International Mathematical Forum, Vol. 12, 2017, no. 18, 879 - 889 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.71084

Bishop 2-Type Frame for Non-null Curves

Nevin Gürbüz

Mathematics-Computer Department Eskişehir Osmangazi University, Turkey

Copyright © 2017 Nevin Gürbüz. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study Bishop 2-type frame for non-null curves in three and four dimensional semi Euclidean space. Later we obtain $\{Z_1, Z_2, Z_3, V_3\}$ Bishop 2-type frame for spacelike curves from Frenet 4-frame $\{T, V_1, V_2, V_3\}$ with aid semi-Euclidean rotation matrix in the semi-Euclidean 4-space.

Keywords: Bishop 2-type, semi-Euclidean space

1 Introduction

As First Bishop has studied the parallel frame in 1975 [1]. Recently, Parallel frame has been studied by some authors [2-5]. New version of Bishop frame using a common vector field as binormal vector field of a regular curve and an application to spherical images was introduced by Yılmaz and Turgut [6]. Yılmaz, Ünlütürk and Mağden have studied characterizations of some special curves of timelike curves according to the Bishop frame of type-2 in Minkowski 3-space [7]. Gürbüz has studied Bishop 2-type frame for inelastic curves in Minkowski 3-space [8]. Later Gürbüz and Işık have investigated nonlinear heat equation according to Bishop 2-type frame in Minkowski 3-space [9].

In section 2, we give some preliminaries. In section 3, we study Bishop 2-type frame for non-null curves in three and four dimensional semi Euclidean space and we obtain $\{Z_1, Z_2, Z_3, V_3\}$ Bishop 2-type frame from Frenet 4-frame $\{T, V_1, V_2, V_3\}$ for three case of spacelike curves with aid semi-Euclidean rotation matrix in the semi-Euclidean 4-space.

2 Preliminaries

The semi-Euclidean n-space E_1^n is given the following metric [10]: $\langle , \rangle = -dx_1^2 + dx_2^2 + dx_3^2 + \dots + dx_n^2$

Frenet-Serret frame $\{T, N, B\}$ derivative formulas are given as following in the semi-Euclidean 3-space E_1^3 :

$$T_s = \epsilon_2 \kappa N, \quad N_s = -\epsilon_1 \kappa T + \epsilon_3 \tau B, \quad B_s = -\epsilon_2 \tau N.$$
 (1)

Here κ, τ Frenet curvatures with $\langle T, T \rangle = \epsilon_1, \langle N, N \rangle = \epsilon_2, \langle B, B \rangle = \epsilon_3$. Frenet-Serret frame $\{T, V_1, V_2, V_3\}$ derivative formulas are given as following in E_1^4 :

$$T_s = \epsilon_2 \kappa V_1, \ V_{1s} = -\epsilon_1 \kappa T + \epsilon_3 \tau V_2, \ V_{2s} = -\epsilon_2 \tau V_1 + \epsilon_4 \rho V_3, \ V_{3s} = -\epsilon_3 \rho V_2$$
 (2)

where s is arc length, κ, τ, ρ and Frenet curvatures with

$$\langle T, T \rangle = \epsilon_1, \langle V_1, V_1 \rangle = \epsilon_2, \langle V_2, V_2 \rangle = \epsilon_3, \langle V_3, V_3 \rangle = \epsilon_4$$

For an arbitrary vector $x=(x_1,x_2,x_3,...,x_n)$ in E_1^n , if $\langle x,x\rangle>0$, x is spacelike, if $\langle x,x\rangle<0$, x is timelike. Spacelike and timelike vectors are called non-null vectors. The norm of the vector $x=|\langle x,x\rangle|^{1/2}[10]$.

