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Abstract

The main objective of this text is to provide a brief introduction
to formulas describing the simplest case of propagation of probabilistic
uncertainty — for students who have not yet taken a probability course.
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1 Need to Take Uncertainty into Account

Measurements and estimates are practically never absolutely accurate: the
measurement result 7 is, in general, different from the actual (unknown) value
x of the corresponding quantity. To increase the accuracy, a natural idea is to
perform several measurements and to combine the corresponding measurement
results. Thus, we need to handle the following problems:

e Suppose that we have N results 2, ... ™) of measuring or estimating
the same quantity. We would like to combine these N numbers into a



944 Olga Kosheleva and Vladik Kreinovich

single — ideally more accurate — estimate z. What is the best way to
combine these estimates? What is the accuracy of the resulting combi-
nation?

e Suppose that a difficult-to-directly-estimate quantity y is related to n

easier-to-estimate quantities x1,...,z, by a relation y = f(x1,...,x,),
where f is a known algorithm. In this case, if we have estimates 7y,
ooy Tpof z9,...,x,, it is reasonable to estimate y as § = f(Z1,...,Ty,).

What is the accuracy of this estimate?

2 How to Combine Different Estimates

How to combine: main idea. We have a vector r = (f(l), e ,%(N)) formed

by different estimates 7). We know that these estimates estimate the same
values x. If all the measurements were absolutely accurate, we would get a
vector (z,...,z) in which all the components are equal to each other.

We want to find a single estimate Z, i.e., we want to approximate the
original vector Z by a vector (Z,...,Z). Out of all such vectors — corresponding
to different combined values Z — it is reason able to select a vector which is
the closest to the original vector Z, i.e., for which the distance

d((7,...,7),7) =, > (@0 — 7)?

takes the smallest possible value.

From idea to a formula. Minimizing the distance is the same as minimizing
its square
N . 2
((3,...,7),5) => (30 - 3)".
i=1
To find the value z for which this expression is the smallest possible, we dif-
ferentiate this expression with respect to  and equate the resulting derivative

to O: Ny
> 2. (3 -z)- (-1 =0
i=1

If we divide both sides by —2, we get

N .
> (30 —3) =0.
i=1
If we move all the terms containing the unknown 7 to the right-hand side, we

get
N

S i =Nz,

i=1
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thus v 0 ™
1 A R
:7'2%@:2: +...+Z ‘ (1)
N = N
So, a reasonable combination is the arithmetic average of the estimates. The
arithmetic average is also known as the sample mean and is denoted by E [Z].

Simple properties of sample mean. For a constant ¥ = ¢, we clearly
have
Eld] = C+'N' e =c.
If we change the measuring unit to a new one which is A\ times smaller —
e.g., replace meters with centimeters, in which case A = 100 — then all the
measured values multiply by ), i.e., instead of the original values 7, we will

get new values A - ¥, The sample mean of the new values is

& (i)
H= 370,
NZ

All the terms in this sum have the same factor A, so we can move A\ outside
the sum, and thus get

E\- 7] g:

Thus,
EN-Z]=X-Elz]. (2)
In some cases, the quantity z of interest is the sum z = z + y of two
components x and y: e.g., to find the overall income of a husband-and-wife
nuclear family, we can simply add the incomes of both spouses. In this case, if
we estimate each of the components N times and add the resulting estimates
7@ and g, we get N estimates for z: 20 = @ + 7@ The sample mean of
Z =T+ y is equal to

- 0
Elz+7y] = N ;( +y )

If we change the order of addition, we get

Elz+y = <Zx +Z§(2)
i.e., equivalently,

1

E[f—f‘mzﬁ

e

WL s

=1
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Thus, we get
Elz+yl=FE[z]+ Ey]. (3)

Based on (2) and (3), we can find the formula for any linear combination
= i ¢; - T;: indeed, by (3),
=1

7

and by (2),

Thus,

E[ic%] :fjciﬂm]. (4)

Case of discrete estimates. In some cases, estimates come from a limited
list — e.g., they are student evaluations of faculty, when a student marks one
of the four possible grades: 1, 2, 3, and 4 for each of the questions. In general,
let us denote possible values of by vq,...,v,. When N is large, we have a
large number of equal estimates. Adding several identical estimates is not the
most efficient thing to do: e.g., instead of adding 4 to itself 25 times, it makes
more sense to multiply 4 by 25 — this is what multiplication is about.

