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Abstract

In this article we study some general diophantine equations. Our
methods of solution are different and very elementary.
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1 Introduction and Main Results

In a previous article [2] we define derivative solution of a solution and complete
system of solutions to an equation. For sake of completeness we establish these
definitions here.

Let us consider the equation

h∑
j=1

kjx
rj
j = kh+1x

rh+1

h+1 (1)

where h ≥ 2, the coefficients kj (j = 1, . . . , h+ 1) are integers different of zero
and the exponents rj ≥ 2 (j = 1, . . . , h + 1) are positive integers.

Let us consider a solution

(x1, x2, . . . , xh, xh+1) (2)

to equation (1) where the xj (j = 1, . . . , h + 1) are integers. If we multiply
both sides of equation (1) by EL, where E is an integer different of zero and L
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is the least common multiple (lcm)of the exponents rj (j = 1, . . . , h+ 1), then
we obtain the solution(

x1E
L
r1 , x2E

L
r2 , . . . , xhE

L
rh , xh+1E

L
rh+1

)
(3)

The solution (3) will be called derivative solution of (1). Note that solution
(2) is derivative solution of solution (2) if we put E = 1. Clearly, from (3) we
can obtain (2) by common factor. If a set of solutions of equation (1) contain
at least one derivative solution of each solution of equation (1) we shall call
this set of solutions a complete system of solutions to equation (1). Note that
from a complete system of solutions we can obtain all solution to the equation
by common factor. This method if not very different to consider the set of
primitive solutions to, for example, the equation x2 + y2 = z2 and to obtain
the rest of the solutions by multiplication of the primitive solutions.

If we consider a certain subset S of solutions to equation (1) then a complete
system of solutions in relation to S is a subset of S that contain at least a
derivative solution of each solution of the set S.

In this note we study the solutions to the diophantine equation

h∑
j=1

kjx
2
j = kh+1x

r
h+1 (4)

where h ≥ 2, the coefficients kj (j = 1, . . . , h+ 1) are positive integers and the
exponent r ≥ 2 is an arbitrary but fixed positive integer.

A particular case of this general diophantine equation is well-known, namely,
the equation

x2 + y2 = zr (5)

This equation is studied in [1] as part of the dihedral cases.
We also study another general diphantine equations and as a particular

case of our general theorems the equation x2 + y4 = z6 is studied. This
particular equation is studied in [1] as part of the hyperbolic case. Also, as a
particular case of our general theorems the equation x2 − y2 = zr is studied.
This particular equation is studied in [1] as part of the dihedral cases.

Our methods of solution are different and very elementary.
In [2] is proved the following general theorem.

Theorem 1.1 Let us consider the diophantine equation

h∑
j=1

kjx
rj
j = kh+1x

M+1
d

h+1

where h ≥ 2, the coefficients kj (j = 1, . . . , h) and kh+1 are integers differents
of zero, each integer exponent rj ≥ 2 (j = 1, . . . , h) divides the positive integer
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M and the positive integer d (0 < d < M+1) divides M+1. Let us consider the
solutions to the equation (x1, . . . , xh, xh+1), where xh+1 6= 0. Then a complete
system of solutions to the equation is

xj = k
M2

rj

h+1A
M
rj bj (j = 1, 2, . . . , h), xh+1 =

(
kM−1
h+1 A

)d
where A =

∑h
i=1 kib

ri
i and the bj are arbitrary integers such that A 6= 0.

The case r odd in equation (4) is a particular case of Theorem 1.1 when
r1 = r2 = · · · = rh = 2, M = r − 1 (r ≥ 3) and d = 1.

Consequently we have the following theorem.

Theorem 1.2 Let us consider the diophantine equation

h∑
j=1

kjx
2
j = kh+1x

r
h+1

where h ≥ 2, the coefficients kj (j = 1, . . . , h+ 1) are positive integers and the
exponent r ≥ 3 is an arbitrary but fixed odd positive integer. Let us consider the
solutions to the equation (x1, . . . , xh, xh+1) where xh+1 6= 0. Then a complete
system of solutions to the equation is

xj = k
(r−1)2

2
h+1 A

r−1
2 bj (j = 1, 2, . . . , h) xh+1 = kr−2

h+1A

where A =
∑h

i=1 kib
2
i and the bj are arbitrary integers such that A 6= 0.

Corollary 1.3 Let us consider equation (5). Then, a complete system of
solutions to equation (5) when r ≥ 3 is odd is

x =
(
a2 + b2

) r−1
2 a y =

(
a2 + b2

) r−1
2 b z = a2 + b2

where a and b are arbitrary integers.

