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Abstract

In this article we study some general diophantine equations. Our
methods of solution are different and very elementary.
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1 Introduction and Main Results

In a previous article [2] we define derivative solution of a solution and complete
system of solutions to an equation. For sake of completeness we establish these
definitions here.

Let us consider the equation

h
>k = kppag (1)
j=1

where h > 2, the coefficients k; (j = 1,...,h + 1) are integers different of zero
and the exponents r; > 2 (j = 1,...,h+ 1) are positive integers.
Let us consider a solution

($1,$2,...,$h,$h+1> (2)

to equation (1) where the z; (j = 1,...,h + 1) are integers. If we multiply
both sides of equation (1) by EX, where E is an integer different of zero and L
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is the least common multiple ({cm)of the exponents r; (j = 1,...,h+1), then
we obtain the solution

L L L _L
<J;1Erlaw2Er2a'-'7thrh7xh+1ETh+1) <3)

The solution (3) will be called derivative solution of (1). Note that solution
(2) is derivative solution of solution (2) if we put £ = 1. Clearly, from (3) we
can obtain (2) by common factor. If a set of solutions of equation (1) contain
at least one derivative solution of each solution of equation (1) we shall call
this set of solutions a complete system of solutions to equation (1). Note that
from a complete system of solutions we can obtain all solution to the equation
by common factor. This method if not very different to consider the set of
primitive solutions to, for example, the equation 22 + y? = 22 and to obtain
the rest of the solutions by multiplication of the primitive solutions.

If we consider a certain subset S of solutions to equation (1) then a complete
system of solutions in relation to S is a subset of S that contain at least a
derivative solution of each solution of the set S.

In this note we study the solutions to the diophantine equation

h
Z kﬂ? = kn1Th4q (4)
=1

where h > 2, the coefficients k; (j = 1,...,h+1) are positive integers and the
exponent r > 2 is an arbitrary but fixed positive integer.

A particular case of this general diophantine equation is well-known, namely,
the equation

2yt =2 (5)

This equation is studied in [1] as part of the dihedral cases.

We also study another general diphantine equations and as a particular
case of our general theorems the equation z? + y* = 20 is studied. This
particular equation is studied in [1] as part of the hyperbolic case. Also, as a
particular case of our general theorems the equation 2% — y? = 2" is studied.
This particular equation is studied in [1] as part of the dihedral cases.

Our methods of solution are different and very elementary.

In [2] is proved the following general theorem.

Theorem 1.1 Let us consider the diophantine equation

h r M+1
E A d
j=1

where h > 2, the coefficients k; (j =1,...,h) and kp41 are integers differents
of zero, each integer exponent r; > 2 (j =1,...,h) divides the positive integer
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M and the positive integer d (0 < d < M+1) divides M+1. Let us consider the
solutions to the equation (x1,...,xp, Tpe1), where xpq # 0. Then a complete
system of solutions to the equation is

wou ~ M-1 4\%
vy =k Ab (G=1,2,...,h),  Zpy = (th A)
where A = Z?:l k;b;' and the b; are arbitrary integers such that A # 0.

The case 7 odd in equation (4) is a particular case of Theorem 1.1 when
ri=rgo=-=r,=2 M=r—1(r>3)and d=1.
Consequently we have the following theorem.

Theorem 1.2 Let us consider the diophantine equation
h
Z kJ]fL? = kh-i-lx?];-i—l
j=1

where h > 2, the coefficients k; (j =1,...,h+1) are positive integers and the
exponent r > 3 is an arbitrary but fized odd positive integer. Let us consider the
solutions to the equation (xy,...,xp, Tpe1) where x4 # 0. Then a complete
system of solutions to the equation is

r=0%

xj:kh+21 A2bj (j:17277h) thrl:k;L;%A

where A = Y1 k;b? and the b; are arbitrary integers such that A # 0.

Corollary 1.3 Let us consider equation (5). Then, a complete system of
solutions to equation (5) when r > 3 is odd is

r—1 r—1

x:(a2+b2)2a y:(a2+b2)2 b 2z =a®+ b?
where a and b are arbitrary integers.
In the following two theorems we examine equation (5) when 7 is even.
Theorem 1.4 Let us consider the diophantine equation
R
where xyz # 0. Then, a complete system of solutions to the equation is

r=a’— b y = 2ab, 2= —a? — b

where a and b are arbitrary integers such that xyz # 0.
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Proof. See [2]. The theorem is proved.