3 Bishop 2-type frame in semi Euclidean space

Bishop 2-type frame for spacelike curves with timelike normal:

Theorem 3.1. Let $\{T, N, B\}$ be Frenet frame for a spacelike curve with timelike normal $\langle T, T \rangle = 1$, $\langle N, N \rangle = -1$, $\langle B, B \rangle = 1$ and let $\{Z_1, Z_2, B\}$ be Bishop 2-type frame with $\langle Z_1, Z_1 \rangle = 1$, $\langle Z_2, Z_2 \rangle = -1$, $\langle B, B \rangle = 1$. Bishop 2-type frame derivative formulas are given by as following in E_1^3 :

$$Z_{1s} = -\delta_1 B$$
, $Z_{2s} = \delta_2 B$, $B_s = \delta_1 Z_1 + \delta_2 Z_2$

where δ_1 , δ_2 are curvatures according to Bishop 2-type frame in the semi Euclidean 3-space. Connection between Frenet frame and Bishop 2-type frame is expressed as following:

$$T = \cosh \theta Z_1 + \sinh \theta Z_2, N = \sinh \theta Z_1 + \cosh \theta Z_2, B = B$$

First and second Bishop 2-type curvatures are $\delta_1 = -\langle Z_{1s}, B \rangle = \tau \sinh \theta$, $\delta_2 = \langle Z_{2s}, B \rangle = \tau \cosh \theta$. Also $\theta_s = -\kappa$, $\tau = \left| \delta_1^2 - \delta_2^2 \right|^{1/2}$.

Proof. The tangent vector T can be written by

$$T = \cosh \theta Z_1 + \sinh \theta Z_2 \tag{3}$$

Taking derivative of (3), substituting $Z_{1s} = -\delta_1 B$, $Z_{2s} = \delta_2 B$ we obtain

$$N = \sinh \theta Z_1 + \cosh \theta Z_2, \quad \theta = \operatorname{arg tanh} \frac{\delta_1}{\delta_2}, \theta_s = -\kappa$$

From derivative of binormal,

$$B_s = \delta_1 Z_1 + \delta_2 Z_2 = \tau N \tag{4}$$

Taking norm of (4), we have $\tau = \left| \delta_1^2 - \delta_2^2 \right|^{1/2}$.

Bishop 2-type frame for timelike curves:

Theorem 3.2. Let $\{T, N, B\}$ be Frenet frame with $\langle T, T \rangle = -1$, $\langle N, N \rangle = 1$, $\langle B, B \rangle = 1$ and let $\{Z_1, Z_2, B\}$ be Bishop 2-type frame with $\langle Z_1, Z_1 \rangle = -1$, $\langle Z_2, Z_2 \rangle = 1$, $\langle B, B \rangle = 1$. Bishop 2-type frame derivative formulas are given as following:

$$\begin{bmatrix} Z_{1s} \\ Z_{2s} \\ B_s \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\delta_1 \\ 0 & 0 & \delta_2 \\ -\delta_1 & -\delta_2 & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ B \end{bmatrix}$$
 (5)

where δ_1 , δ_2 are curvatures according to Bishop 2-type frame in the semi Euclidean 3-space. Connection between Frenet frame and Bishop 2-type frame is expressed as following:

$$T = \cosh \theta Z_1 + \sinh \theta Z_2;$$

$$N = \sinh \theta Z_1 + \cosh \theta Z_2; B = B$$
(6)

First and second Bishop 2-type curvatures are $\delta_1 = \tau \sinh \theta$, $\delta_2 = \tau \cosh \theta$. Here $\theta_s = \kappa$. Proof is obtained as similar with Theorem 3.1.

Bishop 2-type frame for spacelike curves with timelike binormal

Theorem 3.3. Bishop 2-type frame derivative formulas are given as following:

$$Z_{1s} = k_1 B$$
, $Z_{2s} = -k_2 B$, $B_s = k_1 Z_1 - k_2 Z_2$

Connection between Frenet frame and Bishop 2-type frame is expressed as following:

$$T = \cos\theta Z_1 + \sin\theta Z_2, N = -\sin\theta Z_1 + \cos\theta Z_2, B = B$$

First and second Bishop 2-type curvatures are $\delta_1 = \tau \sin \theta$, $\delta_2 = \tau \cos \theta$. Also $\theta_s = \kappa$.