In the following two theorems we examine equation (5) when r is even.

Theorem 1.4 Let us consider the diophantine equation

x2 + y2 = z2

where xyz 6= 0. Then, a complete system of solutions to the equation is

x = a2 − b2, y = 2ab, z = −a2 − b2

where a and b are arbitrary integers such that xyz 6= 0.



956 Rafael Jakimczuk

Proof. See [2]. The theorem is proved.

Theorem 1.5 Let s an arbitrary but fixed positive integer. Let us consider
the diophantine equation

x2 + y2 = z2s+2 (6)

where xyz 6= 0. Then, a complete system of solutions to the equation is

x = (−a2 − b2)s(a2 − b2), y = (−a2 − b2)s2ab, z = −a2 − b2 (7)

where a and b are arbitrary integers such that xyz 6= 0.

Proof. We have the identity(
(−a2 − b2)s(a2 − b2)

)2
+
(
(−a2 − b2)s2ab

)2
=
(
−a2 − b2

)2s+2
(8)

where a and b are arbitrary integers.
Consequently equation (6) has infinite solutions (x, y, z) such that xyz 6= 0.
Let us consider a solution (x, y, z) such that xyz 6= 0. We can write is

solution in the form (x, y, z) = (Csa1, C
sa2, C) where a1 and a2 are rational

numbers. Therefore we have

(Csa1)
2 + (Csa2)

2 = C2s+2 (9)

We can write a1 = b1
d

and a2 = b2
d

, where b1, b2 and d are integers. Hence (9)
becomes (

Cs b1
d

)2

+

(
Cs b2

d

)2

= C2s+2 (10)

If we multiply both sides of (10) by d2s+2 then we obtain

((Cd)s b1)
2

+ ((Cd)s b2)
2

= (Cd)2s+2 (11)

Equation (11) gives

(b1)
2 + (b2)

2 = (Cd)2 (12)

By Theorem 1.4 there exists h such that if we multiply both sides of (12) by
h2 we obtain

(hb1)
2 + (hb2)

2 = (Cdh)2

That is, we obtain

(hb1 = a2 − b2)2 + (hb2 = 2ab)2 = (Cdh = −a2 − b2)2 (13)
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Now, if we multiply both sides of (11) by h2s+2 then we obtain the following
derivative solution of the solution (x, y, z)

((Cdh)s(hb1))
2 + ((Cdh)s(hb2))

2 = (Cdh)2s+2 (14)

This derivative solution can be written in the form (see (13) and (14))(
(−a2 − b2)s(a2 − b2)

)2
+
(
(−a2 − b2)s2ab

)2
=
(
−a2 − b2

)2s+2

Compare with (8). The theorem is proved.

In the following two theorems we complete the study of equation (4) when r
is even.

Theorem 1.6 Let us consider the diophantine equation

h∑
j=1

kjx
2
j = kh+1x

2
h+1

where h ≥ 2 and the coefficients kj (j = 1, . . . , h) and kh+1 are positive integers.
Suppose that this equation has a solution

(x1, x2, . . . , xh, xh+1) = (b1, b2, . . . , bh, bh+1)

different of the trivial solution (0, 0, . . . , 0, 0) and besides gcd(b1, b2, . . . , bh, bh+1) =
1. Then a complete system of solutions is

xj = −bj
h∑

i=1

kic
2
i + 2cj

h∑
i=1

kibici (j = 1, 2, . . . , h) xh+1 = −bh+1

h∑
i=1

kic
2
i

where the ci (i = 1, . . . , h) are arbitrary integers.

Proof. See [2]. The theorem is proved.

Theorem 1.7 Let s an arbitrary but fixed positive integer. Let us consider
the diophantine equation

h∑
j=1

kjx
2
j = kh+1x

2s+2
h+1

Suppose that is diophantine equation has a solution different of the trivial.
Then a complete system of solutions is

xj =

(
−bh+1

h∑
i=1

kic
2
i

)s (
−bj

h∑
i=1

kic
2
i + 2cj

h∑
i=1

kibici

)
(j = 1, 2, . . . , h)

xh+1 = −bh+1

h∑
i=1

kic
2
i

where the ci (i = 1, . . . , h) are arbitrary integers.
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Proof. The proof is the same as the proof of Theorem 1.5 using now Theorem
1.6. Note that we have the identity

h∑
j=1

kj
(
As

h+1Aj

)2
= kh+1 (Ah+1)

2s+2

where

Aj = −bj
h∑

i=1

kic
2
i + 2cj

h∑
i=1

kibici (j = 1, 2, . . . , h)

and

Ah+1 = −bh+1

h∑
i=1

kic
2
i

The theorem is proved.

