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Abstract

In this article, we use a kind of coupling inner products to get the
Plancherel measure.
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1 Introduction

Plancherel measure plays an important role in Harmonic analysis. This mea-
sure is defined on the set of irreducible unitary representations of a nilpotent
Lie group, that describes how the regular representation breaks up into irre-
ducible unitary representations; see [5].

In this article, we take advantage of Jordan triple systems and orbits the-
oretic methods to obtain the Plancherel measure. More precisely, for any
¢ € Of, we will define a kind of coupling inner product v : U x O — C,
where U = X +1.X.

This paper is organized as follows. In Section 2, we recall some preliminaries
of the Jordan characterization of the symmetric Siegel domains which play a
crucial and deep role in our study. Section 3, we consider the Plancherel
measure (see Theorem 3.6 below).
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2 Boundary components of Siegel domains

We start this section by recalling some notations and conventions which we will
follow. The Hermitian Jordan triple is on the operator-valued inner product
in the general irreducible domains. Certainly, it is also valid on the symmetric
Siegel domains. Now we state the definition of the positive Hermitian Jordan
triple system (see [6, 1]).

Definition 2.1. Let U and V' (V' # {0}) be two finite dimensional complex
vector spaces, and let Z = U x V and L be a sesqui-linear map, that is
Z X Z — L(Z). Then, for all z,y, z, w € Z and t € C, (L, Z) is called a
positive Hermitian Jordan triple system if

(i) {xyz} := L(z, y)(2) is symmetric bilinear in the outer variables z, z and
conjugate linear in the inner variable y;

(i) [L(z, y), L(z, w)] = L({zyz}, w) — L(z, {wzy}), where [, -] denotes the
commutator of operators;

(ili) {xzz} = ta implies t = [t| > 0 or z = 0.

In Definition 2.1(ii), [+, -] is so-called the Jordan triple identity. It implies
that the linear span of all operators L(zx, y) for all z, y € Z is a Lie subalgebra
of L(Z). Let (z|y) := tr(L(z, y)) be a trace form of the positive-definite inner
product on Z that is invariant under the automorphism group, meaning that
L(gx, gy) = gL(x, y)g~! for all g € Aut(Z), where

Aut(Z) :={g9 € GL(E) : g{zyz} = {(9x)(gy)(gz)} for all z, y, z € Z}.

In particular, L*(z, y) = L(y, x) is the corresponding adjoint of L(z, y), thus
it justifies the name of Hermitian Jordan triple system (see [6, 4]).

For any z, y, z € Z, in Definition 2.1(i), {zyz} € Z is so-called the Jordan
triple product. An element ¢ of Z is called a triple idempotent if {ccc} = c.
In this case there exists a Peirce decomposition

Z = Z1(c) P Zi2(c) P Zoo),

where Zg(c) :=={z€ Z: {ccz} = sz} for s =0, 1/2, 1 (see [10]).

Let U be as in Definition 2.1 and let €2 denote an open non-void regular
convex cone in the self-adjoint part X := {x € U : 2* =z} of U. Given a point
e € Q. Notice that X is a simple Eucidean Jordan algebra with the identity
e. Suppose 7 is a Jordan algebra under the product

zow = {zew} (2.1)

and U = Z(e) is a subalgebra with unit element e and V' = Z;/5(e). The
involution on U is given by u* = {eue}. The base point e € Q is a triple
idempotent of Z with Zy(e) = {0}, and D has the following Jordan theoretic
description (see [10]).
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Definition 2.2. Let ®: V x V — U be an (2-Hermitian mapping and
O (v, b) = 2{vbe}. (2.2)
The symmetric Siegel domains of second kind is defined by
D=D, ®):={(u,v) €U xV: 2Reu — ®(v, v) € Q},

where Reu := (u+u*)/2 is the real part of u € U with respect to an involution
u+— u* of U. The boundary of D = D(€2, ®) is

0D = {(u, v) € U x V: 2Reu — ®(v, v) € 00},
where 02 denotes the boundary of €2 in X.

Remark 2.3. (i) The Q-Hermitian mapping ® on V' satisfies ®(b, v)* =
O (v, b) for all b, v € V and @ (v, v) € Q\ {0} whenever v # 0 (see [8]).

(ii) For any =z, y € Z, we define the bilinear map by (z, y) — zoy = {zey}.
Then z, y are called orthogonal if x oy = 0 holds, where the symbol o is
as in (2.1). The triple idempotent ¢ # 0 is called minimal if it is not the
sum of two orthogonal nonzero idempotents.

