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Abstract

In this work we study the action of the Fractional Laplace Transform
introduced in [6] on the Fractional Derivative of Riemann-Liouville. The
properties of the transformation in the convolution product defined as
Miana were also presented. As an example we calculate the solution of
a differential equation.
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1 Introduction and Preliminaries

We start by recalling some elementary definitions of page. 103 of [7].

_ Definition 1. Let f = f(t) be a function of R¢ .The Laplace transform
f(s) is given by the integral

F(s) = LlF(B)) = / e oyt (L1)
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forse R

Definition 2. Let A(R]) a function of the space:
i) f is piecewise continuous in the interval 0 < ¢ < T for any T' € Ry .
i1) f it is of exponential order ,
[f()] < Ke*
for t > M where M, K y a are real positive constants.

The parameter a is called the abscissa of convergence of the Laplace
transform.Therefore we have the next classic
Definition 3. Let f = f(t) a function defined in Ry

The incomplete Laplace transform f(s) is given by the integral

b
S{7(e) b = | s (12)

for b,s € R

Medina, Ojeda, Pereira and Romero (cf.[6]) has introduced the following
Definition 4. Let f = f(¢) by a function of R} .The a—Integral Laplace

Transform fa(s) of order & € R* is given the integral

,m$=%WM@=/mf“W@ﬁ (1.3)

0

for s e R
The a—Integral Laplace Transform it is a generalization of the Laplace trans-
form so that when o — 1. That is to say

La[fB)](s) = £l ()](s) (1.4)

Then we can generalize
Theorem 2. If f(t) € ARY) , then there fo(s) = £a[f(D)](s) for s > a®
Note that it is natural to enunciate the following
Lemma 2. Let f be a sufficiently well-behaved function and let o be a real
number,0 < a < 1. The fraccional Laplace transform of the f function is given

by

Lalf1s) = L)) pr = 52
Proof Follow from the definition (1.3)
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Properties If f*)(t) € AR{) con k =1,2,...n y n € N then

n

(L) 0 -steioio - Xt oo )

k=1

Proof: Recall

e [(”Tf))} (1) = i Lal FO)(5) — éun"“f’“‘l(()) (1.6)

and how

we obtained

e (L) @ =sislroie - X ow 0w a)

k=1

Now, we are able to find the inversion formula for the k-TL.

then
ft) = L3 Llf1(s)] = £ (g1 (w)(®)
applying the Laplace inverse transform gives

1 a+100 1 a+100

L Hp(w)t) = -— e gr(p)dp = — M L[ f) (1) dp(1.8)

21 a—100 2mi a—100
and making the change of variable u = Sa , where du = ésé’lds

SNGN0 =5 [ s s (19)

270 Jpo i o
From this expression we have the following
Definition 5. Let f be a sufficiently well-behaved function and let a be

a real number,0 < o < 1. The inverse a—Integral Laplace Transform is given
by

A R AC (1.10)

27TZO€ a_jino

Remark. Making the change of variable y = sa , and taking into account
the formula that establish the relationship between the conventional and the
fractional Laplace transform, easily we can prove that
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L lL 1 =1d

where Id denote the identity operator.
Definition 6. Let f and g functions belonging to L'(R™) , the ussual or
classic convolution product is given by

/f glt—m7)dr , t>0 (1.11)

Definition 7. Let f and g functions belonging to L'(RT) , Miana in [2]
introduce the convolution product o as the integral

/ f(r—t)g(r)dr , t >0 (1.12)

Theorem 5. If f(t), g(t) € A(RZ) such that fa(s) = £.[f()](s) and
Ga(s) = Lalg(t)](s), then

Lalf (1) x g(0))(5) = fals)-Ga(s) (1.13)

2 Main Results

Properties Let A € RT, f and g functions belonging to L'(R") and the
exponential function ey1a = e*"/"* then:

D) foeym=Lalfl(\).erre

ii) exije o f = La[fl(A%)e_x1/a — (e—x x f)(t)

iii) £4(f 0 g)(s) = Lal9Lalf, )(=5"))(s)
Proof

i) From definition 7 we have
UOQWXQZ/‘fU—ﬂeW%M
t
if u=7—t, then du = dr

(foeynm)(t) = /OOO f(u)g—*l/a(““)du

= {/OO f(u)e_’\l/a“du] )1/a
0

= Lalfl(A)-errsa
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i1) From definition 7 we have

(exise 0 F)(t) = / T N fryde (2.1)

as [y e_y1/a are functions belonging to L*(R™), then e_y1/0 x f € L'(RT) we
obtain

oo D)) = ([ s ) = e x )

= </OO e_’\l/an(T)dT) e_xia — (e—xx f)(t)
0
= LalfINe_niva = (e_yva * [)(1)
i17) Let f and g functions belonging to L'(R™) , from definition 7 we have
(Foa))= [ fr=tg(r)ar . ¢>0

applying definition 4 we obtain

Cl(fog)®)(s) = / e (f o g) (0t

= /0 st < /t h flr — t)g(T)dT) dt

Applying Fubini’s Theorem we have

If 7 <t<o00,0<7<00and we consider changing the variable u = 7 —t,
then T=wu+1t, 0 < u < oo and the differential dt = du

slronle) = [ ot ([ e ) dr

- /0 e () ( /0 St f(u)du> dr

= La(g(f, ) (—5")(s)