Lemma 1.8 Let s be an arbitrary but fixed positive integer. Let us consider
the diophantine equation

x2
1 +

h∑
j=2

kjx
2
j = x2

h+1 (15)

where h ≥ 2, the coefficients kj (j = 2, . . . , h) are positive integers and some
xj (j = 2, . . . , h) is different of zero. Then a complete system of solutions to
the equation is

x1 =

a21 − h∑
j=2

kja
2
j

 (2a1)
s−1, xj = (2a1)

saj (j = 2, . . . , h) (16)

xh+1 =

−a21 − h∑
j=2

kja
2
j

 (2a1)
s−1 (17)

where the aj (j = 1, . . . , h) are arbitrary integers such that some xj (j =
2, . . . , h) is different of zero.

Proof. The equation has solutions with is property, since we have the identity
(see (16) and (17))a21 − h∑

j=2

kja
2
j

 (2a1)
s−1

2

+
h∑

j=2

kj ((2a1)
saj)

2

=

−a21 − h∑
j=2

kja
2
j

 (2a1)
s−1

2

(18)
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Let us consider then a solution (x1, . . . , xh, xh+1) with is property. We can
write

(x1, x2, . . . , xh, xh+1) = (C + a1, a2, . . . , ah, C) (19)

Note that C 6= 0 and a1 6= 0 , since in contrary case the property is not fulfilled.
Consequently (see (15) and (19))

(C + a1)
2 +

h∑
j=2

kja
2
j = C2 (20)

Therefore

2Ca1 + a21 +
h∑

j=2

kja
2
j = 0

That is

C = −
a21 +

∑h
j=2 kja

2
j

2a1
(21)

Substituting (21) into (20) we obtain(
−
a21 +

∑h
j=2 kja

2
j

2a1
+ a1

)2

+
h∑

j=2

kja
2
j =

(
−
a21 +

∑h
j=2 kja

2
j

2a1

)2

(22)

If we now multiply both sides of equation (22) by (2a1)
2s then we obtain the

following derivative solutiona21 − h∑
j=2

kja
2
j

 (2a1)
s−1

2

+
h∑

j=2

kj ((2a1)
saj)

2

=

−a21 − h∑
j=2

kja
2
j

 (2a1)
s−1

2

of the solution (x1, . . . , xh, xh+1). Compare with (18). The lemma is proved.

Theorem 1.9 Let us consider the diophantine equation

x2
1 +

h∑
j=2

kjx
2s
sj

j = x2s+2
h+1 (23)

where the coefficients kj (j = 2, . . . , h) are positive integers, s is a positive
integer, the sj (j = 2, . . . , h) are divisors of s and some xj (j = 2, . . . , h) is
different of zero. Then a complete system of solutions to the equation is

x1 = AsB xj = Asj(2t1)
sj tj (j = 2, . . . , h) xh+1 = A (24)



960 Rafael Jakimczuk

where

A = −

t21 +
h∑

j=2

kjt
2s
sj

j

 (2t1)
s−1 (25)

B =

t21 − h∑
j=2

kjt
2s
sj

j

 (2t1)
s−1 (26)

and the tj (j = 1, . . . , h) are arbitrary integers such that some xj is different
of zero. That is, t1 6= 0 and some tj (j = 2, . . . , h) is different of zero.

Proof. We have the identity

(AsB)2 +
h∑

j=2

kj (Asj(2t1)
sj tj)

2s
sj = A2s+2 (27)

consequently there exist solutions such that some xj (j = 2, . . . , h) is different
of zero. Let us consider a solution

(x1, x2, . . . , xh, xh+1) (28)

to the equation with is property. This solution can be written in the form

(Csu1, C
s1u2, . . . , C

shuh, C) (29)

where the uj (j = 1, . . . , h) are rational numbers.
We can write uj = nj

d
(j = 1, . . . , h) where d and the nj (j = 1, . . . , h) are

integers. Therefore we have (see (23) and (29))(
Csn1

d

)2

+
h∑

j=2

kj

(
Csj

nj

d

) 2s
sj

= C2s+2 (30)

If we multiply both sides of equation (30) by d2(2s)(2s+2) then we obtain

((
d2(2s)C

)s
d4s−1n1

)2
+

h∑
j=2

kj
((
d2(2s)C

)sj
d4sj−1nj

) 2s
sj =

(
d2(2s)C

)2s+2
(31)