Proof. The tangent vector T can be written by

$$T = \cos \theta Z_1 + \sin \theta Z_2 \tag{7}$$

Taking derivative of (7) and substituting

$$Z_{1s} = \delta_1 B, Z_{2s} = -\delta_2 B$$

we obtain $N = \sin \theta Z_1 + \cos \theta Z_2$, $\theta = \arctan \frac{\delta_1}{\delta_2}$, $\theta_s = \kappa$. From derivative of binormal we obtain $B_s = \delta_1 Z_1 - \delta_2 Z_2 = \tau N$.

Bishop 2-type frame derivative formulas with aid Theorem 3.1, Theorem 3.2 and Theorem 3.3 are written as following:

$$\begin{bmatrix} Z_{1s} \\ Z_{2s} \\ B_s \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\varepsilon_3 k_1 \\ 0 & 0 & \varepsilon_3 k_2 \\ \varepsilon_1 k_1 & -\varepsilon_2 k_2 & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ B \end{bmatrix}$$
(8)

where $\langle Z_1, Z_1 \rangle = \varepsilon_1$, $\langle Z_2, Z_2 \rangle = \varepsilon_2$, $\langle B, B \rangle = \varepsilon_3 = \epsilon_3$

Bishop 2- type frame derivative formulas in semi Euclidean 4-space are expressed as following:

$$\begin{bmatrix} Z_{1s} \\ Z_{2s} \\ Z_{3s} \\ V_{3s} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -\varepsilon_4 \delta_1 \\ 0 & 0 & 0 & \varepsilon_4 \delta_2 \\ 0 & 0 & 0 & -\varepsilon_4 \delta_3 \\ \varepsilon_1 \delta_1 & -\varepsilon_2 \delta_2 & \varepsilon_3 \delta_3 & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ V_3 \end{bmatrix}$$
(9)

where $\delta_1, \delta_2, \delta_3$ curvatures of Bishop 2 type frame in E_1^4 .

$$\langle Z_1,Z_1\rangle=\varepsilon_1, \langle Z_2,Z_2\rangle=\varepsilon_2, \langle Z_3,Z_3\rangle=\varepsilon_3, \langle V_3,V_3\rangle=\varepsilon_4=\epsilon_4$$

As result, we can give Bishop 2-type frame derivative formulas in n-dimensional semi Euclidean space E_1^n as following:

$$\begin{bmatrix} Z_{1s} \\ Z_{2s} \\ Z_{3s} \\ \vdots \\ Z_{(n-1)s} \\ B_s \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -\varepsilon_n \delta_1 \\ 0 & 0 & 0 & \dots & 0 & \varepsilon_n \delta_2 \\ 0 & 0 & 0 & \dots & 0 & -\varepsilon_n \delta_3 \\ 0 & 0 & 0 & \dots & 0 & \vdots \\ 0 & 0 & 0 & \dots & 0 & \vdots \\ 0 & 0 & 0 & \dots & 0 & \vdots \\ \varepsilon_1 \delta_1 & -\varepsilon_2 \delta_2 & \varepsilon_3 \delta_3 & \dots & (-1)^{n-1} \varepsilon_{n-1} \delta_{n-1} & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ \vdots \\ Z_{(n-1)} \\ B \end{bmatrix}$$

$$(10)$$

where $\langle Z_1, Z_1 \rangle = \varepsilon_1$, $\langle Z_2, Z_2 \rangle = \varepsilon_2$, $\langle Z_3, Z_3 \rangle = \varepsilon_3$, ..., $\langle Z_{n-1}, Z_{n-1} \rangle = \varepsilon_{n-1}$, $\langle B, B \rangle = \varepsilon_n$ and $\delta_i = (-1)^i \langle Z_{is}, B \rangle$, i = 1, 2, ...n - 1 are Bishop 2-type curvatures in n-dimensional semi Euclidean space.