3 «a-Laplace Transform of Fractional Riemann-
Liouville Operator

In this last section we consider the Riemann-Liouville fractional operators and
we show the results of applies our a-Laplace Transform to them.
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Previously we need some elementary definitions and results.
Definition 8. Let f be a locally integrable function on (a,+o0) . The
Riemann-Liouville integral of order «, of the function f is given by

10 = o | @0 o @)

here I'(«v) denotes the Gamma function of Euler

[e.e]
I'(z) = / ettt (3.2)
0
For a > 1, and t > 0, let j,(t) = % , be the singular kernel of Riemann-
Liouville.
It can be proved that the Riemann-Liouville fractional integral may be
expressed as the convolution

170 = (£ 1) @ (33)

The Riemann-Liouville fractional derivative of order « , is defined inverse
DSIY =id

Another way to defined this fractional derivative is as follows.
Definition 9. Let be a real number, and let m be an integer. Then the
Riemann-Liouville fractional derivative of order « is given by

pef) = () 1o (3.4

Lemma 1. Let f be a sufficiently well-behaved function and let o be a real
number,0 < a < 1. The Laplace transform of the Riemann-Liouville fractional
integral of the [ function is given by

Ll f1(s) = ()" £[f1(s) (3.5)

Lemma 2. Let f be a sufficiently well-behaved function and let o be a real
number,0 < a < 1. The Laplace transform of the Riemann-Liouville fractional
derivative of the f function is given by

LD fB)I(s) = s*LLf(B)](s) = I*f ()0 (3.6)

Lemma 3. Let f be a sufficiently well-behaved function and let o be a real
number,0 < a < 1. The Laplace transform of the Riemann-Liouville fractional
integral of the [ function is given by
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LalI7 f1(s) = ()7 *Lalf)(5) (3.7)
Proof Remember that is ¢ > 0y 8 € R for [table of 6, page 61]

LB+1)

L.[t7) = T (3.8)
From definition 4 and (3.8) we have
Laljs())(s) = s~/ (3.9)
recall (3.3)
I3 f(x) = ja(t) = [ (1) (3.10)

applying definition 4 to (3.10) and (3.8) propertie

LaIPf(2)) = Laljslt) = F(1)](s)
= Lalja()](s).Lalf1(s)
= s 2, [f](s)

Lemma 4. Let f be a sufficiently well-behaved function and let o be a real
number,0 < a < 1. The Laplace transform of the Riemann-Liouville fractional
derivative of the f function is given by

L. [Df()](5) = s/ Lal F(D)(s) = I (t)]1=0 (3.11)
Proof by definition 9 we have that if 0 < <1 , m=1y

SuDIFD](s) = Sl 11 F(0)]) (3.12)

by Lemma 2 we have

el Lo l(s) = SPerrs 17

dx

= Sl/as_(l_ﬁ)/asa[f] - I;_B|t:0
s'/0s UL ] = L7l
Sﬁ/asa[f] - [;7ﬁ|t=0

we get the thesis
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4 Mittag-Leftler

The called functions of the Mittag-Leffler type, play an important role in the
theory of fractional differential equations (FDEs). First we introduce a two-
parameter Mittag-Leffler function defined by formula (4.1)

(e}

= (AtY)
@ 4.1
Eas(A7) ZFak+ﬁ (4.1)

As we will see later, classical derivatives of the Mittag-Leffler function appear
in so- lution of FDEs. Since the series (4.1) is uniformly convergent we may
differentiate term by term and obtain

= (k+m)! (ALe)F
B () = S 42
as A7) per S ['(ak + am + B) (42)
Theorem 6. Let v,5 € C, R(y) > 0, R(5) >0, A € R. Then hold
=
m+B8—1 _ “
Proof Remember the next series convergence
— (k+m)! , m!
Then
2 (k4 m)INE g [trktymtB-1]
Lo (ﬂ"”ﬁ LB (A ) = ( =
( ) ; k! L(vk 4+ ~ym + ) (s)
_ i (k +m)I\* L(vk +ym + 5)
o TOktm st
B i (k+m)!  \F
- yk+ym+8
k=0 U
_ zam=p (k+m)! —v/ark
= 5§ a kzzo T (As™779)
. —ym—3 m)!
= 5 @ (1 _ /\Sf'y/a)erl
o —ym—p3 m'
= S s (m—i—l)’y/a(sw/a _ )\)m—i-l
=8
S «
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5)

Example

A slight generalization of an equation solved in [4, page 157]

D) +af(t)=0;  [Ff(H)lmo=C (5.1)
applying the The a—Integral Laplace Transform, with o = % , we obtained
£ (D%f(t) + af(t)) ~ 0 (5.2)
sCi[fB))(s) = I2f ()i +aLs = 0 (5.3)
C
SO = —— (54)

and applying definition (1.10) gives the solution of (5.1)

e (o) = o (5) (56)

f(t) = Ct 2Ei.(—at?) (5.7)

11—
272

is identical to solution obtained in [8,page 139
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