The frame {eq, e, -+ ,e,} gives the Peirce decompositions
U=X+iX= > X5 and V= > V, (2.3)
1<i<j<r 1<j<r
where
Vi={veV: {eepv} =0,v/2 for any 1 <k <r}. (2.4)

Let a = dimXj;; and b = dimV/}, where a and b are independent of j and i < j,
respectively, and the choice of ey, - -+, e,. The number a and b are so-called
the Peirce multiplicities; see, for example, [6].

The holomorphic automorphism group G' = Aut(D) of D is a semi-simple
Lie group. The Lie algebra of group G is defined by g = aut(D), it consists of
all completely integrable holomorphic vector fields F’ (2)% on D, with Poisson
bracket

F) o GG S| = [F(2) - G) - O) ) o

Let I consist of all Jordan triple derivations M of Z vanishing at e and

[:= {eez}% :u—+——v €g
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Let g := {A e€g: [, Al = pA}, where p = —1, —1/2, 0, 1/2, 1. Similar
to the proof of [9, p.579], we have canonical gradation g = g' © g2 © ¢g° @
g2 @ g~! and hence [g¥, g*] C g"** for v, u = —1, —1/2, 0, 1/2, 1, where
gt := {0} if p > 1 and p < —1. With the help from Jordan triple derivation
of Z, we obtain an important lemma just from [9, Propositions 2.46 and 2.66],
the details are omitted.

Lemma 2.4. (i) Let a be a commutative subalgebra of g and m :={B € g :
[A, B] =0 for all A € a}. Then we have the following decomposition

0= ;8> 6" @) gy 0 e glem (25

1<j i 1<j
with
0
1 : ,
9ij = {Zfa : S € Xij},
12 J
02 ={ (5 +2(epN)5 BEV; ),
9.=¢L a X
9ij = (SL’, 6,)& S R
_ 0
i = {esey + (s 5 s Be ) and
1 : a0 .
g, = z{zfz}a e Xy
(ii) Supposer = dima and let oy, - -+, a. be the basis of a* dualtoey, --- | e,.
The splitting (2.5) is the root decomposition of g relative to a. Then gfsl
+1/2

is the root space for £3(c;+aj) (i < j); a; ' is the root space for £3a;

(1< j<r)and gl is the root space for 5(a; —a;) (i # j).

Choose an ordering of the roots such that

=Y glted g e g
J

1<j i<y

which is the nilpotent part of the Iwasawa decomposition g = n* ©a® . Then
the Weyl chamber is still given by ay = {3 7_ tje; : 0 <ty <--- <t,}. Let K
be the stabilizer at (0, €) € D in G. Then K is a maximal compact subgroup
of G, denotes it by K := exp(). The corresponding Iwasawa decomposition
of G is G = N*AK with A = exp(a) and N* := exp(n®), where the subset N
is called the distinguished boundary of D (see [6, 10]).
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Definition 2.5. The Silov boundary of D is given by
Y :={(u,v) €U xV: 2Reu = ®(v,v)},

which can be identified as the Siegel-type nilpotent group N = X x V. The
Campbell-Hausdorff formula of N is defined by, for any (¢, z), ({, 2/) € N,

¢, 2)(¢, 2") = (C+ " +Im®P(2, 2), 2+ 2).

Let N = X x V. The dimension of X and V are
. 1 .
ny = dimgX =r + iar(r —1) and ng:=dimV = 2rb, (2.6)

where a and b denote the Peirce multiplicities. > is a real analytic manifold
isomorphic to N via the mapping

N3(C 2)— (C+idP(z 2)/2, z) € X.
For any pair (¢, z) € N, the affine transformation
(¢, 2)(u, v) == (u+ (+1i1P(v, 2) +iP(z, 2)/2, v+ 2) (2.7)

leaves D invariant. It is clear that an element (¢, z) := exp(i¢ + z + L(2e, 2))
for ( € X and z € V is the action on D by the formula (2.7) under the
definition of ® as in (2.2) (see [6, Lemma 10.7(3)] for more details).

3 Plancherel measures

Let the Lie algebra s(0) leave both finite dimensional vector spaces X and V
invariant, where X, V' (V # {0}) are as in (2.3) and

5(0):=t® > {L(z,e): z€X;}and =Y R(L(e;, ¢))).

i<j 1<j<r
The following lemma is just [7, Lemma 11.1].