If we re-order the sum in the formula (1) by first placing all values equal
to vy, then all the values equal to vq, etc., we get

El7] = 1 “((v1 + ...+ v)(Ny times) + ... + (U + .. . + V) (IV,, times)) =

Nl'U1+...—|—Nm'Um
N )
where N; is the number of times the value v; appeared. This formula can be
re-written as

ElZl=pi-vi+ ...+ Dm* Un, (5)
where we denoted
N;
—— 6
P N (6)

The ratio p; is the frequency with which we encounter the value v; — i.e., in
effect, the probability of encountering this value.
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3 What Is the Accuracy of the Sample Mean?

A seemingly natural idea. When we looked for an appropriate combination,
we look for the value z for which the distance between the original vector
and the approximating vector (Z, ..., Z) is the smallest possible. It is therefore
reasonable to take the resulting smallest distance as the desired measure of
accuracy of the combined estimate 7.

Limitations of the seemingly natural idea. The problem with the above
idea is that the resulting estimate depends not only on accurate the measure-
ments are, but also on how many estimates we had. Indeed, if we repeat the
same N estimates again and get the same values, we get the same sample

mean with the same accuracy, but the square of the distance increases by the
. 2
factor of 2 — since each term (f(’) — /x\) is now repeated twice. If we repeat

all estimates k times, the square of the distance increases by a factor of k.

Modified idea and the resulting formulas. To eliminate the above-
mentioned undesired dependence, it is reasonable to divide the square of the
distance by N — or, equivalently, to divide the distance itself by v/N. Thus di-
vided distance is known as the sample standard deviation o [T], and its square
as the sample variance V [z

53 (0 - E) @

=1

V] =

o[ = \/V [3]. (8)

By using the notation for sample mean, we equivalently describe the formula
(7) as
V[E =E|@-Em)’]. (7a)

Comment. Sometimes, practitioners use similar formulas with N — 1 instead
of N. For large N, this practically does not affect the numerical values, but
it helps to avoid a counter-intuitive conclusion that one can make based on
the formula (7) — that when we have only one estimate N = 1, it leads to the
perfect accuracy V = o = 0.

Simple properties of sample standard deviation and sample variance.
If we multiply all the estimates Z® by A, then, as we have shown, the sample
mean F [Z] also gets multiplied by A. Thus, all the differences ¥ — E [7] in
the formula (7) are multiplied by A, hence their squares are multiplied by \?,
and we get

VIr-E =2V (9)
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oAN-T]=X-0ol7]. (10)

Comment. To deal with the sample variance of the sum, we need to recall the
notion of independence.

4 The Notion of Independence and the Re-
sulting Formulas for the Variance of the
Sum and of a Linear Combination

What is independence? From the commonsense viewpoint, independence
of two events A and B means that the frequency of satisfying the property
A in the general population is the same as the frequency of satisfying the
property A among all the objects that satisfy the property B. For example,
independence of good grades on student gender means that the proportion of,
e.g., straight-A students in the general student population is the same as the
proportion of straight-A students among all female students.

An example where there is no independence is if we consider A to be the
property to be a basketball player and B to be tall (to be more precise, taller
than a certain amount). In this case, clearly, if we limit ourselves to objects
that satisfy the property B, the proportion of objects that satisfy the property
A increases.

Let us describe independence in precise terms.

Towards a precise definition of independence. Let N be the overall
number of objects, let N(A) denote the number of objects that satisfy the
property A, N(B) the number of objects that satisfy the property B, and
N(A& B) the number of objects that satisfy both properties. We can then
estimate the probabilities P(A), P(B), and P(A& B) of the events A, B, and
A& B as the corresponding ratios:

pay = YW pepy :N](VB)’ P(A&B)ZJMNM. (11)

We can also define the conditional probability of the event A under the condition

B as
aef N(A& B)

P(AIB) =T (12)

If we divide both numerator and denominator in the formula (12) by N, we

conclude that

P(A|B) ¥ P(}f(‘gpf)m. (13)
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In these terms, independence means that

P(A) = P(A|B). (14)

How independence affects the probability of a joint event. Substi-
tuting the expression (13) into the definition (14) of independence, we get

PA& B
P(A) = (P(&B)) Multiplying both sides by P(B), we get

P(A& B) = P(A) - P(B). (15)

This makes perfect sense: this is how we estimate, e.g., the probability 0.25
that a coin falls heads twice in a row — by multiplying the probability 0.5 that
it falls head the first time and the probability 0.5 that it falls head the second
time.

