International Mathematical Forum, Vol. 12, 2017, no. 20, 973 - 982 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7977

On Locating Domination Number of

Boolean Graph BG₂(G)

M. Bhanumathi

Government Arts College for Women (Autonomous) Pudukkottai - 622001, TamilNadu, India

M. Thusleem Furjana

Dept. of Mathematics Government Arts College for Women (Autonomous) Pudukkottai - 622001, TamilNadu, India

Copyright © 2017 M. Bhanumathi and M. Thusleem Furjana. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let G(V, E) be a simple, finite and undirected connected graph. A non-empty set $S \subseteq V$ of a graph G is a dominating set, if every vertex in V-S is adjacent to at least one vertex in S. A dominating set $S \subseteq V$ is called a locating dominating set, if for any two vertices $v, w \in V-S$, $N_G(v) \cap S$ and $N_G(w) \cap S$ are not empty and distinct. In this paper, we give some general bounds for $\gamma_L(BG_2(G))$ and characterize graphs for which $\gamma_L(BG_2(G)) = 3$.

Keywords: Dominating set, Locating dominating set, Boolean graph BG₂(G)

1 Introduction

Let G be a (p,q) simple, undirected graph with vertex set V(G) and edge set E(G). For $v \in V(G)$, the set of all vertices adjacent to v in G is called the neighbourhood $N_G(v)$ of v. The concept of domination in graphs was introduced by Ore[4]. A non empty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in V(G) - S is adjacent to some vertex in S. A special case of dominating set S is called a locating dominating set. It was defined by D.F Rall and P.J Slater [5]. A dominating set S in a graph G is called a locating dominating set in G, if for any two vertices $v, w \in V(G) - S$, $N_G(v) \cap S$ and $N_G(w) \cap S$ are not empty and

distinct. The location domination number of G is defined as the minimum number of vertices in a locating dominating set in G and denoted by $\gamma_L(G)$.

In 2004, Janakiraman and Bhanumathi defined Boolean Graphs. The Boolean graph $BG_2(G)$ has vertex set $V(G) \cup E(G)$ and two vertices in $BG_2(G)$ are adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and an edge incident to it in G or two non-adjacent edges of G. The vertices of $BG_2(G)$, which are in V(G) are called point vertices and those in E(G) are called line vertices of $BG_2(G)$. $V(BG_2(G)) = V(G) \cup E(G)$ and $E(BG_2(G)) = [E(T(G)) - E(L(G))] \cup E(\overline{L(G)})$, where T(G) is the total graph of G and G and G and G is the line graph of G.

Notation: In this paper $N_{BG_2(G)}(x)$ is denoted by N(x), degree of vertex v in BG₂(G) is denoted by d(v) and degree of v in G is denoted by d_G(v).

```
Theorem: 1.1 [1] If G = K_{m,n} then \gamma_L(BG_2(K_{m,n})) = m + n - 2.
```

Theorem: 1.2 [3] If $G = K_n$, n > 1 then $\gamma_L(K_n) = n - 1$.

Theorem: 1.3 [3] If $G = K_{1, n-1}$, n > 2 then $\gamma_L(K_{1, n-1}) = n - 1$.

Theorem: 1.4 [3] If $G = K_{r, n-r}$, $1 \le r \le n-r$ then $\gamma_L(K_{r, n-r}) = n-2$.

Theorem: 1.5 [1] If $G = \overline{K_m} + K_1 + K_1 + \overline{K_n}$, n > 1 then $\gamma_L(BG_2(G)) = m + n - 1$.

Theorem: 1.6 [1] Let $G \neq C_3$ be any connected graph with at least three vertices

then $\gamma_L(BG_2(G)) \leq p-1$.

2 Locating domination of $BG_2(G)$

First, we shall find the bounds for $\gamma_L(BG_2(G))$.

Theorem: 2.1 $\gamma_L(G) \le \gamma_L(BG_2(G)) \le \gamma_L(G) + q$.

Proof: Let S be a γ_L -set of BG₂(G).

