^{N} a_{ij}(x,t)\varepsilon_{i}\varepsilon_{j} \ge M_{1} \sum_{i=1}^{N} \varepsilon_{i}^{2} \quad \text{y} \quad \sum_{j=1}^{N} \sum_{i=1}^{N} \overline{a}_{ij}(x,t)\varepsilon_{i}\varepsilon_{j} \ge M_{2} \sum_{i=1}^{N} \varepsilon_{i}^{2}.$$

It can be said that D_s satisfies property (\tilde{E}) if for every point p in \overline{S} there is an N+1- neighborhood V and a function $h \in C^{2+\alpha,1+\alpha/2}(V)$ such that $V \cap \overline{S}$, can

be represented, for some $i, 1 \le i \le N$ in the form $x_i = h(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_N, t)$. Le us denote $||\cdot||_{2,p}$ and $|||\cdot|||_{2,p}$ the equivalent norms

$$||u||_{2,p} = \left(\int_0^s \left(\int_{\Omega} (|u|^p + \sum_{i=1}^N |u_{x_i}|^p + \sum_{i=1}^N \sum_{j=1}^N |u_{x_i x_j}|^p + |u_t|^p) dx \right) dt \right)^{1/p}$$

The norm $||u||_{2,p}$ is defined as the sum of the norms of u, u_{x_i} , $u_{x_ix_j}$ and u_t in $L^p(D_s)$ for $1 \leq i, j \leq N$, where $||u||_{2,p}$ is the norm of the Sobolev space $W_p^{2,1}(D_s)$ of all functions $u(x,t) \in L^p(D_s)$ that have generalized derivatives with respect to x up to the order 2 inclusive, and up to the order 1 with respect to t belonging to $L^p(D_s)$. The space $W_p^{2,1}(D_s)$ is a Banach space.

For functions $u \in C^{2+\alpha/2,1+\alpha/2}(D_s)$ we have $||u||_{2,p} < \infty$. The Sobolev inequality states that, if $\alpha \in (0,1)$ and p is large enough, such that $0 < \alpha < 1 - (N+2)/p$, for values of β such that $0 < \alpha < \beta < 1$, then we have $W_p^{2,1}(D_s) \subset C^{1+\beta,\beta/2}(D_s)$ and there is a constant $\overline{C_1} = \overline{C_1}(\Omega,\beta,p)$ such that, if $u \in C^2(\overline{\Omega})$ then $||u||_{1+\beta} \leq \overline{C_1}||u||_{2,p}$. The method we use to solve the problem (5)–(8) is the super-solutions and sub-solutions method, which is analogous to the super- and sub-solutions method for elliptical problems.

Let us say that a couple $(\overline{u}, \overline{v})$ in $C^2(D_s)$ is a super-solution of (5)–(8) if

$$L_1[\overline{u}] \ge -a_1\overline{u} - c_1(G(\overline{v}))\overline{u} + q_1(x,t) \text{ in } \overline{D_s}, \tag{15}$$

$$L_2[\overline{v}] \ge -a_2\overline{u} + c_2(G(\overline{v}))\overline{u} + q_2(x,t) \text{ in } \overline{D_s},$$
 (16)

$$\overline{u}(x,t) \ge 0 \quad \text{y} \quad \overline{v}(x,t) \ge 0 \text{ in } (\overline{\Omega} \times \{0\}) \cup S.$$
 (17)

Likewise, we say that a couple $(\underline{u},\underline{v})$ of functions in $C^2(D_s)$ is a sub-solution of (5)–(8) if

$$L_1[\underline{u}] \le -a_1\underline{u} - c_1(G(\underline{v}))\underline{u} + q_1(x,t) \text{ in } \overline{D_s}, \tag{18}$$

$$L_2[\underline{v}] \le -a_2\underline{v} + c_2(G(\underline{v}))\underline{u} + q_2(x,t) \text{ in } \overline{D_s}, \tag{19}$$

$$\underline{u}(x,t) \le 0$$
 and $\underline{v}(x,t) \le 0$ in $(\overline{\Omega} \times \{0\}) \cup S$. (20)

In [4], by using standard methods of successive approximations, it is shown that (1)–(4) has a unique solution (u, v) if $f_i = f_i^*$ satisfies the Lipschitz condition

$$||f_i^*(u_1, u_2) - f_i^*(v_1, v_2)|| \le K_i (||u_1 - v_1|| + ||u_2 - v_2||),$$

where $\underline{u_i} \leq u_i \leq \overline{u_i}$ and $\underline{v_i} \leq v_i \leq \overline{v_i}$, for each i = 1, 2.