Equation (31) gives

(
d4s−1n1

)2
+

h∑
j=2

kj
(
d4sj−1nj

) 2s
sj =

(
d2(2s)C

)2
That is (

d4s−1n1

)2
+

h∑
j=2

kj

((
d4sj−1nj

) s
sj

)2

=
(
d2(2s)C

)2
(32)
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By Lemma 1.8 here exists h such that if we multiply both sides of (32) by h2s

we obtain

(
hsd4s−1n1

)2
+

h∑
j=2

kj

((
hsjd4sj−1nj

) s
sj

)2

=
(
hsjd2(2s)C

)2
(33)

where

hsd4s−1n1 =

a21 − h∑
j=2

kja
2
j

 (2a1)
s−1 (34)

(
hsjd4sj−1nj

) s
sj = (2a1)

saj (j = 2, . . . , h) (35)

hsd2(2s)C =

−a21 − h∑
j=2

kja
2
j

 (2a1)
s−1 (36)

Equation (35) gives(
hsjd4sj−1nj

) s
sj = ((2a1)

sj)
s
sj aj (j = 2, . . . , h) (37)

Therefore

aj = t
s
sj

j (j = 2, . . . , h) (38)

where tj is the integer hsj d4sj−1nj

(2a1)
sj (j = 2, . . . , h) and consequently

hsjd4sj−1nj = (2a1)
sj tj (j = 2, . . . , h) (39)

If we multiply both sides of equation (31) by h2s(s+1) then we obtain the fol-
lowing derivative solution of solution (28)

((
hsd2(2s)C

)s (
hsd4s−1n1

))2
+

h∑
j=2

kj
((
hsd2(2s)C

)sj (
hsjd4sj−1nj

)) 2s
sj

=
(
hsd2(2s)C

)2s+2
(40)

Substituting equations (34), (36) and (39) into equation (40) we obtain equa-
tion (27). Note that we have written a1 = t1. The theorem is proved.

Theorem 1.10 Let us consider the diophantine equation

h∑
j=1

kjx
rj
j +

t∑
j=h+1

kjx
sj
j = kt+1x

M+1
t+1 (41)
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where the kj (j = 1, . . . , t+1) are integers different of zero, there exist a positive
integer M ≥ 2 such that the exponents rj ≥ 2 are divisors of M (j = 1, . . . , h)
and the exponents sj ≥ 2 (j = h+1, . . . , t) are divisors of M+1. Let us consider
the solutions to the equation (x1, . . . , xh, xh+1, . . . , xt, xt+1) such that xt+1 6= 0
and

∑t
j=h+1 kjx

sj
j − kt+1x

M+1
t+1 6= 0. Then a complete system of solutions to the

equation is

xj = A
M
rj B

M2

rj m
M(M+1)

rj
−1
vj (j = 1, . . . , h) (42)

xj = A
M+1
sj B

M2−1
sj m

M(M+1)
sj

−1
vj (j = h + 1, . . . , t) (43)

xt+1 = mMABM−1 (44)

where

A = −
h∑

j=1

kj

(
m

M(M+1)
rj

−1
vj

)rj

(45)

B = −kt+1m
M(M+1) +

t∑
j=h+1

kj

(
m

M(M+1)
sj

−1
vj

)sj

(46)

the integers vj (j = 1, . . . , t) and m are arbitrary and such that A 6= 0 and
B 6= 0.

Proof. Note that we have the identity

h∑
j=1

kj

(
A

M
rj B

M2

rj m
M(M+1)

rj
−1
vj

)rj

+
t∑

j=h+1

kj

(
A

M+1
sj B

M2−1
sj m

M(M+1)
sj

−1
vj

)sj

= kt+1

(
mMABM−1

)M+1
(47)

Therefore there exist solutions to the equation with the properties of the the-
orem.

Let us consider a solution

(x1, . . . , xh, xh+1, . . . , xt, xt+1) (48)

to the equation with the properties of the theorem. This solution can be
written in the form(

C
M
r1 u1, . . . , C

M
rh uh, C

M+1
sh+1 uh+1, . . . , C

M+1
st ut, C

)
(49)
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where the uj (j = 1, . . . , t) are certain rational numbers. Hence we have (see
(41) and (49))

h∑
j=1

kj

(
C

M
rj uj

)rj

+
t∑

j=h+1

kj

(
C

M+1
sj uj

)sj

= kt+1C
M+1 (50)

We can write uj = vj
m

where m and the vj (j = 1, . . . , t) are integers. Therefore
(50) becomes

h∑
j=1

kj

(
C

M
rj
vj
m

)rj

+
t∑

j=h+1

kj

(
C

M+1
sj

vj
m

)sj

= kt+1C
M+1 (51)

