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Abstract

Let G(V, E) be a simple, finite and undirected connected graph. A non-
empty set S < V of a graph G is a dominating set, if every vertex in V — S is
adjacent to at least one vertex in S. A dominating set S — V is called a locating
dominating set, if for any two vertices v, w € V — S, Ng(v) N S and Ng(w) N' S
are not empty and distinct. In this paper, we give some general bounds for
YL(BG2(G)) and characterize graphs for which y.(BG2(G)) = 3.
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1 Introduction

Let G be a (p, q) simple, undirected graph with vertex set V(G) and edge
set E(G). For v € V(G), the set of all vertices adjacent to v in G is called the
neighbourhood Ng(v) of v. The concept of domination in graphs was introduced
by Ore[4]. A non empty set S < V(G) of a graph G is a dominating set, if every
vertex in V(G) — S is adjacent to some vertex in S. A special case of dominating
set S is called a locating dominating set. It was defined by D.F Rall and P.J Slater
[5]. A dominating set S in a graph G is called a locating dominating set in G, if for
any two vertices v, w € V(G) — S, Ng(v) N S and Ng(w) N S are not empty and
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distinct. The location domination number of G is defined as the minimum number
of vertices in a locating dominating set in G and denoted by y.(G).

In 2004, Janakiraman and Bhanumathi defined Boolean Graphs. The
Boolean graph BG2(G) has vertex set V(G) U E(G) and two vertices in BG2(G)
are adjacent if and only if they correspond to two adjacent vertices of G or to a
vertex and an edge incident to it in G or two non-adjacent edges of G. The
vertices of BG2(G), which are in V(G) are called point vertices and those in E(G)
are called line vertices of BG2(G). V(BG2(G)) = V(G) v E(G) and E(BG2(G)) =
[E(T(G)) - E(L(G))] w E(L(G)), where T(G) is the total graph of G and L(G) is
the line graph of G.

Notation: In this paper Ngg ) (x) is denoted by N(x), degree of vertex v in
BG2(G) is denoted by d(v) and degree of v in G is denoted by dg(V).

Theorem: 1.1 [1] If G = Kmn then y.(BG2(Kmn)) =m +n —2.

Theorem: 1.2 [3] If G = Kn, n > 1 then y (Kn) =n — 1.

Theorem: 1.3[3] IfG =Ky -1, n>2theny(Ki,n-1)=n-1.

Theorem: L4 [3] IfG=Kyn-r, | <r<n-rtheny(K;,n-r)=n-2.

Theorem: 1.5 [1] If G = K,, + K1+ K1 +K,,n>1then y (BG2(G)) =m+n - 1.
Theorem: 1.6 [1] Let G # Cs be any connected graph with atleast three vertices
then y.(BG2(G)) <p- 1.

2 Locating domination of BG; (G)

First, we shall find the bounds for y.(BG2(G)).
Theorem: 2.1 y.(G) < y.(BG2(G)) < v.(G) + q.

Proof: Let S be a yL-set of BG2(G).

If S € V(G), Sis also a locating dominating set of G. This implies that y_(G)
< yL(BG2(G)). If S contains line vertices, let W & S be set of line vertices of
BG2(G) in S. Lete € W and e = xy € E(G). Deleting e from S and adding one
incident vertex of e, that is, x or y to S for all e € W, we will get a locating
dominating set of G. Hence yL(G) < yL(BG2(G)). On the other hand, let S be a y.-
set of G. S need not be a locating dominating set of BG2(G). But S U E(G) is a
locating dominating set of BG2(G). Hence, y.(BG2(G)) <y.(G) +q.

Lemma: 2.1 Let G be a connected graph with r(G) = 1, d(G) = 2. Let v be a
central vertex of G. If V(G) — {v} is a y_-Set of BG2(G), then p > 3 and &(G) > 3.

Proof: Let S = V(G) — {v} is a yL-set of BG2(G). Suppose x € V(G) is a vertex of
G. Then let e1 = vx € E(G), N(e1) n S={x} and N(v) nS=S. Since Sis a
locating dominating set, this implies that S # {x}. Hence S contains more than one
vertex and hence |[V(G)| > 3. If G has a vertex x of degree two and e1 = XV, €2 = XY,
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es=vy e E(G) then let Ng(x) = {v, y} and N(x) = {v, vy, e1, e2} and N(es) = {v,
y}. Also, N(X) n S = N(e3) n S = {y}, which is a contradiction. Hence, G has no
vertex of degree two. If G has a vertex y’ of degree one, then in G, y’ is adjacent to
v only and in BG2(G), y' is adjacent to v and the line vertex e’ = vy'. Therefore, S
is a dominating set and S & V(G) implies that S must contain v. Hence, G cannot
have a vertex of degree one or two. This implies that, 5(G) > 3.