Theorem 3.4. $\{Z_1, Z_2, Z_3, V_3\}$ Bishop 2-type satisfying the first case

$$\langle Z_1, Z_1 \rangle = 1, \ \langle Z_2, Z_2 \rangle = -1, \ \langle Z_3, Z_3 \rangle = 1, \langle T, T \rangle = 1,$$

 $\langle V_1, V_1 \rangle = -1, \ \langle V_2, V_2 \rangle = 1, \ \langle V_3, V_3 \rangle = 1$ (11)

is obtained from Frenet 4-frame $\{T, V_1, V_2, V_3\}$ with aid semi-Euclidean rotation matrix SR_1 as following:

$$Z_1 = \cos \gamma \cosh \xi T + \cos \gamma \sinh \xi V_1 - \sin \gamma V_2 \tag{12}$$

 $Z_2 = (\sinh \theta \sin \gamma \cosh \xi + \cosh \theta \sinh \xi)T + (\sinh \theta \sin \gamma \sinh \xi + \cosh \theta \cosh \xi)V_1 + \sinh \theta \cos \gamma V_2$

 $Z_3 = (\cosh \theta \sin \gamma \cosh \xi + \sinh \theta \sinh \xi)T + (\cosh \theta \sin \gamma \sinh \xi + \sinh \theta \cosh \xi)V_1 + \cosh \theta \cos \gamma V_2; V_3 = V_3$

where respectively θ, γ, ξ are angles between V_1 and V_2 , T and V_2 , T and V_1 .

Bishop 2- type frame derivative formulas considering (9) are expressed as following:

$$\begin{bmatrix} Z_{1s} \\ Z_{2s} \\ Z_{3s} \\ V_{3s} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -\delta_1 \\ 0 & 0 & 0 & \delta_2 \\ 0 & 0 & 0 & -\delta_3 \\ \delta_1 & \delta_2 & \delta_3 & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ V_3 \end{bmatrix}$$
(13)

where $\delta_1, \delta_2, \delta_3$ curvatures of Bishop 2 type frame in E_1^4 . Respectively $\delta_1, \delta_2, \delta_3, \kappa, \tau$ are obtained as following:

$$\begin{array}{lcl} \delta_1 &=& \rho \sin \gamma, & \delta_2 = \rho \sinh \theta \cos \gamma, & \delta_3 = -\rho \cosh \theta \cos \gamma, \\ \kappa &=& -\gamma_s \tan \gamma \coth \xi + \xi_s, \ \tau = \frac{\gamma_s}{\sinh \xi} \end{array}$$

Proof. The semi-Euclidean rotation matrix SR_1 according to first case is obtained with aid three rotations in E_1^4 . Respectively first, second, third semi-Euclidean rotations are between V_1 and V_2 , T and V_2 , T and V_1 .

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cosh\theta & \sinh\theta & 0 \\ 0 & \sinh\theta & \cosh\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\gamma & 0 & -\sin\gamma & 0 \\ 0 & 1 & 0 & 0 \\ \sin\gamma & 0 & \cos\gamma & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cosh\xi & \sinh\xi & 0 & 0 \\ \sinh\xi & \cosh\xi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(14)

Bishop 2-type frame (12) is obtained from the Frenet 4-frame $\{T_1, V_1, V_2, V_3\}$ with aid SR_1 in the semi-Euclidean 4-space.

Using derivative of Z_1 in (12) and $Z_{1s} = -\delta_1 V_3$ in (13), it can be written

$$(-\gamma_s \sin \gamma \cosh \xi + \xi_s \cos \gamma \sinh \xi - \kappa \sinh \xi \cos \gamma)T$$

$$-(\kappa \cosh \xi \cos \gamma + \gamma_s \sin \gamma \sinh \xi - \xi_s \cos \gamma \cosh \xi + \sin \gamma \tau)V_1$$

$$+(\cos \gamma \sinh \xi \tau - \gamma_s \cos \gamma)V_2 - \rho \sin \gamma V_3 = -\delta_1 V_3$$
(15)