If $S \subseteq V(G)$, S is also a locating dominating set of G. This implies that $\gamma_L(G) \le \gamma_L(BG_2(G))$. If S contains line vertices, let $W \subseteq S$ be set of line vertices of $BG_2(G)$ in S. Let $e \in W$ and $e = xy \in E(G)$. Deleting e from S and adding one incident vertex of e, that is, x or y to S for all $e \in W$, we will get a locating dominating set of G. Hence $\gamma_L(G) \le \gamma_L(BG_2(G))$. On the other hand, let S be a γ_L -set of G. S need not be a locating dominating set of $BG_2(G)$. But $S \cup E(G)$ is a locating dominating set of $BG_2(G)$. Hence, $\gamma_L(BG_2(G)) \le \gamma_L(G) + q$.

Lemma: 2.1 Let G be a connected graph with r(G) = 1, d(G) = 2. Let v be a central vertex of G. If $V(G) - \{v\}$ is a γ_L -set of $BG_2(G)$, then $p \ge 3$ and $\delta(G) \ge 3$.

Proof: Let $S = V(G) - \{v\}$ is a γ_L -set of $BG_2(G)$. Suppose $x \in V(G)$ is a vertex of G. Then let $e_1 = vx \in E(G)$, $N(e_1) \cap S = \{x\}$ and $N(v) \cap S = S$. Since S is a locating dominating set, this implies that $S \neq \{x\}$. Hence S contains more than one vertex and hence $|V(G)| \ge 3$. If G has a vertex x of degree two and $e_1 = xv$, $e_2 = xy$,

 $e_3 = vy \in E(G)$ then let $N_G(x) = \{v, y\}$ and $N(x) = \{v, y, e_1, e_2\}$ and $N(e_3) = \{v, y\}$. Also, $N(x) \cap S = N(e_3) \cap S = \{y\}$, which is a contradiction. Hence, G has no vertex of degree two. If G has a vertex y' of degree one, then in G, y' is adjacent to v only and in $BG_2(G)$, y' is adjacent to v and the line vertex e' = vy'. Therefore, S is a dominating set and $S \subseteq V(G)$ implies that S must contain v. Hence, G cannot have a vertex of degree one or two. This implies that, $\delta(G) \ge 3$.

Lemma: 2.2 If G has a pendant vertex v, incident with an edge e, then v must be in any locating dominating set S of $BG_2(G)$, where $S \subseteq V(G)$.

Proof: Let $S \subseteq V(G)$ be a locating dominating set not containing v. Let $e = uv \in E(G)$. Since S is a dominating set, if must contain u to dominate v. Now, if $S \subseteq V(G)$, then $N(v) \cap S = N(e) \cap S = \{u\}$, which is a contradiction to S as a locating dominating set. So, v must be in S.

Lemma: 2.3 Let G be a connected graph with r(G) = 1, d(G) = 2. Let e(v) = 2 in G. If $V(G) - \{v\}$ is a γ_L -set of $BG_2(G)$, then $d_G(v) \ge 3$.

Proof: Let $S = V(G) - \{v\}$ is a γ_L -set of $BG_2(G)$, Suppose degree of v in G is one, Then v is adjacent to u, where u is the only central vertex of G and $e_G(u) = 1$. Let $e = uv \in E(G)$. In $BG_2(G)$, $N(e) \cap S = N(v) \cap S = \{u\}$, which is a contradiction. Suppose $d_G(v) = 2$.

Case: i $N_G(v) = \{u, x\}$, where $e_G(u) = e_G(x) = 1$.

In this case, $N_G(v) = \{u, x\}$ and let $e_1 = ux \in E(G)$. In $BG_2(G)$, $N(e_1) \cap S = \{u, x\}$ and $N(v) \cap S = \{u, x\}$, which is a contradiction.

Case: ii $N_G(v) = \{u, y\}$, where $e_G(u) = 1$ and $e_G(y) = 2$.

Let $e_2 = uy$. Again in $BG_2(G)$, $N(e_2) \cap S = \{u, y\}$ and $N(v) \cap S = \{u, y\}$, which is a contradiction. Hence $d_G(v) \ge 3$.

Lemma: 2.4 If G has a pendant edge e, incident with a vertex v, then e must be in any locating dominating set S of $BG_2(G)$, where $S \subseteq E(G)$.

Proof: Let $S \subseteq E(G)$ be a locating dominating set not containing e. Let $e = uv \in E(G)$, then S is not a dominating set and also $N(v) \cap S = \phi = N(u) \cap S$, which is a contradiction to S as a locating dominating set. So, e must be in S.