Theorem 1.5 Let s an arbitrary but fixed positive integer. Let us consider
the diophantine equation

2?4yt = o242 (6)
where xyz # 0. Then, a complete system of solutions to the equation is
r = (—a® — bv*)%(a* - b?), y = (—a* — b*)*2ab, z=—a*-b (7
where a and b are arbitrary integers such that xyz # 0.
Proof. We have the identity
((a® = 0)(a* = 1)) + ((~a® — 1*)°2ab)" = (—a* —0?)"" (8)

where a and b are arbitrary integers.
Consequently equation (6) has infinite solutions (x, y, z) such that xyz # 0.
Let us consider a solution (x,y,z) such that zyz # 0. We can write is
solution in the form (z,y,2) = (C®ay,C®as,C) where a; and ay are rational
numbers. Therefore we have

(C%a1)? 4 (C%ay)® = C**2 (9)

We can write a; = 7 and ay = %2, where by, by and d are integers. Hence (9)
becomes

(Osbl>Q + <08b2>2 = C*t2 (10)
d d
If we multiply both sides of (10) by d**? then we obtain
((Cd)* br)* + ((Cd)* b)” = (Cd)** (11)
Equation (11) gives
(b1)" + (b)" = (Ca)* (12)

By Theorem 1.4 there exists h such that if we multiply both sides of (12) by
h? we obtain

(hb1)? + (hby)* = (Cdh)®
That is, we obtain

(hby = a® — b%)2 + (hby = 2ab)? = (Cdh = —a® — b?)? (13)
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Now, if we multiply both sides of (11) by h?*™? then we obtain the following
derivative solution of the solution (x,y, z)

((Cdh)*(hb1))* + ((Cdh)*(hby))* = (Cdh)**? (14)
This derivative solution can be written in the form (see (13) and (14))
((—a2 —b*)%(a® — b2)>2 + ((—a2 - bQ)SQab)2 = (—a2 - b2)2s+2
Compare with (8). The theorem is proved.
In the following two theorems we complete the study of equation (4) when r
Is even.
Theorem 1.6 Let us consider the diophantine equation
h
Z ij? = kh+1xi+1
=1

where h > 2 and the coefficients k; (j = 1,...,h) and kp41 are positive integers.
Suppose that this equation has a solution

(I’l, To2,...,Tp, l’h+1) = (bl, bg, e ,bh, bh+1)

different of the trivial solution (0,0, ...,0,0) and besides ged(by, ba, ..., by, bpy1) =
1. Then a complete system of solutions is

h h h
x; = —b; Z kic? + 2¢; Z kib;c; (j=1,2,...,h) The1 = —bpi Z kic?
i=1 i=1 i=1

where the ¢; (i = 1,...,h) are arbitrary integers.
Proof. See [2]. The theorem is proved.

Theorem 1.7 Let s an arbitrary but fized positive integer. Let us consider
the diophantine equation

h

2 2s+2
> kjat = kpagiy
=1

Suppose that is diophantine equation has a solution different of the trivial.
Then a complete system of solutions is

h s h h
X = <—bh+1 Z ]{?7,612> (—b] Z ]{?7,012 + 26j Z kzbzc,> (] = 1, 2, ey h)
1=1 i=1 i=1

h

2

The1 = —bpp Z kicz'
i=1

where the ¢; (i =1,...,h) are arbitrary integers.
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Proof. The proof is the same as the proof of Theorem 1.5 using now Theorem
1.6. Note that we have the identity

h
>k (AZ—H )2 = k1 (Apsr)> ™

Jj=1

where
h h
Aj=—=b; > kicl +2¢;> ke (j=1,2,...,h)
and
h
App1 = —bpa Z kicf

The theorem is proved.

Lemma 1.8 Let s be an arbitrary but fixed positive integer. Let us consider
the diophantine equation

h
x% + Z ij? = xl2z+1 (15)

=2
where h > 2, the coefficients k; (j = 2,...,h) are positive integers and some
z; (j =2,...,h) is different of zero. Then a complete system of solutions to

the equation is

( ijaj> 201", z;=(2a1)%a; (j=2,...,h) (16)

Tpy1 = (—al Zk a; ) (2a1)° (17)

where the a; (j = 1,...,h) are arbitrary integers such that some x; (j =
2,...,h) is different of zero.

Proof. The equation has solutions with is property, since we have the identity
(see (16) and (17))

((a% — zh: kja?) 2a,)* 1) + Z ki ((2a1)°
— ((—a? — Zf:ﬂ?) (2a1)s_1> (18)
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Let us consider then a solution (zy,...,zp, xp11) with is property. We can
write

(x1, 22, ..., xp, Tpy1) = (C + ay,ag,...,a;,C) (19)

Note that C' # 0 and a; # 0, since in contrary case the property is not fulfilled.
Consequently (see (15) and (19))

h
(C + CL1)2 + Z k’j&? = 02 (20)
=2
Therefore
h
2Ca; + a? + Zk‘ja? =0
=2
That is
a2+ Yh  kia?
C — 1 ]—2 ] 21
2, (21)
Substituting (21) into (20) we obtain
2 h 2 2 h 2 h 2\ 2
ay + 25, k;a; 2 ay + 259 kja;
. ka2 = — =295 92
( 2a, m +j§2 34 2aq ( )

If we now multiply both sides of equation (22) by (2a;)?* then we obtain the
following derivative solution

((a%—zh:k‘ja?) 2a,)° 1) —i—Zk (2a1)°a;)
= ((—a%—Zk@cg) (2&1) 1)

of the solution (x1,...,xp, xpe1). Compare with (18). The lemma is proved.