From (15), it is obtained

$$\cos \gamma \sinh \xi \tau - \gamma_s \cos \gamma = 0, \qquad (16)$$

$$-(\kappa \cosh \xi \cos \gamma + \gamma_s \sin \gamma \sinh \xi - \xi_s \cos \gamma \cosh \xi + \sin \gamma \tau) = 0$$

$$\delta_1 = \rho \sin \gamma (18)$$

$$\delta_1 = \rho \sin \gamma (18)$$

From (16), (17) and (18), we have

$$\tau = \frac{\gamma_s}{\sinh \xi}, \ \delta_1 = \rho \sin \gamma, \kappa = -\gamma_s \tan \gamma \coth \xi + \xi_s$$
 (19)

As similar, we have

$$((\sinh \theta \sin \gamma \cosh \xi + \cosh \theta \sinh \xi)T + (\sinh \theta \sin \gamma \sinh \xi + \cosh \theta \cosh \xi)V_1 + \sinh \theta \cos \gamma V_2)_s = \delta_2 V_3,$$
(20)

$$((\cosh\theta\sin\gamma\cosh\xi + \sinh\theta\sinh\xi)T + (\cosh\theta\sin\gamma\sinh\xi + \sinh\theta\cosh\xi)V_1 + \cosh\theta\cos\gamma V_2)_s = -\delta_3 V_3,$$
(21)

From (20) and (21) δ_2, δ_3 are obtained as following: $\delta_2 = \rho \sinh \theta \cos \gamma, \delta_3 =$ $-\rho \cosh \theta \cos \gamma$

Result 3.1. The Frenet 4 -frame satisfying (13) is given with aid inverse of semi-Euclidean rotation matrix $(SR_1)^{-1}$ as following:

$$T = \cos \gamma \cosh \xi Z_1 - (\sinh \theta \sin \gamma \cosh \xi + \cosh \theta \sinh \xi) Z_2$$

$$+ (\cosh \theta \sin \gamma \cosh \xi + \sinh \theta \sinh \xi) Z_3$$

$$V_1 = -\cos \gamma \sinh \xi Z_1 + (\sinh \theta \sin \gamma \sinh \xi + \cosh \theta \cosh \xi) Z_2$$

$$- (\cosh \theta \sin \gamma \sinh \xi + \sinh \theta \cosh \xi) Z_3$$

$$V_2 = -\sin \gamma Z_1 - \sinh \theta \cos \gamma Z_2 + \cosh \theta \cos \gamma Z_3; V_3 = V_3$$
(22)

Proof. Frenet frame (22) is obtained easily from $(SR_1)^{-1} = \zeta_1(SR_1)^T \zeta_1$. Here

$$\zeta_1 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] = diag(1, -1, 1, 1)$$

 $(SR_1)^T$ is semi-Euclidean transpoze rotation matrix of SR_1 and $(SR_1)^{-1}$ is semi-Euclidean inverse rotation matrix of SR_1 .

Theorem 3.5. Let α be spacelike curve in semi-Euclidean 4-space. Bishop 2-type $\{Z_1, Z_2, Z_3, V_3\}$ satisfying the second case: $\langle T, T \rangle = 1, \langle V_1, V_1 \rangle = 1, \langle V_2, V_2 \rangle = -1, \langle V_3, V_3 \rangle = 1, \langle Z_1, Z_1 \rangle = 1, \langle Z_2, Z_2 \rangle = 1, \langle Z_3, Z_3 \rangle = -1, \langle V_3, V_3 \rangle = 1$ is obtained from Frenet 4-frame $\{T, V_1, V_2, V_3\}$ with aid semi-Euclidean rotation matrix SR_2 as following:

$$Z_{1} = \cosh \gamma \cos \xi T - \cosh \gamma \sin \xi V_{1} + \sinh \gamma V_{2}$$

$$Z_{2} = (-\sin \theta \sinh \gamma \cos \xi + \cos \theta \sin \xi) T + (\sin \theta \sinh \gamma \sin \xi + \cos \theta \cos \xi) V_{1}$$

$$-\sin \theta \cosh \gamma V_{2}$$

$$Z_{3} = (\cos \theta \sinh \gamma \cos \xi + \sin \theta \sin \xi) T - (\cos \theta \sinh \gamma \sin \xi - \sin \theta \cos \xi) V_{1} + \cos \theta \cosh \gamma V_{2}; V_{3} = V_{3}$$