Theorem: 2.2 If G is a connected graph with r(G) = 1, d(G) = 2, Then $S = V(G) - \{v\}$ cannot be a γ_L -set of BG₂(G) if $d_G(v) \le 2$.

Proof: Proof follows from Lemma 2.1, Lemma 2.2 and Lemma 2.3.

Proposition: 2.1 Let G be a connected graph with r(G) = 1 and d(G) = 2. Let $S \subseteq E(G)$. If G[S] has K_2 as a component then S is not a locating dominating set of $BG_2(G)$.

Proof: Let $e = uv \in S$ form a K_2 in G[S]. Then in BG₂(G), $N(u) \cap S = N(v) \cap S = \{e\}$, which is a contradiction to S is a locating dominating set. This proves the result.

Proposition: 2.2 Let $S \subseteq V(G)$ and let $v \in S$ such that $e_1 = vx$ and $e_2 = vy \in E(G)$ and $x, y \notin S$, then S cannot be a locating dominating set of $BG_2(G)$.

Proof: In BG₂(G), N(e₁) \cap S = N(e₂) \cap S = {v}, which is a contradiction to S as a locating dominating set, This proves the result.

Remark: 2.1 If $S \subseteq V(G)$ is a locating dominating set and if $v \in S$ such that d(v) = m > 1, then at least (m - 1) neighbours of v is also in S.

Proposition: 2.3 Let G be a connected graph with r(G) = 1, d(G) = 2. Let v be a central vertex of G. Let $S \subseteq V(G)$ be a locating dominating set of $BG_2(G)$ containing a central vertex of G. Then |S| = p - 1.

Proof: Proof follows from the previous remark.

Theorem: 2.3 Let G be a graph with radius one. If there exists a γ_L -set S of BG₂(G) such that $S \subseteq V(G)$, then $\gamma_L(BG_2(G)) = p - 1$.

Proof: We know that $\gamma_L(BG_2(G)) \le p-1$. So, it is enough to prove that $\gamma_L(BG_2(G)) \not< p-1$. Let $V(G) = \{v_1, v_2, ..., v_p\}$ and let $v = v_1$ such that e(v) = 1. Suppose $\gamma_L(BG_2(G)) < p-1$. Then there exists at least two vertices $x, y \in V(G)$ such that $x, y \notin S$. Let $S = V(G) - \{x, y\}$.

Case: i Let $v \neq x$, $y, v \in S$. Let $e_1 = vx$, $e_2 = vy \in E(G)$, Then $N(e_1) \cap S = \{v\} = N(e_2) \cap S$ in $BG_2(G)$ which is a contradiction to S is a γ_L -Set . Hence $\gamma_L(BG_2(G)) \not < p-1$. Similarly, if $S = V(G) - \{x, y, z\}$, $x, y, z \in V(G)$, then also, $N(e_x) \cap S = N(e_y) \cap S = N(e_z) \cap S = \{v\}$, which is a contradiction where $e_x = vx$, $e_y = vy$, $e_z = vz$. Hence |S| must be p-1.

Case: ii suppose S contains no central vertices. S has at least two vertices. Suppose |S| < p-1, V-S has at least two vertices. Also, V-S contains at least one central vertex. Suppose V-S contains two central vertices v_1, v_2 . Then the line vertex $e=v_1v_2$ is not dominated by S in $BG_2(G)$. So, assume that V-S contains exactly one central vertex v, Thus $v \notin S$ and G is a unicentral graph with radius one. Let $v, x \notin S$ such that $e_G(v)=1$ and $e_G(x)=2$. Then the edge $vx=e_1 \in E(G)$ is not dominated by S in $varphi BG_2(G)$, which is again a contradiction. Hence, $varphi BG_2(G)$ is not dominated by S in $varphi BG_2(G)$ and hence $varphi BG_2(G) = p-1$.

Remark: 2.2

(1) If G is a connected graph with radius one and has a unique central vertex v, then $V(G) - \{v\}$ is a locating dominating set of $BG_2(G)$.