If \mathbb{E} and \mathbb{F} are the Banach spaces defined by $\mathbb{F} = C^{\alpha,\alpha/2}(D_s)$ with norm $||\cdot||_{\mathbb{F}} = ||\cdot||_{\alpha}$ and $\mathbb{E} = \dot{C}^{2+\alpha,1+\alpha/2}(D_s) = \{u \in C^{2+\alpha,1+\alpha/2}(D_s) : u \equiv 0 \text{ en } (\Omega \times \{0\}) \cup S\}$ with norm $||\cdot||_{\mathbb{E}} = ||\cdot||_{2+\alpha}$. It can be shown that, if $M : \mathbb{E} \to \mathbb{F}$ is the linear operator defined by M[u] = L[u] + du then M is continuous, one to one and surjective since operator L also is; therefore $M^{-1} : \mathbb{F} \to \mathbb{E}$ is continuous.

From the theorem of Arzela-Ascoli, the injection $i: \mathbb{E} \to \mathbb{F}$, defined by i(u) = uis a linear, compact operator. Therefore, if $T: \mathbb{F} \to \mathbb{F}$ is the operator defined by $T[u] = ioM^{-1}[u]$ then T is compact, that is, the image T(S) of any set bounded in F is relatively compact in F. For compactness, it is sufficient to show that the image is a unit closed ball that is relatively compact, or equivalently, for every sequence $\{u_n\}_{n=1}^{\infty} \subset \mathbb{F}$, such that $||u_n||_{\mathbb{F}} \leq r$, for some r>0 and for every integer $n\geq 1$ there is a sub-sequence $\{u_{n_k}\}_{n=1}^\infty$ of $\{u_n\}_{n=1}^\infty$ such that $\{T[u_{n_k}]\}_{k=1}^{\infty}$ converges in \mathbb{F} . If D_s satisfies property \tilde{E} , then, for every $f \in \mathbb{F}$, there is a unique function $u \in \mathbb{E}$, see [5], that fulfills L[u] = fin D_s . Additionally, there are constants $\overline{k}_1 > 0$ (which depend on $\beta \in (0,1)$, fixed, and $\bar{k}_2 > 0$, such that $||u||_{2+\alpha} \leq \bar{k}_1 ||L[u]||_{\alpha}$ and $||u||_{1+\beta} \leq \bar{k}_2 ||L[u]||_{\infty}$. This result implies that the operator $L: \mathbb{E} \to \mathbb{F}$ is one-to-one and surjective, and also that $L^{-1}: \mathbb{F} \to \mathbb{E}$ is continuous. The fixed-point theorem of Shauder, see [1], [3] states that, if D is a non-empty closed bounded convex subset of the Banach space \mathbb{E} and assuming that $T:D\to\mathbb{E}$ is compact $T(D)\subset D$, then T has a fixed point in D, i.e., exist $u^* \in D$ such that $T[u^*] = u^*$. Let us define the partial order relation in the Banach space $E = \mathbb{E} \times \mathbb{E}$, defined by $(u,v) \leq (\overline{u},\overline{v})$, if and only if $u \leq \overline{u}$ and $v \leq \overline{v}$.

The main result of the present paper is the following theorem:

Theorem 1 If there is a super-solution $(\overline{u}, \overline{v})$ and a sub-solution $(\underline{u}, \underline{v})$ of (5)–(8) such that \overline{u} , \overline{v} , \underline{u} , \underline{v} , belonging to $C^{\alpha,\alpha/2}(D_s) \cap C^2(D_s)$ and $(\underline{u}, \underline{v}) \leq (\overline{u}, \overline{v})$, then, there exist (u^*, v^*) belonging to $C^{2+\alpha,1+\alpha/2}(D)$, possibly identical, such that $(\underline{u}, \underline{v}) \leq (u^*, v^*) \leq (\overline{u}, \overline{v})$

Proof. For $u, v \in \mathbb{F} = C^{\alpha, \alpha/2}(D_s)$ let us define

$$(\rho u)(x,t) = \begin{cases} u(x,t) & \text{si } \underline{u}(x,t) \le u(x,t) \le \overline{u}(x,t), \\ \overline{u}(x,t) & \text{if } u(x,t) \ge \overline{u}(x,t), \\ \underline{u}(x,t) & \text{if } u(x,t) \le \underline{u}(x,t), \end{cases}$$

for all $(x,t) \in \Omega$. For all $u \in \mathbb{F}$, we have $\rho u \in \mathbb{F}$, that is, $\rho : \mathbb{F} \to \mathbb{F}$.

