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Abstract 

 

Let G(V, E) be a simple, finite and undirected connected graph. A non-

empty set S  V of a graph G is a dominating set, if every vertex in V  S is 

adjacent to at least one vertex in S. A dominating set S  V is called a locating 

dominating set, if for any two vertices v, w  V  S, NG(v) ∩ S and NG(w) ∩ S 

are not empty and distinct. In this paper, we give some general bounds for 

γL(BG2(G)) and characterize graphs for which γL(BG2(G)) = 3. 

 

Keywords: Dominating set, Locating dominating set, Boolean graph BG2(G) 

 

1 Introduction 
  

Let G be a (p, q) simple, undirected graph with vertex set V(G) and edge 

set E(G). For v  V(G), the set of all vertices adjacent to v in G is called the 

neighbourhood NG(v) of v. The concept of domination in graphs was introduced 

by Ore[4]. A non empty set S  V(G) of a graph G is a dominating set, if every 

vertex in V(G)  S is adjacent to some vertex in S. A special case of dominating 

set S is called a locating dominating set. It was defined by D.F Rall and P.J Slater 

[5]. A dominating set S in a graph G is called a locating dominating set in G, if for 

any two vertices v, w  V(G)  S, NG(v) ∩ S and NG(w) ∩ S are not empty and  
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distinct. The location domination number of G is defined as the minimum number 

of vertices in a locating dominating set in G and denoted by γL(G).  

In 2004, Janakiraman and Bhanumathi defined Boolean Graphs. The 

Boolean graph BG2(G) has vertex set V(G)  E(G) and two vertices in BG2(G) 

are adjacent if and only if they correspond to two adjacent vertices of G or to a 

vertex and an edge incident to it in G or two non-adjacent edges of G. The 

vertices of BG2(G), which are in V(G) are called point vertices and those in E(G) 

are called line vertices of BG2(G). V(BG2(G)) = V(G)  E(G) and E(BG2(G)) = 

[E(T(G)) – E(L(G))]   E(𝐿(𝐺)̅̅ ̅̅ ̅̅ ), where T(G) is the total graph of G and L(G) is 

the line graph of G. 

 

Notation: In this paper 
2 ( ) ( )BG GN x  is denoted by N(x), degree of vertex v in 

BG2(G) is denoted by d(v) and degree of v in G is denoted by dG(v). 

 

Theorem: 1.1 [1] If G = Km,n then L(BG2(Km,n)) = m + n  2. 

Theorem: 1.2 [3] If G = Kn, n > 1 then L(Kn) = n  1. 

Theorem: 1.3 [3] If G = K1, n ‒ 1, n > 2 then L(K1, n ‒ 1) = n  1. 

Theorem: 1.4 [3] If G = Kr, n ‒ r, 1 < r ≤ n ‒ r then L(Kr, n ‒ r) = n  2. 

Theorem: 1.5 [1] If G = mK  + K1 + K1 + nK , n > 1 then L(BG2(G)) = m + n  1. 

Theorem: 1.6 [1] Let G ≠ C3 be any connected graph with atleast three vertices 

then L(BG2(G)) ≤ p ‒ 1. 

 

2 Locating domination of BG2 (G) 
 

First, we shall find the bounds for γL(BG2(G)). 

Theorem: 2.1 γL(G) ≤ γL(BG2(G)) ≤ γL(G) + q. 

 

Proof:  Let S be a γL-set of BG2(G). 

If S ⊆ V(G), S is also a locating dominating set of G. This implies that γL(G) 

≤ γL(BG2(G)). If S contains line vertices, let W ⊆ S be set of line vertices of 

BG2(G) in S. Let e  W and e = xy  E(G). Deleting e from S and adding one 

incident vertex of e, that is, x or y to S for all e  W, we will get a locating 

dominating set of G. Hence γL(G) ≤ γL(BG2(G)). On the other hand, let S be a γL-

set of G. S need not be a locating dominating set of BG2(G). But S  E(G) is a 

locating dominating set of BG2(G). Hence, γL(BG2(G)) ≤ γL(G) + q. 

 

Lemma: 2.1 Let G be a connected graph with r(G) = 1, d(G) = 2. Let v be a 

central vertex of G. If V(G) ‒ {v} is a γL-set of BG2(G), then p ≥ 3 and δ(G) ≥ 3. 