- (2) If G is a connected graph with radius one and has more than one central vertex then any locating dominating set $S \subseteq V(G)$ of $BG_2(G)$ must contain a central vertex of G.
- (3) If G is a Graph with radius one and $\gamma_L(BG_2(G)) < p-1$, then every γ_L -set of $BG_2(G)$ must contain line vertices.
- (4) There may exists graphs with radius one such that $\gamma_L(BG_2(G)) \le p-1$.

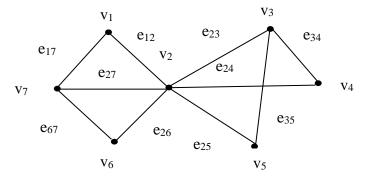


Figure: 2.1

Let G be a graph in Figure 2.1. S \subseteq E(G) and S = {e₁₇, e₂₅, e₃₅, e₃₄, e₆₇} form a minimum locating dominating set of BG₂(G). Hence, $\gamma_L(BG_2(G)) = p - 2$.

Theorem: 2.4 Let G be a disconnected graph without isolated vertices with components G_1 , G_2 , G_3 , ..., G_n ($n \ge 2$) then $\gamma_L(BG_2(G)) \le \gamma_L(BG_2(G_1)) + \gamma_L(BG_2(G_2)) + ... + \gamma_L(BG_2(G_n)) = \sum_{i=1}^n \gamma_L(BG_2(G_i))$.

Proof: Let S_i be γ_L -set of $BG_2(G_i)$, i=1,2,...,n. Then $S=\bigcup_{i=1}^n S_i$ is a locating dominating set of $BG_2(G)$. Hence $\gamma_L((BG_2(G)) \leq |S| \leq \sum_{i=1}^n \gamma_L(BG_2(G_i))$

Theorem: 2.5 If G is any one of K_n , $K_{1,n}$ and $K_{m,n}$ then $\gamma_L(BG_2(G)) = \gamma_L(G)$.

Proof: Assume G is a connected graph with p vertices and S is the minimum locating dominating set of G. Let $A = S - N(u) = \phi$, where $u \notin S$.

- (i) Let $G=K_n$. Let $V(G)=\{v_1,v_2,v_3,...,v_n\}$. Then by Theorem 2.3, $S=\{v_1,v_2,v_3,...,v_{n-1}\}$ is a γ_L -set of $BG_2(G)$. Also $\gamma_L(G)=p-1$ by Theorem 1.2. Hence the proof follows.
- (ii) If G is a star graph $K_{1,n}$ with p=n+1 and by Theorem 2.3, $S=\{\ v_1,\,v_2,\,v_3,\,...\,,\,v_n\ \}$, then S is independent and S is a γ_L -set of $BG_2(G),\,|S|=p-1=\gamma_L(BG_2(G)),$ Also, $\gamma_L(K_{1,n})=p-1$ by Theorem 1.3. Therefore $\gamma_L(G)=\gamma_L\left(BG_2(G)\right)$.
- (iii) If $G = K_{m,n}$. Let $V(G) = V_1 \cup V_2$, $V_1 = \{u_1, u_2, ..., u_m\}$, $V_2 = \{v_1, v_2, v_3, ..., v_n\}$ and $u_i v_j = e_{ij}$; i = 1, 2, 3, ..., m; j = 1, 2, 3, ..., n. Then $S = \{e_{12}, e_{13}, ..., e_{1n}, e_{22}, e_{31}, ..., e_{m-11}, e_{mn}\}$ is the minimum locating dominating set of $BG_2(G)$ containing m + n 2 elements by Theorem 1.1. Also $\gamma_L(G) = m + n 2$ by Theorem 1.4. Therefore, we get $\gamma_L(BG_2(G)) = \gamma_L(G)$.

Lemma: 2.5 Let G be any connected graph. Then $\gamma_L(BG_2(G)) = 3$ if and only if G \in A', where A' is the set of all graphs K_4 , $K_4 - e$, W_3 , $K_{2,2}$, P_4 , P_5 , C_n (n = 3, 4, 5), $C_4 - e$, $C_5 - e$, $K_{1,3}$, $K_{1,3} + e$, $K_1 + K_1 + 2K_1 + K_1$.