Bishop 2-type frame derivative formulas for second case are defined as following:

$$\begin{bmatrix} Z_{1s} \\ Z_{2s} \\ Z_{3s} \\ V_{3s} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -\delta_1 \\ 0 & 0 & 0 & \delta_2 \\ 0 & 0 & 0 & -\delta_3 \\ \delta_1 & -\delta_2 & -\delta_3 & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ V_3 \end{bmatrix}$$
(24)

 $\delta_1, \delta_2, \delta_3, \kappa, \tau$ are obtained as following:

$$\begin{split} \delta_1 &= -\rho \sinh \gamma, \quad \delta_2 = -\rho \sin \theta \cosh \gamma, \qquad \delta_3 = -\rho \cos \theta \cosh \gamma, \\ \kappa &= \xi_s - \gamma_s \cot \xi \tanh \gamma, \tau = -\frac{\gamma_s}{\sin \xi} \end{split}$$

Proof.

$$SR_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cosh\gamma & 0 & \sinh\gamma & 0 \\ 0 & 1 & 0 & 0 \\ \sinh\gamma & 0 & \cosh\gamma & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\xi & -\sin\xi & 0 & 0 \\ \sin\xi & \cos\xi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(25)

Frenet frame (23) is obtained from (25). Considering derivative of Z_1 in (23) and $Z_{1s} = -\delta_1 V_3$ in (24),

$$(\gamma_{s}\sinh\gamma\cos\xi - \xi_{s}\cosh\gamma\sin\xi + \kappa\sin\xi\cosh\gamma)T$$

$$+(\kappa\cos\xi\cosh\gamma - \gamma_{s}\sinh\gamma\sin\xi - \xi_{s}\cosh\gamma\cos\xi - \tau\sinh\gamma)V_{1}$$

$$+(\tau\cosh\gamma\sin\xi + \gamma_{s}\cosh\gamma)V_{2} + \rho\sinh\gamma V_{3} = -\delta_{1}V_{3}$$
(26)

From (26),

$$\kappa \cos \xi \cosh \gamma - \gamma_s \sinh \gamma \sin \xi - \xi_s \cosh \gamma \cos \xi - \tau \sinh \gamma = 0 \qquad (27)$$

$$\tau \cosh \gamma \sin \xi + \gamma_s \cosh \gamma = 0 \qquad (28)$$

$$\rho \sinh \gamma = -\delta_1 \quad (29)$$

With aid (28), we have $\tau = -\frac{\gamma_s}{\sin \xi}$. From (27), (29) we obtain $\kappa = \xi_s - \gamma_s \cot \xi \tanh \gamma$, $\delta_1 = -\rho \sinh \gamma$. As similar

$$((-\sin\theta\sinh\gamma\cos\xi + \cos\theta\sin\xi)T + (\sin\theta\sinh\gamma\sin\xi + \cos\theta\cos\xi)V_1 -\sin\theta\cosh\gamma V_2)_s = \delta_2 V_3,$$
(30)

$$((\cos\theta\sinh\gamma\cos\xi + \sin\theta\sin\xi)T - (\cos\theta\sinh\gamma\sin\xi - \sin\theta\cos\xi)V_1 + \cos\theta\cosh\gamma V_2)_s = -\delta_3V_3$$
(31)

From (30), (31) we obtain $\delta_2 = -\rho \sin \theta \cosh \gamma$, $\delta_3 = -\rho \cos \theta \cosh \gamma$.