Lemma: 2.2 If G has a pendant vertex v, incident with an edge e, then v must be
in any locating dominating set S of BG2(G) , where S & V(G).

Proof: Let S & V(G) be a locating dominating set not containing v. Lete = uv €
E(G). Since S is a dominating set, if must contain u to dominate v. Now, if S &

V(G), then N(v) n S = N(e) n S = {u}, which is a contradiction to S as a locating
dominating set. So, v must be in S.

Lemma: 2.3 Let G be a connected graph with r(G) = 1, d(G) = 2. Lete(v) =2 in
G. If V(G) — {v} is a yL-set of BG2(G), then dg(v) > 3.

Proof: Let S = V(G) — {v} is a y_-set of BG2(G), Suppose degree of v in G is one,
Then v is adjacent to u, where u is the only central vertex of G and ec(u) = 1. Let
e =uv € E(G). In BG2(G), N(e) n S = N(v) n S = {u}, which is a contradiction.
Suppose dg(v) = 2.
Case: i Ng(v) = {u, x}, where ec(u) = ec(x) = 1.
In this case, No(v) = {u, x} and let e1 = ux € E(G). In BG2(G), N(e1) n' S
= {u, x} and N(v) n S = {u, x}, which is a contradiction.
Case: ii Ng(v) = {u, y}, where eg(u) = 1 and ec(y) = 2.
Let e> = uy. Again in BG2(G), N(e2) n' S ={u, y} and N(v) n' S = {u, y},
which is a contradiction. Hence dg(v) > 3.

Lemma: 2.4 If G has a pendant edge e, incident with a vertex v, then e must be in
any locating dominating set S of BG2(G), where S € E(G).

Proof: Let S € E(G) be a locating dominating set not containing e. Lete = uv €
E(G), then S is not a dominating set and also N(v) NS =¢ = N(u) n S, which is a
contradiction to S as a locating dominating set. So, e must be in S.

Theorem: 2.2 If G is a connected graph with r(G) = 1, d(G) = 2, Then S = V(G) —
{v} cannot be a y_-set of BG2(G) if do(v) < 2.

Proof: Proof follows from Lemma 2.1, Lemma 2.2 and Lemma 2.3.

Proposition: 2.1 Let G be a connected graph with r(G) = land d(G) = 2. Let S &

E(G). If G[S] has K2 as a component then S is not a locating dominating set of
BG2(G).
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Proof: Lete = uv € S form a Kz in G[S]. Then in BG2(G), Nu) nS=N(v) nS=
{e}, which is a contradiction to S is a locating dominating set. This proves the
result.

Proposition: 2.2 Let S € V(G) and let v € S such that e;1 = vx and e2 = vy €
E(G)and x,y ¢ S, then S cannot be a locating dominating set of BG2(G).

Proof: In BG2(G), N(e1) n'S = N(e2) » S = {v}, which is a contradiction to S as a
locating dominating set, This proves the result.

Remark: 2.1 If S € V(G) is a locating dominating set and if v € S such that d(v)
=m > 1, then at least (m — 1) neighbours of v is also in S.

Proposition: 2.3 Let G be a connected graph with r(G) =1, d(G) = 2. Let v be a
central vertex of G. Let S & V(G) be a locating dominating set of BG2(G)
containing a central vertex of G. Then [S|=p—1.

Proof: Proof follows from the previous remark.

Theorem: 2.3 Let G be a graph with radius one. If there exists a y_-Set S of
BG2(G) such that S & V(G), then y.(BG2(G))=p - 1.

Proof: We know that y(BG2(G)) < p — 1. So, it is enough to prove that
YL(BG2(G)) <« p — 1. Let V(G) ={va, V2, ..., Vp} and let v = v1 such that e(v) = 1.
Suppose yL(BG2(G)) < p — 1. Then there exists at least two vertices x, y € V(G)
such that x,y ¢ S. Let S =V(G) — {x, y}.

Case:iLetv#x,y,v e S. Leter =vx,e2=vy € E(G), Then N(e1) n S ={v} =
N(e2) N S in BG2(G) which is a contradiction to S is a yL-Set . Hence yL(BG2(G))
< p — 1. Similarly, if S = V(G) — {x, v, z}, X,y,z € V(G), then also, N(ex) n S =
N(ey) © S = N(ez;) n S = {v}, which is a contradiction where ex = vX, ey = vy, e; =
vz. Hence |S| must be p — 1.