Proof: If $G \in A'$ then $\gamma_L(BG_2(G)) = 3$. Conversely, assume that G is connected and S be the minimum locating dominating set of $BG_2(G)$, with |S| = 3. Let $S = \{u, v, w\}$. The non - empty subsets of S are $\{u\}$, $\{v\}$, $\{w\}$, $\{u, v\}$, $\{u, w\}$, $\{v, w\}$ and $\{u, v, w\}$. Since, $\gamma_L(BG_2(G)) = 3$, for any two vertices $x, y \in V(BG_2(G)) - S$, $N(x) \cap S \neq N(y) \cap S \neq \emptyset$. Since $N(x) \cap S$ and $N(y) \cap S$ are any one of the seven distinct sets, $BG_2(G)$ is a graph which contain at most ten vertices. Hence $|V(G)| = p \leq 5$, since if $|V(G)| \geq 6$, number of vertices of $BG_2(G)$ is greater than ten. Among the connected graphs with $p \leq 5$ the following are the graphs with $\gamma_L(BG_2(G)) = 3$. K_4 , $K_4 - e$, W_3 , $K_{2,2}$, P_4 , P_5 , C_n (n = 3, 4, 5), $C_4 - e$, $C_5 - e$, $K_{1,3}$, $K_{1,3} + e$, $K_1 + K_1 + 2K_1 + K_1$.

Lemma: 2.6 Let G be any disconnected graph. Then $\gamma_L(BG_2(G) = 3$ if and only if G is any one of the following graphs $K_{1,2} \cup K_2$ and $2K_2$.

Proof: If $G = K_{1,2} \cup K_2$ or $2K_2$ then $\gamma_L(BG_2(G)) = 3$. Conversely, Assume G is a disconnected graph and S be the minimum locating dominating set of $BG_2(G)$ with |S| = 3. Let $S = \{u, v, w\}$. The non-empty subsets of S are $\{u\}$, $\{v\}$, $\{w\}$, $\{u, v\}$, $\{u, w\}$, $\{v, w\}$ and $\{u, v, w\}$. Since, $\gamma_L(BG_2(G)) = 3$, for any two vertices x, $y \in V(BG_2(G)) - S$, $N(x) \cap S \neq N(y) \cap S \neq \emptyset$. Since $N(x) \cap S$ and $N(y) \cap S$ are any one of the seven distinct sets, $BG_2(G)$ is a graph which contain at most ten vertices. If p > 6, p + q > 10. Hence $p \le 6$. Among the disconnected graphs with $p \le 6$, having no isolated vertices $\gamma_L(BG_2(G)) = 3$ for $K_{1,2} \cup K_2$ or $2K_2$.

Theorem: 2.6 Let G be any graph. Then $\gamma_L(BG_2(G)) = 3$ if and only if G is any one of the following graphs K_4 , $K_4 - e$, W_3 , $K_{2,2}$, P_4 , P_5 , C_n (n = 3, 4, 5), $C_4 - e$, $C_5 - e$, $K_{1,3}$, $K_{1,3} + e$, $K_1 + K_1 + 2K_1 + K_1$, $K_{1,2} \cup K_2$ or $2K_2$.

Proof: Proof follows from the Lemma 2.5 and Lemma 2.6.

Corollary: 2.6.1 Let G be any connected graph then $\gamma_L(BG_2(G)) = 3$ and any γ_L -set contains only point vertices if and only if $G \in A'$, where A' is the set of all graphs K_4 , $K_4 - e$, W_3 , $K_{1,3}$, $K_{1,3} + e$, C_3 .

Proof: Proof follows from Theorem 2.6.

Corollary: 2 Let G be any connected graph then $\gamma_L(BG_2(G)) = 3$ and any γ_L -set contains only line vertices or point vertices and line vertices if and only if $G \in A'$, where A' is any one of the following graphs P_4 , P_5 , $C_4 - e$, $C_5 - e$, C_n (n = 3, 4, 5), $K_{1,2} \cup K_2$, $2K_2$.

Proof: Proof follows from Theorem 2.6.

Theorem: 2.7 Let G be a connected graph with non-adjacent vertices v_1 , $v_p \in V(G)$ such that $d_G(v_1) = p - 2$ and $d_G(v_p) = 1$. If $BG_2(G)$ has a γ_L -set S such that $S \subseteq V(G)$, then $\gamma_L(BG_2(G)) = p - 1$.