Result 3.2. The Frenet 4 -frame (32) is given with aid inverse of semi-Euclidean rotation matrix $(SR_2)^{-1}$ as following:

$$T = \cosh \gamma \cos \xi Z_1 - (\sin \theta \sinh \gamma \cos \xi + \cos \theta \sin \xi) Z_2$$

$$-(\cos \theta \sinh \gamma \cos \xi + \sin \theta \sin \xi) Z_3$$

$$V_1 = -\cosh \gamma \sin \xi Z_1 + (\sin \theta \sinh \gamma \sin \xi + \cos \theta \cos \xi) Z_2$$

$$+(\cos \theta \sinh \gamma \sin \xi - \sin \theta \cos \xi) Z_3$$

$$V_2 = -\sinh \gamma Z_1 + \sin \theta \cosh \gamma Z_2 + \cos \theta \cosh \gamma Z_3; \quad V_3 = V_3$$
(32)

Proof. Bishop 2-type frame (32) is obtained from $(SR_2)^{-1} = \zeta_2(SR_2)^T \zeta_2$, where $\zeta_2 = diag(1, 1, -1, 1).$

Theorem 3.6. Bishop 2-type $\{Z_1, Z_2, Z_3, V_3\}$ is obtained from Frenet 4-frame $\{T, V_1, V_2, V_3\}$ according to third case

$$\langle Z_1, Z_1 \rangle = 1, \langle Z_2, Z_2 \rangle = 1, \langle Z_3, Z_3 \rangle = 1; \langle T, T \rangle = 1,$$

 $\langle V_1, V_1 \rangle = 1, \langle V_2, V_2 \rangle = 1, \langle V_3, V_3 \rangle = -1$

using semi-Euclidean rotation SR_3 as following:

$$Z_1 = \cos \gamma \cos \xi T - \cos \gamma \sin \xi V_1 - \sin \gamma V_2 \tag{33}$$

$$Z_{1} = \cos \gamma \cos \xi T - \cos \gamma \sin \xi V_{1} - \sin \gamma V_{2}$$

$$Z_{2} = (-\sin \theta \sin \gamma \cos \xi + \cos \theta \sin \xi) T$$

$$+(\sin \theta \sin \gamma \sin \xi + \cos \theta \cos \xi) V_{1} - \sin \theta \cos \gamma V_{2}$$

$$(33)$$

$$Z_3 = (\cos\theta\sin\gamma\cos\xi + \sin\theta\sin\xi)T - (\cos\theta\sin\gamma\sin\xi - \sin\theta\cos\xi)V_1 + \cos\theta\cos\gamma V_2; \ V_3 = V_3$$

Bishop 2-type frame derivative formulas satisfying third case are expressed as following:

$$\begin{bmatrix} Z_{1s} \\ Z_{2s} \\ Z_{3s} \\ V_{3s} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \delta_1 \\ 0 & 0 & 0 & -\delta_2 \\ 0 & 0 & 0 & \delta_3 \\ \delta_1 & -\delta_2 & \delta_3 & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ V_3 \end{bmatrix}$$
(35)

 $\delta_1, \delta_2, \delta_3, \kappa, \tau$ are obtained as following:

$$\begin{array}{lcl} \delta_1 & = & -\rho \sin \gamma, & \delta_2 = -\rho \sin \theta \cos \gamma, & \delta_3 = \rho \cos \theta \cos \gamma, \\ \kappa & = & \gamma_s \cot \xi \tan \gamma + \xi_s, & \tau = -\frac{\gamma_s}{\sin \xi} \end{array}$$

Proof.

$$SR_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\gamma & 0 & -\sin\gamma & 0 \\ 0 & 1 & 0 & 0 \\ \sin\gamma & 0 & \cos\gamma & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\xi & -\sin\xi & 0 & 0 \\ \sin\xi & \cos\xi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(36)

Bishop 2-type frame (33) is obtained from SR_3 . From

$$(-\gamma_s \sin \gamma \cos \xi - \xi_s \cos \gamma \sin \xi + \kappa \sin \xi \cos \gamma)T + (\kappa \cos \xi \cos \gamma + \gamma_s \sin \gamma \sin \xi - \xi_s \cos \gamma \cos \xi + \tau \sin \gamma)V_1 - (\tau \cos \gamma \sin \xi + \gamma_s \cos \gamma)V_2 + \rho \sin \gamma V_3 = \delta_1 V_3$$

we obtain

$$\delta_1 = \rho \sin \gamma, \quad \kappa = \gamma_s \cot \xi \tan \gamma + \xi_s, \quad \tau = \frac{\gamma_s}{\sin \xi}$$