 

Proof: Let S = V(G) ‒ {v} is a γL-set of BG2(G). Suppose x  V(G) is a vertex of 

G. Then let e1 = vx  E(G), N(e1)  S = {x} and N(v)  S = S.  Since S is a 

locating dominating set, this implies that S ≠ {x}. Hence S contains more than one 

vertex and hence |V(G)| ≥ 3. If G has a vertex x of degree two and e1 = xv, e2 = xy,  
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e3 = vy   E(G) then let NG(x) = {v, y} and N(x) = {v, y, e1, e2} and N(e3) = {v, 

y}. Also, N(x)  S = N(e3)  S = {y}, which is a contradiction. Hence, G has no 

vertex of degree two. If G has a vertex y′ of degree one, then in G, y′ is adjacent to 

v only and in BG2(G), y′ is adjacent to v and the line vertex e′ = vy′. Therefore, S 

is a dominating set and S ⊆ V(G) implies that S must contain v. Hence, G cannot 

have a vertex of degree one or two. This implies that, δ(G) ≥ 3. 

 

Lemma: 2.2 If G has a pendant vertex v, incident with an edge e, then v must be 

in  any locating dominating set S of BG2(G) , where S ⊆ V(G). 

 

Proof: Let S ⊆ V(G) be a locating dominating set not containing v. Let e = uv  

E(G). Since S is a dominating set, if must contain u to dominate v.  Now, if S ⊆ 

V(G), then N(v)  S = N(e)  S = {u}, which is a contradiction to S as a locating 

dominating set. So, v must be in S. 

 

Lemma: 2.3 Let G be a connected graph with r(G) = 1, d(G) = 2. Let e(v) = 2 in 

G. If V(G) ‒ {v} is a γL-set of BG2(G), then dG(v) ≥ 3. 

 

Proof: Let S = V(G) ‒ {v} is a γL-set of BG2(G), Suppose degree of v in G is one, 

Then v is adjacent to u, where u is the only central vertex of G and eG(u) = 1. Let 

e = uv  E(G). In BG2(G), N(e)  S = N(v)  S = {u}, which is a contradiction.  

Suppose dG(v) = 2. 

Case: i NG(v) = {u, x}, where eG(u) = eG(x) = 1.  

In this case, NG(v) = {u, x} and let e1 = ux  E(G). In BG2(G), N(e1)  S 

= {u, x} and N(v)  S = {u, x}, which is a contradiction. 

Case: ii NG(v) = {u, y}, where eG(u) = 1 and eG(y) = 2.  

Let e2 = uy. Again in BG2(G), N(e2)  S = {u, y} and N(v)  S = {u, y}, 

which is a contradiction. Hence dG(v) ≥ 3. 

 

Lemma: 2.4 If G has a pendant edge e, incident with a vertex v, then e must be in  

any locating dominating set S of BG2(G), where S ⊆ E(G). 

 

Proof: Let S ⊆ E(G) be a locating dominating set not containing e. Let e = uv  

E(G), then  S is not a dominating set and also N(v)  S = ϕ = N(u)  S, which is a 

contradiction to S as a locating dominating set. So, e must be in S. 

 

Theorem: 2.2 If G is a connected graph with r(G) = 1, d(G) = 2, Then S = V(G) ‒ 

{v} cannot be a γL-set of BG2(G) if dG(v) ≤ 2. 

 

Proof: Proof follows from Lemma 2.1, Lemma 2.2 and Lemma 2.3. 

 

Proposition: 2.1 Let G be a connected graph with r(G) = 1and d(G) = 2. Let S ⊆ 

E(G). If G[S] has K2 as a component then S is not a locating dominating set of 

BG2(G). 
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Proof: Let e = uv  S form a K2 in G[S]. Then in BG2(G), N(u)  S = N(v)  S = 

{e}, which is a contradiction to S is a locating dominating set. This proves the 

result. 

 

Proposition: 2.2 Let S ⊆ V(G) and let v  S such that e1 = vx and e2 = vy  

E(G) and x, y  S, then S cannot be a locating dominating set of BG2(G). 

 

Proof: In BG2(G), N(e1)  S = N(e2)  S = {v}, which is a contradiction to S as a 

locating dominating set, This proves the result. 