Proof: $d_G(v_1) = p - 2$. Let $N_G(v_1) = \{v_2, v_3, \dots, v_{p-1}\}$, Since G is connected v_p is adjacent to some v_i , $1 \le i \le p - 1$. Let $N_G(v_p) = \{v_2\}$, assuming $d_G(v_2) and G is a graph with radius two and diameter three. Let S be a <math>\gamma_L$ -set of $BG_2(G)$ such that $S \subseteq V(G)$, We know that $\gamma_L(BG_2(G)) \le p - 1$. Hence $|S| \le p - 1$. Since v_p is a pendant vertex in G, v_p must be in S by Lemma 2.2.

Case: i $v_2 \notin S$. We claim that all other point vertices are in S. If $v_1 \notin S$, for $e_{12} = v_1v_2 \in E(G)$ in $BG_2(G)$, $N(e_2) \cap S = \phi$ which is a contradiction to S is a dominating set of $BG_2(G)$. Hence v_1 must be in S. Thus $v_1, v_p \in S$ and $v_2 \notin S$, Again if there exists any other $v_i \in V(G)$ such that $v_i \notin S$ let $e_i = v_1 \ v_i \in E(G)$ and $e_2 = v_1v_2 \in E(G)$. Then in $BG_2(G)$, $N(e_2) \cap S = N(e_i) \cap S = \{v_1\}$, which is a contradiction to S is a locating dominating set. Hence $S = V(G) - \{v_2\}$, This implies that |S| = p - 1. That is, $\gamma_L(BG_2(G)) = p - 1$.

Case: ii $v_2 \in S$. Vertices v_2 and $v_p \in S$. Let $e_2 = v_1 \ v_2$, $e = v_2 \ v_p \in E(G)$. If $v_1 \notin S$, then in $BG_2(G)$, $N(e_2) \cap S = N(e) \cap S = \{v_2\}$, which is a contradiction to S is a locating dominating set of $BG_2(G)$. Hence $v_1 \in S$. So, v_1 , v_2 and $v_p \in S$. But we know that $\gamma_L(BG_2(G)) \leq p-1$. Hence there exists a vertex v_i , $3 \leq i \leq p-1$ such that $v_i \notin S$. If there exists any other $v_j \notin S$, $3 \leq j \leq p-1$, $i \neq j$ then in $BG_2(G)$, $N(e_i) \cap S = N(e_j) \cap S = \{v_i\}$ where $e_i = v_1v_i$, $e_j = v_1v_j \in E(G)$, which is again a contradiction. Hence |S| = p-1, $\gamma_L(BG_2(G)) = p-1$.

Remark: 2.3

If G is a connected graph with adjacent vertices v_1 and v_p such that $d_G(v_1) = p - 2$ and $d_G(v_p) = 1$, then $\gamma_L(BG_2(G))$ need not be p - 1, where $S \subseteq V(G) \cup E(G)$.

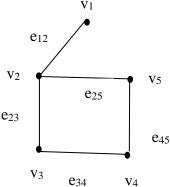


Figure: 2.2

In Figure 2.2, Let G be a connected graph with adjacent vertices v_1 and v_2 such that $d_G(v_1) = 1$, $d_G(v_2) = 3$ then $S = \{v_4, v_5, e_{12}\}$ forms a minimum locating dominating set of $BG_2(G)$. Hence $\gamma_L(BG_2(G)) = p - 2$.

Corollary to Theorem: 1.12 If G is a connected graph with at least (p-2) pendant vertices then $\gamma_L(BG_2(G)) = p-1$.

Proof: G has either p-1 or p-2 pendant vertices. Hence G is either a star or a double star. By Theorems 1.3 and 1.5 in both the cases $\gamma_L(BG_2(G)) = p-1$.

Theorem: 2.8 If there exists an edge $e \in E(G)$ such that e is adjacent to all other edges of G then $\gamma_L(BG_2(G)) = p - 1$.