Case: ii suppose S contains no central vertices. S has at least two vertices.
Suppose S| <p — 1, V — S has at least two vertices. Also, V — S contains atleast
one central vertex. Suppose V — S contains two central vertices vi, V2. Then the
line vertex e = vivz is not dominated by S in BG2(G). So, assume that V — S
contains exactly one central vertex v, Thus v ¢ S and G is a unicentral graph with
radius one. Let v, x ¢ S such that eg(v) = 1and ec(x) = 2. Then the edge vx = e; €
E(G) is not dominated by S in BG2(G), which is again a contradiction. Hence, |S|
<p—1=|S|=p—1and hence yL(BG2(G))=p — 1.

Remark: 2.2
(1) If G is a connected graph with radius one and has a unique central vertex v,
then V(G) — {v} is a locating dominating set of BG2(G).
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(2) If G is a connected graph with radius one and has more than one central vertex
then any locating dominating set S & V(G) of BG2(G) must contain a central
vertex of G.

(3) If G is a Graph with radius one and yL(BG2(G)) < p — 1, then every y_-set of
BG2(G) must contain line vertices.

(4) There may exists graphs with radius one such that v (BG2(G)) <p — 1.

Vi V3

\Z

Figure: 2.1

Let G be a graph in Figure 2.1. S & E(G) and S = {e17, €25, €35, €34, €67}
form a minimum locating dominating set of BG2(G). Hence, yL(BG2(G)) = p - 2.

Theorem: 2.4 Let G be a disconnected graph without isolated vertices with
components Gi, G2, Gz, ..., Gn (n > 2) then y(BG2(G)) < y.(BG2(Gy)) +
YL(BG2(G2)) +...+ y(BG2(Gn)) = Xiv1 v (BG4 (G))).

Proof: Let Si be y.-set of BG2(Gi), i =1, 2, ..., n. Then S = UL, S; is a locating
dominating set of BG2(G). Hence yL((BG2(G)) < S| < Xit1 V1. (BG2(G;))

Theorem: 2.5 If G is any one of K,, Kynand Kmp then y(BG2(G)) = y.(G).

Proof: Assume G is a connected graph with p vertices and S is the minimum
locating dominating set of G. Let A =S — N(u) = ¢, whereu ¢ S.

(i) Let G = Ky. Let V(G) ={v1, V2, V3, ..., Va }. Then by Theorem 2.3, S = {v1, vz,
V3, ..., Vn-1}is a yL-set of BG2(G). Also y.(G) = p — 1 by Theorem 1.2. Hence the
proof follows.

(i) If G is a star graph Ky nwith p =n +1 and by Theorem 2.3, S = { v, v2, v3, ...,
Vn }, then S is independent and S is a yL-set of BG2(G), |S| = p — 1 = yL(BG2(G)),
Also, yL(K1n) =p — 1 by Theorem 1.3. Therefore y.(G) =y (BG2(G)).

(ii) f G =Kmp . Let V(G) = ViU V2, Vi={uy, Uz, ..., um}, V2={v1, v2, v3, ...,
Vanpand uivi=eij;i=1,2,3,..,m;j=1,23,..,n Then S ={ e1, €13, ..., €1n,
€22, €31, ..., em-11, emn}iS the minimum locating dominating set of BG2(G)
containing m + n — 2 elements by Theorem 1.1. Also y.(G) = m + n — 2 by
Theorem 1.4. Therefore, we get y.(BG2(G)) = y.(G).
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Lemma: 2.5 Let G be any connected graph. Then y(BG2(G)) = 3 if and only if G
e A’, where A’ is the set of all graphs Ka, Ks— e, W3, K22, P4, Ps, Cq (n =3, 4, 5),
Cs—e,Cs—e, K3, Kizt+e K1+ Ki+2K; + Ky,

Proof: If G € A’ then yL(BG2(G)) = 3. Conversely, assume that G is connected
and S be the minimum locating dominating set of BG2(G), with |S| = 3. Let S =
{u, v, w}. The non - empty subsets of S are {u}, {v}, {w}, {u, v}, {u, w}, {v, w}
and {u, v, w}. Since, yL(BG2(G)) = 3, for any two vertices X, y € V(BG2(G)) - S,
N(X) NS #N(y) n S # ¢. Since N(x) n S and N(y) n S are any one of the seven
distinct sets, BG2(G) is a graph which contain at most ten vertices. Hence [V(G)| =
p < 5, since if [V(G)|> 6, number of vertices of BG2(G) is greater than ten.
Among the connected graphs with p < 5 the following are the graphs with
1L(BG2(G)) = 3. Ks, Kas—e, W3, Koo, Ps, Ps, Ch(n=3,4,5),Cs—e, Cs—¢,
K13, Kiz+e Ki+ K+ 2K+ Ky,

Lemma: 2.6 Let G be any disconnected graph. Then y(BG2(G) = 3 if and only if
G is any one of the following graphs K12 Kz and 2Ko.