 

Remark: 2.1 If S ⊆ V(G) is a locating dominating set and if v  S such that d(v) 

= m > 1, then at least (m ‒ 1) neighbours of v is also in S. 

 

Proposition: 2.3 Let G be a connected graph with r(G) = 1, d(G) = 2. Let v be a 

central vertex of G. Let S ⊆ V(G) be a locating dominating set of BG2(G) 

containing a central vertex of G. Then |S| = p ‒ 1. 

Proof: Proof follows from the previous remark. 

 

Theorem: 2.3 Let G be a graph with radius one. If there exists a γL-set S of 

BG2(G) such that S ⊆ V(G), then γL(BG2(G)) = p ‒ 1. 

 

Proof: We know that γL(BG2(G)) ≤ p ‒ 1. So, it is enough to prove that 

γL(BG2(G)) ≮ p ‒ 1. Let V(G) ={v1, v2, ..., vp} and let v = v1 such that e(v) = 1. 

Suppose γL(BG2(G)) < p ‒ 1. Then there exists at least two vertices x, y  V(G) 

such that x, y  S. Let S = V(G) ‒ {x, y}. 

Case: i Let v ≠ x, y, v  S. Let e1 = vx, e2 = vy  E(G), Then N(e1)  S = {v} = 

N(e2)  S in BG2(G) which is a contradiction to S is a γL-Set . Hence γL(BG2(G)) 

≮ p ‒ 1. Similarly, if S = V(G) ‒ {x, y, z},  x, y, z  V(G), then also, N(ex)  S = 

N(ey)  S = N(ez)  S = {v}, which is a contradiction where ex = vx, ey = vy, ez = 

vz. Hence S must be p ‒ 1. 

Case: ii suppose S contains no central vertices. S has at least two vertices. 

Suppose |S| < p ‒ 1, V ‒ S has at least two vertices. Also, V ‒ S contains atleast 

one central vertex. Suppose V ‒ S contains two central vertices v1, v2. Then the 

line vertex e = v1v2 is not dominated by S in BG2(G). So, assume that V ‒ S 

contains exactly one central vertex v, Thus v   S and G is a unicentral graph with 

radius one. Let v, x   S such that eG(v) = 1and eG(x) = 2. Then the edge vx = e1  

E(G) is not dominated by S in BG2(G), which is again a contradiction. Hence, |S| 

≮ p ‒ 1 ⇒ |S| = p ‒ 1 and hence γL(BG2(G)) = p ‒ 1. 

 

Remark: 2.2 

(1) If G is a connected graph with radius one and has a unique central vertex v, 

then V(G) ‒ {v} is a locating dominating set of BG2(G).  
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(2) If G is a connected graph with radius one and has more than one central vertex 

then any locating dominating set S ⊆ V(G) of BG2(G) must contain a central 

vertex of G. 

(3) If G is a Graph with radius one and γL(BG2(G)) < p ‒ 1, then every γL-set of 

BG2(G) must contain line vertices.  

(4) There may exists graphs with radius one such that γL(BG2(G)) < p ‒ 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure: 2.1 

 

Let G be a graph in Figure 2.1. S ⊆ E(G) and S = {e17, e25, e35, e34, e67} 

form a minimum locating dominating set of BG2(G). Hence, γL(BG2(G)) = p ‒ 2. 

Theorem: 2.4  Let G be a disconnected graph without isolated vertices with 

components G1, G2, G3, ..., Gn  (n ≥ 2) then L(BG2(G)) ≤ L(BG2(G1)) + 

L(BG2(G2)) +…+ L(BG2(Gn)) = ∑ 𝛾𝐿(𝐵𝐺2(𝐺𝑖))𝑛
𝑖=1 . 

Proof: Let Si be L-set of BG2(Gi), i = 1, 2, ..., n. Then S = ⋃ 𝑆𝑖
𝑛
𝑖=1   is a locating 

dominating set of BG2(G). Hence L((BG2(G)) ≤ |S| ≤ ∑ 𝛾𝐿(𝐵𝐺2(𝐺𝑖))𝑛
𝑖=1  

Theorem: 2.5 If G is any one of Kn, K1,n and Km,n then L(BG2(G)) = L(G).  

 

Proof: Assume G is a connected graph with p vertices and S is the minimum 

locating dominating set of G. Let A = S ‒ N(u) = ϕ, where u  S.  