As similar, we have

$$((-\sin\theta\sin\gamma\cos\xi + \cos\theta\sin\xi)T + (\sin\theta\sin\gamma\sin\xi + \cos\theta\cos\xi)V_1(37) -\sin\theta\cos\gamma V_2)_s = -\delta_2 V_2,$$

$$((\cos\theta\sin\gamma\cos\xi + \sin\theta\sin\xi)T - (\cos\theta\sin\gamma\sin\xi - \sin\theta\cos\xi)V_1 (38) + \cos\theta\cos\gamma V_2)_s = \delta_3 V_3,$$

From (37), (38), we obtain $\delta_2 = -\rho \sin \theta \cos \gamma$, $\delta_3 = \rho \cos \theta \cos \gamma$.

Result 3.3. The Frenet 4 -frame is given with aid inverse of semi-Euclidean rotation matrix $(SR_3)^{-1}$ as following:

$$T = \cos \gamma \cos \xi Z_1 - (\sin \theta \sin \gamma \cos \xi + \cos \theta \cos \xi) Z_2$$

$$+ (\cos \theta \sin \gamma \cos \xi + \sin \theta \sin \xi) Z_3$$

$$V_1 = -\cos \gamma \sin \xi Z_1 + (\sin \theta \sin \gamma \sin \xi + \cos \theta \cos \xi) Z_2$$

$$- (\cos \theta \sin \gamma \sin \xi - \sin \theta \cos \xi) Z_3$$

$$V_2 = -\sin \gamma Z_1 - \sin \theta \cos \gamma Z_2 + \cos \theta \cos \gamma Z_3 ; V_3 = V_3$$
(39)

Proof. Frenet 4-frame for third case is obtained from $(SR_3)^{-1} = \zeta_3(SR_3)^T \zeta_3$.

References

- [1] R. L. Bishop, There is more than one way to frame a curve, *Amer. Math. Monthly*, **82** (1975), 246-251. https://doi.org/10.2307/2319846
- [2] N. Gürbüz, Moving non-null curves according to Bishop frame in Minkowski 3-space, International Journal of Geometric Methods in Modern Physics, 12

- (2015), 1550052 (15 pages). https://doi.org/10.1142/S0219887815500528
- [3] L. C. B. da Silva, Moving frames and the characterization of curves that lie on a surface, J. Geom., 108 (2017), 1091-1113. https://doi.org/10.1007/s00022-017-0398-7
- [4] M. Erdoğdu, Parallel frame of non-lightlike curves in Minkowski spacetime, *International Journal of Geometric Methods in Modern Physics*, **12** (2015), 1550109 (16 pages). https://doi.org/10.1142/s0219887815501091
- [5] A.J. Hanson, H. Ma, Parallel transport approach to curve framing, *Indiana University, Techneports-TR425*, **11** (1995), 3-7.
- [6] S. Yılmaz, M. Turgut, A new version of Bishop frame and an application to spherical images, *J. Math. Anal. Appl.*, **371** (2010), 764-776. https://doi.org/10.1016/j.jmaa.2010.06.012
- [7] S. Yilmaz, Y. Ünlütürk, A. Mağden, On characterizations of some special curves of timelike curves according to the Bishop frame of type-2 in Minkowski 3-space, *AIP Conference Proceedings*, **1726** (2016), 020082. https://doi.org/10.1063/1.4945908
- [8] N. Gürbüz, Inextensible Curve Flows According to Bishop 2-Type Frame in Minkowski 3-Space, *International Mathematical Forum*, **11** (2016), 1167-1174. https://doi.org/10.12988/imf.2016.69127
- [9] N. Gürbüz, E. Işık, Intrinsic Geometry of the Nonlinear Heat Equation for Spacelike Curves with Timelike Normal According to Bishop 2-Type Frame in Minkowski 3-Space, *International Mathematical Forum*, **11** (2016), 1109 1116. https://doi.org/10.12988/imf.2016.69122
- [10] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, NY Boston, 1983.

Received: October 20, 2017; Published: October 29, 2017