Proof: If G = K12 U Kz or 2K> then y(BG2(G)) = 3. Conversely, Assume G is a
disconnected graph and S be the minimum locating dominating set of BG2(G)
with |S| = 3. Let S = {u, v, w}. The non-empty subsets of S are {u}, {v}, {w}, {u,
v} {u, w}, {v, w} and {u, v, w}. Since, y.(BG2(G)) = 3, for any two vertices X, y
e V(BG2(G)) — S, N(X) n'S #N(y) N S # ¢. Since N(x) n S and N(y) N S are
any one of the seven distinct sets, BG2(G) is a graph which contain at most ten
vertices. If p > 6, p + g > 10. Hence p < 6. Among the disconnected graphs with p
< 6, having no isolated vertices yL(BG2(G)) = 3 for K12 U Kz or 2Ko.

Theorem: 2.6 Let G be any graph. Then y.(BG2(G)) = 3 if and only if G is any
one of the following graphs Ks, Ks—e, W3, K22, Ps, Ps, Ch(n=3,4,5), Cs—e,
Cs—e, K13, Kizt+e Ki+Ki+ 2K+ Ky, Ki2uw Kz or 2Ko.
Proof: Proof follows from the Lemma 2.5 and Lemma 2.6.

Corollary: 2.6.1 Let G be any connected graph then y.(BG2(G)) = 3 and any y.-
set contains only point vertices if and only if G € A’, where A ' is the set of all
graphs Ks, Ks —e, W3, K13, K 3t+e, Ca.

Proof: Proof follows from Theorem 2.6.

Corollary: 2 Let G be any connected graph then y.(BG2(G)) = 3 and any y.-set
contains only line vertices or point vertices and line vertices if and only if G € A’,
where A’ is any one of the following graphs P4, Ps, C4 —e, Cs — ¢, Cn (n =3, 4, 5),
Kl,zu Kz, 2Ka.

Proof: Proof follows from Theorem 2.6.
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Theorem: 2.7 Let G be a connected graph with non-adjacent vertices vi, Vp €
V(G) such that dg(v1) = p — 2 and ds(vp) = 1. If BG2(G) has a y_-set S such that S
€ V(G), then y(BG2(G) )=p— 1.

Proof: do(v1) = p — 2. Let Na(v1) = {V2, V3, ..., vp—1}, Since G is connected vp is
adjacent to some vij, 1 <i<p— 1. Let Ng(vp) = {V2}, assuming ds(v2) <p — 1 and
G is a graph with radius two and diameter three. Let S be a y_-set of BG2(G) such
that S € V(G), We know that y.(BG2(G)) <p — 1. Hence |S| <p — 1. Since vp is a
pendant vertex in G, vp must be in S by Lemma 2.2.

Case: i v2 ¢ S. We claim that all other point vertices are in S. If vi ¢ S, for e;o =
viv2 € E(G) in BG2(G), N(e2 ) N S = ¢ which is a contradiction to S is a
dominating set of BG2(G). Hence vi must be in S. Thus vi, vp € Sand vz ¢ S,
Again if there exists any other vi € V(G) such that vi ¢ S let ei=v1 vi € E(G) and
e2 = vivz € E(G). Then in BG2(G), N(e2) N S=N(ei) N S = { v1 }, which is a
contradiction to S is a locating dominating set. Hence S = V(G) — {v2}, This
implies that |S| =p — 1. That is, y.(BG2(G)) =p — 1.

Case: ii v2 € S. Vertices voand vp € S. Letex=vi vz, e= V2 Vp € E(G). If v1 ¢S,
then in BG2(G), N(e2) N S =N(e) N S = {v2}, which is a contradiction to S is a
locating dominating set of BG2(G). Hence vi1 € S. So, vi, v2 and vp € S. But we
know that yL (BG2(G)) < p — 1. Hence there exists a vertex vi, 3 <i<p — 1 such
that vi ¢ S. If there exists any other vj ¢ S, 3 <j<p—1,1i#] then in BG2(G), N(ei
) NS = N(ej) N S = {vi }where e;i = v1vi, & = v1vj € E(G), which is again a
contradiction. Hence |S| =p — 1, y.(BG2(G)) =p — 1.