(i) Let G = Kn. Let V(G) ={v1, v2, v3, ... , vn }. Then by Theorem 2.3, S = {v1, v2, 

v3, ... , vn-1}is a L-set of BG2(G). Also L(G) = p ‒ 1 by Theorem 1.2. Hence the 

proof follows.  

(ii) If G is a star graph K1,n with p = n +1 and by Theorem 2.3, S = { v1, v2, v3, ... , 

vn }, then S is independent and S is a L-set of BG2(G), |S| = p ‒ 1 = L(BG2(G)), 

Also, L(K1,n) = p ‒ 1 by Theorem 1.3. Therefore L(G) = L (BG2(G)). 

(iii) If G = Km,n . Let V(G) = V1  V2 ,  V1 = {u1, u2, …, um}, V2 = {v1, v2, v3, …, 

vn} and  ui vj = eij ; i = 1, 2, 3, ..., m; j = 1, 2, 3, ..., n. Then S ={ e12, e13, ..., e1n , 

e22, e31, ..., em-11, emn}is the minimum locating dominating set of BG2(G) 

containing m + n ‒ 2 elements by Theorem 1.1. Also L(G) = m + n ‒ 2 by 

Theorem 1.4. Therefore, we get L(BG2(G)) = L(G). 

 

v7 

v2 

v6 

v1 
v3 

v4 

v5 

e12 

e35 

e25 

e24 e27 

e34 e23 

e26 e67 

e17 
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Lemma: 2.5 Let G be any connected graph. Then L(BG2(G)) = 3 if and only if G 

 A, where A is the set of all graphs  K4, K4 ‒ e, W3, K2,2, P4, P5, Cn (n = 3, 4, 5), 

C4 ‒ e, C5 ‒ e,  K1,3,  K1,3 + e, K1 + K1 + 2K1 + K1. 

 

Proof: If G  A then L(BG2(G)) = 3. Conversely, assume that G is connected 

and S be the minimum locating dominating set of BG2(G), with |S| = 3. Let S = 

{u, v, w}. The non - empty subsets of S are {u}, {v}, {w}, {u, v}, {u, w}, {v, w} 

and {u, v, w}. Since, L(BG2(G)) = 3, for any two vertices x, y  V(BG2(G)) ‒ S, 

N(x)  S ≠ N(y)  S ≠ ϕ. Since N(x)  S and N(y)  S are any one of the seven 

distinct sets, BG2(G) is a graph which contain at most ten vertices. Hence |V(G)|= 

p  5, since if |V(G)| 6, number of vertices of BG2(G) is greater than ten. 

Among the connected graphs with p  5 the following are the graphs with 

L(BG2(G)) = 3. K4,  K4 ‒ e,  W3,  K2,2,  P4,  P5,  Cn (n = 3, 4, 5), C4 ‒ e, C5 ‒ e,  

K1,3,  K1,3 + e, K1 + K1 + 2K1 + K1. 

 

Lemma: 2.6 Let G be any disconnected graph. Then L(BG2(G) = 3 if and only if 

G is any one of the following graphs K1,2  K2 and 2K2. 

 

Proof: If G = K1,2  K2 or 2K2 then L(BG2(G)) = 3. Conversely, Assume G is a 

disconnected graph and S be the minimum locating dominating set of BG2(G) 

with |S| = 3. Let S = {u, v, w}. The non-empty subsets of S are {u}, {v}, {w}, {u, 

v}, {u, w}, {v, w} and {u, v, w}. Since, L(BG2(G)) = 3, for any two vertices x, y 

 V(BG2(G)) ‒ S, N(x)  S ≠ N(y)  S ≠ ϕ. Since N(x)  S and N(y)  S are 

any one of the seven distinct sets, BG2(G) is a graph which contain at most ten 

vertices. If p > 6, p + q > 10. Hence p  6. Among the disconnected graphs with p 

 6, having no isolated vertices L(BG2(G)) = 3 for K1,2  K2 or 2K2.  

 

Theorem: 2.6 Let G be any graph. Then γL(BG2(G)) = 3 if and only if G is any 

one of the following graphs K4,  K4 ‒ e,  W3,  K2,2,  P4,  P5,  Cn (n = 3, 4, 5), C4 ‒ e, 

C5 ‒ e,  K1,3,  K1,3 + e, K1 + K1 + 2K1 + K1, K1,2  K2 or 2K2. 