Theorem 1.9 Let us consider the diophantine equation

h 2s
T Y kg = wi (23)
j=2
where the coefficients k; (j = 2,...,h) are positive integers, s is a positive
integer, the s; (j = 2,...,h) are divisors of s and some z; (j = 2,...,h) is

different of zero. Then a complete system of solutions to the equation is

= A°B €Ty = A% (Qtl)sjtj (] = 2, ceey h) Th+1 = A (24)
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where

Jj=2

A= (t2 +> k]tjs) (2t1)1 (25)

( ka) 2t1)° (26)

and the t; (j = 1,...,h) are arbitrary integers such that some xz; is different
of zero. That is, t1 # 0 and some t; (j =2,...,h) is different of zero.

Proof. We have the identity

h 2
(AB) + 3 ky (A% (201)t) 5 = A2 (27)
j=2
consequently there exist solutions such that some x; (j =2,...,h) is different

of zero. Let us consider a solution
(1,22, ...y T, Tpy) (28)
to the equation with is property. This solution can be written in the form
(C®uy, C*'ug, . .., C*ruy, C) (29)

where the u; (j =1,...,h) are rational numbers.
We can write u; = —3 (j=1,...,h) where d and the n; (j =1,...,h) are
integers. Therefore we have (see (23) and (29))

s 2 b s: 1Y 27 2542
<C d) +ij(cad) —C (30)

If we multiply both sides of equation (30) by d?9s+2) then we obtain
S 2s S
((d2(25)0> d43—1n1) + Z k’ ((d2(23 ) d45j—1n ) (d2(28)0)2 +2 (31)
Equation (31) gives

(d4571n1)2 I zh: k; (d4sj71n.)

[

s

< \

(d2 (2s) C)Z
That is

<d4s_1n1)2 N Z k; (<d4sj—1nj):j>2 _ (d2(25)0>2 (32)
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By Lemma 1.8 here exists h such that if we multiply both sides of (32) by h?*
we obtain

<h3d4871n1)2 N i ks ((hsjd4sj1nj)jj>2 _ (thd2(2s)C)2 (33)
=2

where

h
hed* I, = (a% -> kja?) (2a,)5* (34)

S
S5

(hd™='n;)" = (2a1)'a;  (j=2,...,h) (35)

h
hd*?C = (—af -3 k:jaﬁ) (2a1)*™" (36)
=2
Equation (35) gives
(thd45j*1nj)?j — ((2@1)5j)?j aj (] = 27 ey h,) (37)
Therefore

aj=t7  (j=2,....h) (38)

J

si 44si—1
Lj)sjnj (j =2,...,h) and consequently

where ¢; is the integer o

hsjdlls]'flnj — <2a1)3jtj (] = 27 ce h) (39)

If we multiply both sides of equation (31) by h?*¢*1 then we obtain the fol-
lowing derivative solution of solution (28)

2s

((hsdQ(QS)C)S (hsd4s—1n1))2 + i kj (<h5d2(28)0)51 (hsjd43j—1nj)) 55
=2

(40)

( 1S 229) C) 25+2

Substituting equations (34), (36) and (39) into equation (40) we obtain equa-
tion (27). Note that we have written a; = t;. The theorem is proved.

Theorem 1.10 Let us consider the diophantine equation
t

h
ijx;j + Z kjilijj = kt-s-lx%—fl (41)
j=1 j=h+1
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where the k; (j = 1,...,t+1) are integers different of zero, there exist a positive
integer M > 2 such that the exponents r; > 2 are divisors of M (j =1,...,h)
and the exponents s; > 2 (j = h+1,...,t) are divisors of M+1. Let us consider
the solutions to the equation (x1,...,%p, Tpit,- .-, Te, Ter1) Such that xq # 0
and Z;’:h+1 k:jxj-j — ktﬂx%il # 0. Then a complete system of solutions to the
equation 1s

M M2 MM+1) 4

r;=A"B7%m v (j=1,...,h) (42)

M4+1 M2-1 MM+1)
xj:AsjB 5ioom % Uj (]:h+1,,t> (43)
Ty =mMABM! (44)

where

t MMM+1) 4 Sj
B= —kthM(MH) + Z kj (m 5 Uj) (46)
j=h+1

the integers v; (j = 1,...,t) and m are arbitrary and such that A # 0 and
B #0.