$$(\sigma v)(x,t) = \begin{cases} v(x,t) & \text{if } \underline{v}(x,t) \le v(x,t) \le \overline{v}(x,t), \\ \overline{v}(x,t) & \text{if } v(x,t) \ge \overline{v}(x,t), \\ \underline{v}(x,t) & \text{if } v(x,t) \le \underline{v}(x,t), \end{cases}$$

for all $(x,t) \in D_s$. Likewise, for all $v \in \mathbb{F}$, we have $\sigma v \in \mathbb{F}$. Let us denote

$$M_i[u] = L_i[u] + a_i u \quad i = 1, 2, \quad \mathbb{E}_1 = \{ u \in C^{1+\beta,\beta/2}(D) : u \equiv 0 \text{ in } S \},$$

$$||u||_{\mathbb{E}_1} = ||u||_{1+\beta}, \quad \widetilde{\mathbb{E}} = \mathbb{E}_1 \times \mathbb{E}_1, \quad ||(u,v)||_{\widetilde{\mathbb{E}}} = \max\{||u||_{\mathbb{E}_1}, ||v||_{\mathbb{E}_1}\}$$

The space $\widetilde{\mathbb{E}} = \mathbb{E}_1 \times \mathbb{E}_1$ is a Banach space with norm $||(u, v)||_{\widetilde{\mathbb{E}}}$. Let us define the following functions

$$\widetilde{g}_1(x, t, u, v) = g_1(x, t, \rho u, \sigma v) = -c_1 G(\rho v)(\sigma u) + q_1,$$

 $\widetilde{g}_2(x, t, u, v) = g_2(x, t, \rho u, \sigma v) = +c_2 G(\rho v)(\sigma u) + q_2.$

Let us define operator $T: \widetilde{\mathbb{E}} \to \widetilde{\mathbb{E}}$ as follows:

$$T(u,v) = \left(i \circ M_1^{-1}[\tilde{g}_1(x,t,u,v)], i \circ M_2^{-1}[\tilde{g}_2(x,t,u,v)]\right),$$

for all $(u,v) \in \widetilde{\mathbb{E}}$. Since $C^{2+\alpha,1+\alpha/2}(D_s) \subset C^{1+\beta,\beta/2}(D_s)$ for $0 < \alpha < \beta < 1$, then the injection

$$i: C^{2+\alpha,1+\alpha/2}(D_s) \to \mathbb{E}_1$$

is well defined and is a linear, compact operator, which implies that operator $T = ioM^{-1}$ is compact. Let us consider the following problem

$$\begin{cases}
M_1[u] &= \tilde{g}_1(x, t, u, v) = -c_1 G(\rho v)(\sigma u) + q_1 \text{ in } D_s, \\
M_2[v] &= \tilde{g}_2(x, t, u, v) = +c_2 G(\rho v)(\sigma u) + q_2 \text{ in } D_s.
\end{cases}$$
(21)

Due to the existence and uniqueness theorem of Shauder, there exist two constants $k_1 > 0$ y $k_2 > 0$ such that

$$||M_1^{-1}(\tilde{g}_1(x,t,u,v))||_{1+\beta} \le k_1||\tilde{g}_1(x,t,u,v)||_{\infty} \le r,$$
(22)

$$||M_2^{-1}(\tilde{g}_2(x,t,u,v))||_{1+\beta} \le k_2||\tilde{g}_2(x,t,u,v)||_{\infty} \le r.$$
(23)

Then, there exists r > 0 such that $||T(u,v)||_{\widetilde{E}} \leq r$ for all $(u,v) \in \widetilde{\mathbb{E}}$. Let us denote $\overline{D}_r(0)$ as the closed ball in $\widetilde{\mathbb{E}}$, with center in 0 and radius r.