Proof: Proof follows from the Lemma 2.5 and Lemma 2.6. 

 

Corollary: 2.6.1 Let G be any connected graph then L(BG2(G)) = 3 and any L-

set contains only point vertices if and only if G  A, where A  is the set of all 

graphs K4, K4 ‒ e, W3, K1,3, K1,3+e, C3.  

Proof: Proof follows from Theorem 2.6. 

 

Corollary: 2 Let G be any connected graph then L(BG2(G)) = 3  and any L-set 

contains only line vertices or point vertices and line vertices if and only if G  A, 

where A is any one of the following graphs P4, P5, C4 ‒ e, C5 ‒ e, Cn (n = 3, 4, 5), 

K1,2  K2, 2K2. 

Proof: Proof follows from Theorem 2.6. 
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Theorem: 2.7 Let G be a connected graph with non-adjacent vertices v1, vp  

V(G) such that dG(v1) = p ‒ 2 and dG(vp) = 1. If BG2(G) has a γL-set S such that S 

⊆ V(G), then γL(BG2(G) ) = p ‒ 1.  

 

Proof: dG(v1) = p ‒ 2. Let NG(v1) = {v2, v3, … , vp ‒ 1}, Since G is connected vp is 

adjacent to some vi, 1 ≤ i ≤ p ‒ 1. Let NG(vp) = {v2}, assuming dG(v2) < p ‒ 1 and 

G is a graph with radius two and diameter three. Let S be a γL-set of BG2(G) such 

that S ⊆ V(G), We know that γL(BG2(G)) ≤ p ‒ 1. Hence |S| ≤ p ‒ 1. Since vp is a 

pendant vertex in G, vp must be in S by Lemma 2.2. 

Case: i  v2  S. We claim that all other point vertices are in S. If v1   S, for e12 = 

v1v2  E(G) in BG2(G), N(e2 ) ∩ S = ϕ which is a contradiction to S is a 

dominating set of BG2(G). Hence v1 must be in S. Thus v1, vp   S and v2   S, 

Again if there exists any other vi  V(G)  such that vi   S let ei = v1 vi  E(G) and  

e2 = v1v2  E(G). Then in BG2(G), N(e2 ) ∩ S = N(ei ) ∩ S = { v1 }, which is a 

contradiction to S is a locating dominating set. Hence S = V(G) ‒ {v2}, This 

implies that  |S| = p ‒ 1. That is, γL(BG2(G)) = p ‒ 1. 

Case: ii v2  S. Vertices v2 and vp  S. Let e2 = v1 v2, e = v2 vp  E(G). If v1 S, 

then in BG2(G), N(e2 ) ∩ S = N(e ) ∩ S = {v2}, which is a contradiction to S is a 

locating dominating set of BG2(G). Hence v1  S. So, v1, v2 and vp  S. But we 

know that γL (BG2(G)) ≤ p ‒ 1. Hence there exists a vertex vi, 3 ≤ i ≤ p ‒ 1 such 

that vi  S. If there exists any other vj   S, 3 ≤ j ≤ p ‒ 1, i ≠ j then in BG2(G), N(ei 

) ∩ S =  N(ej ) ∩ S = {vi }where ei = v1vi , ej = v1vj  E(G), which is again a 

contradiction. Hence |S| = p ‒ 1, γL(BG2(G)) = p ‒ 1. 

 

Remark: 2.3 
If G is a connected graph with adjacent vertices v1 and vp such that dG(v1) 

= p ‒ 2 and dG(vp) = 1, then γL(BG2(G)) need not be p ‒ 1, where S ⊆ V(G)  

E(G). 

 

 

 

 

 

 

 

 

 

 

Figure: 2.2 

 

  In Figure 2.2, Let G be a connected graph with adjacent vertices v1 and v2 

such that dG(v1) = 1, dG(v2) = 3 then S = {v4, v5, e12} forms a minimum locating 

dominating set of BG2(G). Hence L(BG2(G)) = p ‒ 2. 
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v3 

v2 

v1 

e45 

e12 

e34 

e23 

e25 
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Corollary to Theorem: 1.12 If G is a connected graph with atleast (p ‒ 2) 

pendant vertices then γL(BG2(G)) = p ‒ 1. 