Proof. Note that we have the identity

h M M2 MM4D rj t M1 M%o1 M(M+1) Sj
s T4 s S S S
E ki {AB"m 7 vj + § ki{A= B 5 m % v;
j=1 j=h+1

(47)

= ki (mMABM_l)M+1

Therefore there exist solutions to the equation with the properties of the the-
orem.
Let us consider a solution

(1o ey Thy Thady -« oy Tty Tyg1) (48)

to the equation with the properties of the theorem. This solution can be
written in the form

(49)

M M+1 M+1 >

M M M+1
(Cnul,...,Crhuh,CsmuhH,...,C T, C
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where the u; (j = 1,...,t) are certain rational numbers. Hence we have (see

(41) and (49))

h MoO\T t Mil NS
Z@@w@-+zk%cww):mmwﬂ (50)
j=1 j=h+1

We can write u; = 2 where m and the v; (j = 1,...,t) are integers. Therefore
(50) becomes

h M\ t MA1 ).\ S5
>k (C"J’ ) + >k (C K ]> =k CMH (51)
=1 m j=h+1 m
j j

If we multiply both sides of (51) by m™+1 then we obtain

h M M(M'H)—l rj t M+1 ]W(1M+1)_1 Sj
T TS Sj S5
E k; (C im i Uj) + E k; <C’ iom % vj)
j=1 j=h+1

_ k%+47(7nﬂ4(7)ﬂ4+1

(52)
Consequently we have
M(M+1) rj
— 1k (m E lvj)

¢= . MOMD | NS
—kt+1mM(M+1) —|— Zj:h-i-l k] (m S5 /Uj>

Sol IS

(53)

Substituting (53) into (52) and multiply both sides by BM*+1 we obtain the
following derivative solution of solution (48) (Compare with (47)).

h M M2 MM4D T i Mt1  MZo1 M(M4D 53
ki|AWB7m 5 v 4+ Y kiAW B Y om v
=1

j=h+1

J

= ki (mMABM)

M+1

The theorem is proved.

Theorem 1.11 Let us consider the diophantine equation

h t
E Tj E Sj __ M
ijj + ijj = kt+1xt+1
Jj=1

j=h+1

where the k;j (j = 1,...,t+ 1) are integers different of zero, there ezist a
positive integer M > 2 such that the exponents r; > 2 are divisors of M + 1
(7 = 1,...,h) and the exponents s; > 2 (j = h+1,...,t) are divisors of
M. Let us consider the solutions to the equation (x1,...,Tp, Thit, ..., T, Tr1)
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such that xyy1 # 0 and Z;Zhﬂ ijjj — kot # 0. Then a complete system
of solutions to the equation is
M+1  M2-1 M@M+1)

rj=A" B i om " v; (j=1,...,h)

M M2 M(M+1) 1

x]:AgBSJm %5 Uj (j:h+17,t)

2oy = mMTIABM

where

t MM+ 1 N\ S
A= kymMOD — 37k (m ? Uj)

j=h+1

M(M+1) 1 T
B = Z k; < vj>

j=1

the integers v; (j = 1,...,t) and m are arbitrary and such that A # 0 and
B #0.

Proof. The proof is the same as the proof of Theorem 1.10. The theorem is
proved.

Theorem 1.12 Let us consider the equation

h
v — a5+ Y kjzi =0 (54)

j=3
where the coefficients k; (j = 3,...,h) are integers different of zero and the
exponents r; > 2 (j = 3,...,h) are positive integers. Let us consider the
solutions (x1,xs,T3,...,2y) such that vy # xo. Then, a complete system of

solutions is

( Z ) (201)%7 1 + (2b1) b, = A (55)

( ijaj> (26)27' =B (56)

L
T

xj = a;(2by)" (j=3,...,h) (57)

where by # 0 and a; (j = 3,...,h) are arbitrary integers and L is a fized
positive integer multiple of the least common multiple of the exponents 2 and

r; (]:3,,h)
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Proof. We have the identity (see (55), (56) and (57))
A2 BQ+ZI<; (as200)7 )" =0

Hence there exist solutions to equation (54) such that x; # .

Let us consider a solution (z1,%s,3,...,x,) such that x; # xs.

solution can be written in the form
(x17x27x37 oo 7'xh) == (C+b1707a37' .. ,(Ih)

Consequently (see (54) and (59)) we have

(C+b1)* — Z

Equation (60) gives

2 h T

C —=
2by

965

This

(59)

(60)

(61)

Substituting (61) into (60) and multiply both sides by (2b;)* we obtain the

following derivative solution

A B (as200)7 )" =0

7=3

of solution (59). Compare with (58). The theorem is proved.
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