Lemma 3.1. Let g =n" ©aand ¢° = a® Y, _ gy Wesay thatp: g —
s =5(0)® X @V is Lie algebra isomorphism if the map p satisfies, fort € g°,
ueVandae X,

0

0 G,
t(z)a =t (u+ 2{euz})£ — u  and lag- = a.
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We recall the definition of normal j-algebra. Suppose

1
J(L(ej, €j)) = —e;, J(L(z, €;)) = —5% Ju = —iu, Jr =2L(z, €;)
and Je; = L(e;, €)

is a linear operator on s, where x € Vj;, u € V and 1 < j < r. The statement
J? = —1I is evident. We say that J is the complex structure on V if .J satisfies
J? = —1I. Suppose e* € X* is the trace form of the Euclidean Jordan algebra
X, namely, (z, ) = trx for x € X. By an element e* of X*, we extend e*
to s by zero extension such that the triple (s, J, e*) is a normal j-algebra (|7,
Proposition 11.2]).

Remark 3.2. As a remark of the normal j-algebra, we refer these works
3, 7] by the actions of exps(0) and exp g which the split solvable Lie group
S := exps can be identified with the subgroup S = NTA.

Suppose that X is a finite dimensional vector space. X can be provided
with an inner product (:|-), so that (X, (-|-)) is a Hilbert space. As usual,
we denote by X* the space dual to X, the space of all linear forms on X,

namely, X — X* is conjugated linear. Now we consider the coadjoint action
of S(0) = exp(s(0)) on the dual vector X* of X. We identity X* with X by
the inner product (+|-). For ¢t € S(0) and £ € X*, we denote by x - £ the non-
degenerate linear form £ o Ad(¢)™' € X*. Let € = (e, -+ -, &,) be an element
of {—1, 1}", and e, = gje; for 1 < j < r, where e; is an orthogonal system of
frame. The linear form e’ on vector space X induces an isomorphism X — X*
such that

,
el(x) = (ale) =) ejm;,
j=1
where z; € R and

xr = Z rie; + Z Xij for Xij c gllj

1<j<r 1<i<j<r
Motivated by [2], we have the following

Definition 3.3. The family {Of : ¢ € {—1, 1}"} is a S(0)-orbit S(0)-eX C X*
if it satisfies the properties:

(i) Each of the orbits OF is open in X*;
(i) The unit O" :=].c; 13 O is dense in X™;

(iii) The group S(0) acts on OF simply transitively.
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Remark 3.4. The statement is obvious if the element ez‘l ) = e*|x. Then

orbit (’)2‘1’_,_ 1 coincides with the dual cone of 2 C X,
O ={¢eX: (z¢) >0 for all z € Q\{0}}.
Our main interest in this paper is Q* = Q and OF € 9Q for ¢ ¢ (1, ..., 1).

Definition 3.5. For any ¢ € O?, in Definition 3.3(iii), there exist a unique
t € S(0) and € € {—1, 1}" for which ¢ = ¢ -e*. Then, for any x, y € X, we
define a kind of coupling inner product v: O* x U — C by

Y(t-el(x+iy)) =t - 62‘1,~-,1)(5f) + it - el (y),
where t - eX(x + iy) :== (t - €, x + 1y).

Throughout the whole paper, we define the determinant detz for x € X
by A(z). The application of the coupling inner product ~ formally affects a
Plancherel measure of the Siegel-type nilpotent Lie group V.

Theorem 3.6. For ¢ € Q), let J,: V — V be a real bilinear form defined by

(Jpoo) = 2Rey (e (%({vv'e} _ {m}e})» forallv, o €V, (3.1)

Then Jyw = —2i{etv} and det(J;) = 2 A(0)7
Proof. By (3.1), Definition 3.5, Im®(v, v') = & ({vv'e} — {v've}), Definition
2.1 and L(e, ¢) = L(¢, e) for £ € Q C X, we can see that

(Joolv') =2t - efy . 1 (%({vv’e} — {v’ve})) = 2(—i{elv}v")

and hence Jyv = —2i{elv}, which together with (2.6) implies that the real
determinant of J, is det(J;) = 2"2A(()?*. We therefore obtain the desired
result. O

As usual, we reuse the symbol p(¢) for the coupling inner product v and
likewise call it the Plancherel measure. Write

p(0) == det(Jy) = 22 A(0) 7. (3.2)

Let qo(v, v') = 27(¢(®(v, v'))). Then the form ¢, is not necessarily sesqui-
linear on V' associated with J for general ¢ € O*, the following are still valid,
for any v, v € V| q(v, V') = qo(v', v) and (v, v) > 0. In particular, the
coupling inner product v is a Hermitian inner product, that is, for ¢ € €,
y(l(z +1iy)) = (|z +iy), we have g (v, v') = 2(£|®(v, v)). In this case, ¢ is a
positive definite Hermitian form on the complex vector space V.
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For the matrix algebra, €2 is the cone of positive-definite Hermitian matri-

The linear automorphism group GL(Q2) := {g € GL(X) : ¢(2) = Q} is

transitive on €2. Thus p(¢) is an invariant measure.
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