What is the sample mean of the product of two independent quan-
tities? Suppose that we have a quantity x with possible values vy, ..., v,, and
a quantity y with possible values wy, ..., w,. For the first quantity, we have m
possible events = = v;; let p; = P(xz = v;) denote their probabilities. For the
second quantity, we have ¢ possible events y = wy; let ¢ = P(y = wy) denote
the corresponding probabilities.

If the quantities are independent, this means that all these events are in-
dependent. Thus, for all possible j and k, we have

P(m:vj&y:wk>zp($:’l]]>P(y:wk):pjQk

The product z = x - y gets all possible values v; - w;, with probability p; - qx, so

m £ m £
E[m~y]:ZZP(Uj-wk)~vj~wk:Zij-qk-vj-wk.
; J=1k=1

j=1k=1

One can easily see that this product is the product of two products:

Elx -yl = (gpj 'Uj) : (éqk'wk>7

hence
Elx-y| = E(z] - Ely]. (16)

What is the variance of the sum of two independent random vari-
ables? Let us assume that the variables x and y are independent. We want
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to estimate the variance of z = x + y. By definition of the variance (formula
(7a)), we get
Ve +y) = E|((z +y) — Elz +y))*].

We already know that E[x + y] = E[z] + E[y], thus
(+y)—Elx+y]=a+y— (Elz]+ Ely]) = (z — Elz]) + (y — E[y]).
Thus,
(& +y) = Elz+y))* = ((z — Elz]) + (y — Ely))* =
(z = El2])’ + (y — Ely)* + 2 (z — Elz]) - (y — Ely)).

We know that the mean of the sum is equal to the sum of the means, so
Vi +y) = E[(z+y) - Elz +y))*] =

E|(x - E[])’| + E[(y — EW))’] +2- E[(z — E[2]) - (y — Ey])]-

The first two terms in the right-hand side are simply V[z] and V[y]. To
compute the last term, we take into account that x and y are independent,
thus

El(z—Elx]) - (y — Ely])] = Elr — Elz]] - E[y — E[y]].

Here,
E|x — E[z]] = E[z] — E[z] =0,

thus the whole product is 0, and we conclude that

Vi +y] = Viz] + V]y]. (17)

What is the variance of a linear combination of independent random

variables? For y = i ci -z, we get Ve - x;] = ¢ - V], hence, by (17),
=1

()
1=

Viy| =V [ﬁ: Ci - SBZ] = zi:c? Vix) = Xn:c? o2, (18)

i=1

where we denoted 0; % 5[z,]. This implies that

ol = |20t (19)

Comment 1. What if we have y = f(z1,...,z,) for some non-linear function?
We have estimates Z; for the corresponding quantities x;. Based on these
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estimates, we can compute the estimate for y: ¥ = f(Zy,...,%,). How accurate
is this estimate? In other words, how big is the difference

def ~ ~ ~
Ay=g—y=f(Z&1,...,T,) — f(x1,...,2p).

We know that that the estimates Z; are not absolutely exact, so there

. . . def ~ . ..
is an estimation error Ax; = Z; — x;. Because of this definition, we have

r; = T; — Ax; and thus,
Ay = f(fl, ce ,fl]\n) — f(fl — AIl, C.e 7.{(}\71 — ASEn)

Usually, estimates z; for the quantities x; are reasonable accurate, so the dif-
ferences Ax; = T; — x; is reasonably small. Thus, if we expand the above
expression in Taylor series, we can keep only terms which are linear in Ax;
and safely ignore terms which are quadratic or higher order; as a result, we
get the following expression:

n

Ay => ¢ Az, (20)
i=1
where of
def
_ def ) 21
“i ém ( )

So, if we know the sample standard deviation o; os each of the estimates, we
can use the formula (19) to estimate the standard deviation o[Ay] as

o) = 3ot :\lz(gj)a 22)

=1

Comment 2. What is the variables x; are not independent? In this case, similar
arguments leads to

i=1 j£k

olyl = \IZC?%T?—FZCJ' < ¢ - cov(xy, Tg) - O ¢ O, (23)

where we denoted

cov(xj, xy) ot El(x; — Elxy]) - (vp — Elzi])] =

1 X i
52 (23" = Elx))) - (2 = Elxy]) . (24)
k=1
This expression cov(x;, z) is known as sample covariance.
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