Remark: 2.3

If G is a connected graph with adjacent vertices vi and v such that dg(v1)
=p — 2 and dg(vp) = 1, then y.(BG2(G)) need not be p — 1, where S & V(G) U
E(G).

Vi
€12
V2 V5
€25
€23
€45
Vs €34 V4
Figure: 2.2

In Figure 2.2, Let G be a connected graph with adjacent vertices viand v
such that dg(v1) = 1, do(v2) = 3 then S = {v4, vs, e12} forms a minimum locating
dominating set of BG2(G). Hence yL(BG2(G)) =p — 2.
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Corollary to Theorem: 1.12 If G is a connected graph with atleast (p — 2)
pendant vertices then y (BG2(G))=p — 1.

Proof: G has cither p — 1 or p — 2 pendant vertices. Hence G is either a star or a
double star. By Theorems 1.3 and 1.5 in both the cases y.(BG2(G)) = p — 1.

Theorem: 2.8 If there exists an edge e € E(G) such that e is adjacent to all other
edges of G then yL(BG2(G))=p — 1.

Proof: By the given condition either G = Ky, double star K,, + Ky + K1 +K, or
G is of the following type:

L
W

Figure: 2.3

If G is a star or double star y.(BG2(G)) = p — 1 by Theorems 1.3 and 1.5.
So it is enough to prove the result for the graph in Figure 2.3 only. Let e = Xy be
the edge in G, which is adjacent to all other edges of G. Let S & V(G) U E(G) be
the locating dominating set of BG2(G).

Case: i S € V(G). Since S € V(G), all the pendant vertices of G are in S by
Lemma 2.2. Suppose z € V(G) such that z is adjacent to both x and y in G. lete; =
Xz, 2 = yz € E(G). Suppose z ¢S. Then x and y must be in S to dominate e; and
e2 in BG2(G). In this case, N(e1) N S=N(z) N S= {x} and N(e2) N S=N(z) N S
= {y} which is again a contradiction to S is a locating dominating set of BG2(G).
So z must be in S and to dominate e = xy in BG2(G), x or y must be in S. Hence S
=V(G) - {x} or S=V(G) - {y}, So [S| =

Case: ii S & E(G). S must contain all the line vertices which are pendant edges in
G. Consider e = xy € E(G). The line vertex e is not adjacent to any other line
vertices in BG2(G). Hence e must be in S by Theorem 2.1. Now, consider e1 = Xz,
e = yz € E(G). To dominate z in BG2(G), any one of e or e; must be in S. Thus,
we see that S is a set of edges which form a spanning tree of G and S contains p —
1 line vertices of BG2(G) by Theorem 1.6. This implies that |S| =

Case: iii S contains both point and line vertices. S must contain pendant vertices
of G or the pendant edges of G. Let N(x) contains m pendant vertices and N(y)
contains n pendant vertices and let k vertices are adjacent to both x and y.
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Thereforep=m+n+2+kthen|S|=m+n+k+1l=p—1----mmommmmmmmmmmmm- l.
In G, e is adjacent to all other edges. Hence in BG2(G), e is adjacent to x
and y only. Hence any one of X, y, € 1S IN S, —=--=-m-mmmmmmmom e .

Case: i Letx € S (ory € S). Now, consider z € V(G) which is adjacent to both x
and y in G. Suppose z and line vertices incident with z are not in S. Consider z
and e = xy. InBG2(G), N(z) N S=x=N(e) N S. so z or e must be in S. ------- Il

Case:iie €S, Ifee Sandx,y ¢ S, zis not dominated by S.

Sub case: i z be the only vertex adjacent to both x and y. So at least one of z, e1 =
xz,e2=Yyz,N(e1) N S=N(e2) N S=¢. xand y must be in S. ------------------- V.

Sub case: ii If there exists more than one vertex adjacent to both x and y. Let z1,
z2 € V(G) such that e1 = xz1, e1' = yz1, €2=Xz2, €' =Yyz2 € E(G). If z1, zz and
the incident edges are not in S then N(e1) N'S =N(e2) N S or N(e1) N S = N(e2")
N S. So, among zi, €j, &' any one must be in S.---------=-==-mmommmmm oo V.
From I, 11, I, IV and V, it is clear that |S| = p — 1, This proves the result.

Theorem: 2.9 If G has a pendant vertex v, which is adjacent to the central vertex
u and incident with an edge e = uv, then v or e must be in any locating dominating
set of BG2(G).

Proof: Proof follows from Lemma 2.2 and Lemma 2.4.
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