If we multiply both sides of (51) by mM(M+1) then we obtain

h∑
j=1

kj

(
C

M
rj m

M(M+1)
rj

−1
vj

)rj

+
t∑

j=h+1

kj

(
C

M+1
sj m

M(M+1)
sj

−1
vj

)sj

= kt+1

(
mMC

)M+1
(52)

Consequently we have

C =
−∑h

j=1 kj

(
m

M(M+1)
rj

−1
vj

)rj

−kt+1mM(M+1) +
∑t

j=h+1 kj

(
m

M(M+1)
sj

−1
vj

)sj =
A

B
(53)

Substituting (53) into (52) and multiply both sides by BM(M+1) we obtain the
following derivative solution of solution (48) (Compare with (47)).

h∑
j=1

kj

(
A

M
rj B

M2

rj m
M(M+1)

rj
−1
vj

)rj

+
t∑

j=h+1

kj

(
A

M+1
sj B

M2−1
sj m

M(M+1)
sj

−1
vj

)sj

= kt+1

(
mMABM−1

)M+1

The theorem is proved.

Theorem 1.11 Let us consider the diophantine equation

h∑
j=1

kjx
rj
j +

t∑
j=h+1

kjx
sj
j = kt+1x

M
t+1

where the kj (j = 1, . . . , t + 1) are integers different of zero, there exist a
positive integer M ≥ 2 such that the exponents rj ≥ 2 are divisors of M + 1
(j = 1, . . . , h) and the exponents sj ≥ 2 (j = h + 1, . . . , t) are divisors of
M . Let us consider the solutions to the equation (x1, . . . , xh, xh+1, . . . , xt, xt+1)
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such that xt+1 6= 0 and
∑t

j=h+1 kjx
sj
j − kt+1x

M+1
t+1 6= 0. Then a complete system

of solutions to the equation is

xj = A
M+1
rj B

M2−1
rj m

M(M+1)
rj

−1
vj (j = 1, . . . , h)

xj = A
M
sj B

M2

sj m
M(M+1)

sj
−1
vj (j = h + 1, . . . , t)

xt+1 = mM+1ABM

where

A = kt+1m
M(M+1) −

t∑
j=h+1

kj

(
m

M(M+1)
sj

−1
vj

)sj

B =
h∑

j=1

kj

(
m

M(M+1)
rj

−1
vj

)rj

the integers vj (j = 1, . . . , t) and m are arbitrary and such that A 6= 0 and
B 6= 0.

Proof. The proof is the same as the proof of Theorem 1.10. The theorem is
proved.

Theorem 1.12 Let us consider the equation

x2
1 − x2

2 +
h∑

j=3

kjx
rj
j = 0 (54)

where the coefficients kj (j = 3, . . . , h) are integers different of zero and the
exponents rj ≥ 2 (j = 3, . . . , h) are positive integers. Let us consider the
solutions (x1, x2, x3, . . . , xh) such that x1 6= x2. Then, a complete system of
solutions is

x1 =

−b21 − h∑
j=3

kja
rj
j

 (2b1)
L
2
−1 + (2b1)

L
2 b1 = A (55)

x2 =

−b21 − h∑
j=3

kja
rj
j

 (2b1)
L
2
−1 = B (56)

xj = aj(2b1)
L
rj (j = 3, . . . , h) (57)

where b1 6= 0 and aj (j = 3, . . . , h) are arbitrary integers and L is a fixed
positive integer multiple of the least common multiple of the exponents 2 and
rj (j = 3, . . . , h).
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Proof. We have the identity (see (55), (56) and (57))

A2 −B2 +
h∑

j=3

kj

(
aj(2b1)

L
rj

)rj

= 0 (58)

Hence there exist solutions to equation (54) such that x1 6= x2.
Let us consider a solution (x1, x2, x3, . . . , xh) such that x1 6= x2. This

solution can be written in the form

(x1, x2, x3, . . . , xh) = (C + b1, C, a3, . . . , ah) (59)

Consequently (see (54) and (59)) we have

(C + b1)
2 − C2 +

h∑
j=3

kja
rj
j = 0 (60)

Equation (60) gives

C =
−b21 −

∑h
j=3 kja

rj
j

2b1
(61)

Substituting (61) into (60) and multiply both sides by (2b1)
L we obtain the

following derivative solution

A2 −B2 +
h∑

j=3

kj

(
aj(2b1)

L
rj

)rj

= 0

of solution (59). Compare with (58). The theorem is proved.
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