From (22)–(23), we have $T(\overline{D}_r(0)) \subset \overline{D}_r(0)$, because of this relation and considering the fixed point theorem of Shauder, there exist $(u^*, v^*) \in \overline{D}_r(0)$ such that $T(u^*, v^*) = (u^*, v^*)$, that is

$$M_1[u^*] = \widetilde{g}_1(x, t, u^*, v^*) = -c_1 G(\sigma v^*)(\rho u^*) + q_1 \text{ in } D_s,$$

$$M_2[v^*] = \widetilde{g}_2(x, t, u^*, v^*) = c_2 G(\sigma v^*)(\rho u^*) + q_2 \text{ in } D_s.$$

From the definitions (15)–(17) and (18)–(20) we have

$$M_2[\overline{v} - v^*] \ge c_2[G(\overline{v})\overline{u} - G(\sigma v^*)\rho u^*] \ge 0 \text{ in } D_s$$
(24)

$$M_2[v^* - \underline{v}] \ge c_2[G(\rho v^*)\sigma u^* - G(\underline{v})\underline{u}] \ge 0 \text{ in } D_s$$
 (25)

$$\overline{v} - v^* \ge 0 \text{ y } v^* - \underline{v} \ge 0 \text{ in } S.$$
 (26)

The inequalities (24)—(26) and the maximum principle for PDE's of parabolic type [5], [2], [1], imply that

$$\max_{\overline{D_s}}(\overline{v}-v^*) = \max_{\partial D_s}(\overline{v}-v^*) \ge 0 \text{ and } \max_{\overline{D_s}}(v^*-\underline{v}) = \max_{\partial D_s}(v^*-\underline{v}) \ge 0$$

Therefore, $\overline{v} - v^* \geq 0$, and $v^* - \underline{v} \geq 0$ then $\overline{v} \geq v^*$ and $v^* \geq \underline{v}$ in D_s , that is, $\overline{v} \geq v^* \geq \underline{v}$ in D_s . Now, let us show that $\underline{u} \leq u^* \leq \overline{u}$ in D_s . To prove that $u^* \leq \overline{u}$ in D_s , let us suppose the opposite, namely that there exist $(x_0, t_0) \in D_s$ such that $u^*(x_0, t_0) > \overline{u}(x_0, t_0)$. Let $Q = \{(x, t) \in D_s : (u^* - \overline{u})(x, t) > 0\} \neq \emptyset$ and A be a non-empty connected component of Q that contains (x_0, t_0) , in such a case A is a bounded domain in \mathbb{R}^{N+1} . Let us define $w = \overline{u} - u^*$ for all $(x, t) \in A$, $w|_{\partial A} \equiv 0$

$$M_1[w] \ge c_1[G(v^*)\rho u^* - G(\underline{v})\overline{u})] = c_1[G(v^*)\overline{u} - G(\underline{v})\overline{u}) \ge 0 \text{ in } A$$

The maximum principle for PDE's of parabolic type [5] implies that $w \geq 0$ in A, which contradicts the choice of (x_0, t_0) , then $u^* \leq \overline{u}$ in D_s . A similar argument shows that $\underline{u} \leq u^*$ in D_s , that is, $\underline{u} \leq u^* \leq \overline{u}$ in \overline{D}_s and $\rho u^* = u^*$ in D_s . Therefore,

$$M_1[u^*] = -c_1 G(\sigma v^*)(\rho u^*) + q_1 \text{ and } M_2[v^*] = c_2 G(\sigma v^*)(\rho u^*) + q_2 \text{ in } D_s$$

Therefore, it can be concluded that $\underline{u} \leq u^* \leq \overline{u}$ and $\underline{v} \leq v^* \leq \overline{v}$ in D_s .

References

- [1] David Gilbarg and Neil S. Trudinger, Elliptical Partial Differential Equations of Second Order, Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
- [2] M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., 1967.
- [3] V. Hudson and J.S. Pym, Applications of Functional Analysis and Operator Theory, Academis Press, 1980. https://doi.org/10.1016/s0076-5392(08)x6165-x
- [4] C.V. Pao, On Nonlinear Reaction-Diffusion Systems, Journal Mathematical Analysis and Applications, 87 (1982), 165-198.
 https://doi.org/10.1016/0022-247x(82)90160-3
- [5] Avner Friedman, Partial Differential Equations of Parabolic Type, Robert, Krieger Publishing Company Malabar, Florida, 1983.
- [6] Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
- [7] P. Waltman, Deterministic Threashold Models in the Theory of Epidemics, Lecture Notes in Biomathematics, Vol. I, Springer-Verlag, Berlin/Heidelberg/New York, 1974. https://doi.org/10.1007/978-3-642-80820-3

[8] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uraltseva, *Linear and Quasi-linear Equations of Parabolic Type*, AMS, Rhode Island (traslate from the Russian by Smith), 1968.

Received: August 18, 2017; Published: September 28, 2017