 

Proof: G has either p ‒ 1 or p ‒ 2 pendant vertices. Hence G is either a star or a 

double star. By Theorems 1.3 and 1.5 in both the cases γL(BG2(G)) = p ‒ 1. 

 

Theorem: 2.8 If there exists an edge e  E(G) such that e is adjacent to all other 

edges of G then γL(BG2(G)) = p ‒ 1. 

 

Proof: By the given condition either G = K1,n , double star mK  + K1 + K1 + nK  or 

G is of the following type:  

 

 

 

 

 

 

 

 

Figure: 2.3 

 

If G is a star or double star γL(BG2(G)) = p  1 by Theorems 1.3 and 1.5. 

So it is enough to prove the result for the graph in Figure 2.3 only. Let e = xy be 

the edge in G, which is adjacent to all other edges of G. Let S ⊆ V(G)  E(G) be 

the locating dominating set of BG2(G). 

 

Case: i S ⊆ V(G). Since S ⊆ V(G), all the pendant vertices of G are in S by 

Lemma 2.2. Suppose z  V(G) such that z is adjacent to both x and y in G. let e1 = 

xz, e2 = yz  E(G). Suppose z S. Then x and y must be in S to dominate e1 and 

e2 in BG2(G). In this case, N(e1 ) ∩ S = N(z) ∩ S = {x} and N(e2 ) ∩ S = N(z ) ∩ S 

= {y} which is again a contradiction to S is a locating dominating set of BG2(G). 

So z must be in S and to dominate e = xy in BG2(G),  x or y must be in S. Hence S 

= V(G) – {x} or S = V(G) ‒ {y}, So |S| = p ‒ 1. 

 

Case: ii S ⊆ E(G). S must contain all the line vertices which are pendant edges in 

G. Consider e = xy  E(G). The line vertex e is not adjacent to any other line 

vertices in BG2(G). Hence e must be in S by Theorem 2.1. Now, consider e1 = xz, 

e2 = yz ∈ E(G). To dominate z in BG2(G), any one of e1 or e2 must be in S. Thus, 

we see that S is a set of edges which form a spanning tree of G and S contains p ‒ 

1 line vertices of BG2(G) by Theorem 1.6. This implies that |S| = p ‒ 1. 

 

Case: iii S contains both point and line vertices. S must contain pendant vertices 

of G or the pendant edges of G. Let N(x) contains m pendant vertices and N(y) 

contains n pendant vertices and let k vertices are adjacent to both x and y.  

x

 

y
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Therefore p = m + n + 2 + k then |S| = m + n + k +1 = p ‒ 1--------------------------I. 

In G, e is adjacent to all other edges.  Hence in BG2(G), e is adjacent to x 

and y only. Hence any one of x, y, e is in S. ------------------------------------------ II. 

 

Case: i Let x  S (or y  S). Now, consider z  V(G) which is adjacent to both x 

and y in G. Suppose z and line vertices incident with z are not in S. Consider z 

and e = xy. In BG2(G), N(z ) ∩ S = x = N(e ) ∩ S. so z or e must be in S. -------III. 

 

Case: ii e S, If e  S and x, y   S, z is not dominated by S. 

 

Sub case: i z be the only vertex adjacent to both x and y. So at least one of z, e1 = 

xz, e2 = yz, N(e1 ) ∩ S = N(e2 ) ∩ S = ϕ. x and y must be in S. -------------------IV.                                          

 

Sub case: ii If there exists more than one vertex adjacent to both x and y. Let z1, 

z2  V(G) such that e1 = xz1 , e1′ = yz1,   e2 = xz2 , e2′ = yz2  E(G). If z1, z2 and 

the incident edges are not in S then N(e1 ) ∩ S = N(e2 ) ∩ S or N(e1′) ∩ S = N(e2′) 

∩ S. So, among zi , ei, ei′ any one must be in S.--------------------------------------- V. 

 From I, II, III, IV and V, it is clear that |S| = p ‒ 1, This proves the result. 

 

Theorem: 2.9 If G has a pendant vertex v, which is adjacent to the central vertex 

u and incident with an edge e = uv, then v or e must be in any locating dominating 

set of BG2(G). 

 

Proof: Proof follows from Lemma 2.2 and Lemma 2.4. 
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