Proof: By the given condition either $G = K_{1,n}$, double star $\overline{K_m} + K_1 + \overline{K_1} + \overline{K_n}$ or G is of the following type:

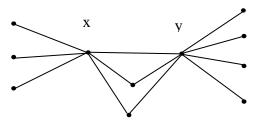


Figure: 2.3

If G is a star or double star $\gamma_L(BG_2(G)) = p-1$ by Theorems 1.3 and 1.5. So it is enough to prove the result for the graph in Figure 2.3 only. Let e = xy be the edge in G, which is adjacent to all other edges of G. Let $S \subseteq V(G) \cup E(G)$ be the locating dominating set of $BG_2(G)$.

Case: i S \subseteq V(G). Since S \subseteq V(G), all the pendant vertices of G are in S by Lemma 2.2. Suppose $z \in V(G)$ such that z is adjacent to both x and y in G. let $e_1 = xz$, $e_2 = yz \in E(G)$. Suppose $z \notin S$. Then x and y must be in S to dominate e_1 and e_2 in BG₂(G). In this case, N(e_1) \cap S = N(e_2) \cap S = {x} and N(e_2) \cap S = N(e_2) \cap S = {y} which is again a contradiction to S is a locating dominating set of BG₂(G). So z must be in S and to dominate e = xy in BG₂(G), x or y must be in S. Hence S = V(G) - {x} or S = V(G) - {y}, So |S| = p - 1.

Case: ii $S \subseteq E(G)$. S must contain all the line vertices which are pendant edges in G. Consider $e = xy \in E(G)$. The line vertex e is not adjacent to any other line vertices in $BG_2(G)$. Hence e must be in S by Theorem 2.1. Now, consider $e_1 = xz$, $e_2 = yz \in E(G)$. To dominate z in $BG_2(G)$, any one of e_1 or e_2 must be in S. Thus, we see that S is a set of edges which form a spanning tree of G and S contains p-1 line vertices of $BG_2(G)$ by Theorem 1.6. This implies that |S| = p-1.

Case: iii S contains both point and line vertices. S must contain pendant vertices of G or the pendant edges of G. Let N(x) contains m pendant vertices and N(y) contains n pendant vertices and let k vertices are adjacent to both x and y.

Therefore p = m + n + 2 + k then |S| = m + n + k + 1 = p - 1.

In G, e is adjacent to all other edges. Hence in $BG_2(G)$, e is adjacent to x and y only. Hence any one of x, y, e is in S. ------ II.

Case: i Let $x \in S$ (or $y \in S$). Now, consider $z \in V(G)$ which is adjacent to both x and y in G. Suppose z and line vertices incident with z are not in S. Consider z and e = xy. In $BG_2(G)$, $N(z) \cap S = x = N(e) \cap S$. so z or e must be in S. ------III.

Case: ii $e \in S$, If $e \in S$ and $x, y \notin S$, z is not dominated by S.

Sub case: i z be the only vertex adjacent to both x and y. So at least one of z, $e_1 = xz$, $e_2 = yz$, $N(e_1) \cap S = N(e_2) \cap S = \phi$. x and y must be in S. -----IV.

Theorem: 2.9 If G has a pendant vertex v, which is adjacent to the central vertex u and incident with an edge e = uv, then v or e must be in any locating dominating set of $BG_2(G)$.

Proof: Proof follows from Lemma 2.2 and Lemma 2.4.

References

- [1] M. Bhanumathi, M. Thusleem Furjana, Locating Domination in Boolean Graph BG₂(G), *Aryabhatta Journal of Mathematics and Informatics [AJMI]*, **8** (2016), no. 2.
- [2] T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Domination Parameters of the Boolean Graph BG₂(G) and its Complement, *International Journal of Engineering Science, Advanced Computing and Bio-Technology*, **3** (2012), no. 3, 115-135.
- [3] Jose Caceres, Carmen Hernando, Merce Mora, Ignacio M. Pelayo and Maria Luz Puertas, Locating dominating codes: Bounds and extremal cardinalities *Applied Mathematics and Computation*, **220** (2013), 38-45. https://doi.org/10.1016/j.amc.2013.05.060
- [4] O. Ore, *Theory of Graphs*, Coll. Publ., Vol. 38, Amer. Math. Soc., Providence, Rhode Island, 1962. https://doi.org/10.1090/coll/038

[5] D.F. Rall, P.J. Slater, On location domination number for certain classes of graphs, *Congrences Numerantium*, **45** (1984), 77-106.

Received: September 15, 2017; Published: December 20, 2017