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Abstract

In this paper, we establish a generalization of the so called Dragomir
inequality for strongly integrable functions with values in a normed
linear space, and then obtain the corresponding upper and lower bounds.
As a result, we get some more general inequalities. Some applications
will be also given.
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1 Introduction and preliminaries

The well known triangle inequality is one of the most significant inequalities
in mathematics. It has many interesting generalizations, refinements and re-
verses, which have been studied by many authors, see [2, 3, 5, 9] and references
therein. Here, we only point that, in their paper [8], the authors presented the
following the following generalized triangle inequalities with n elements in a
Banach space X. More precisely, for all nonzero elements x1, x2, . . . , xn in a
Banach space X, the following inequalities hold.∥∥∥∑n

j=1 xj

∥∥∥+
(
n−

∥∥∥∑n
j=1

xj

‖xj‖

∥∥∥) min
1≤j≤n

{‖xj‖}
≤
∑n

j=1 ‖xj‖
≤
∥∥∥∑n

j=1 xj

∥∥∥+
(
n−

∥∥∥∑n
j=1

xj

‖xj‖

∥∥∥) max
1≤j≤n

{‖xj‖}.
(1.1)
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The generalized triangle inequalities are useful to study the geometrical struc-
ture of normed spaces. C-Y. Hsu et al. [7] presented these inequalities for
strongly integrable functions with values in a Banach space. In fact, they got
the following equalities in their paper:∥∥∥∥∫

Ω

a(t)f(t)dµ

∥∥∥∥+

(
‖a‖1 −

∥∥∥∥∫
Ω

a(t)f(t)

‖f(t)‖
dµ

∥∥∥∥) ess inf(‖f(·)‖)

≤
∫

Ω

a(t)‖f(t)‖dµ

≤
∥∥∥∥∫

Ω

a(t)f(t)dµ

∥∥∥∥+

(
‖a‖1 −

∥∥∥∥∫
Ω

a(t)f(t)

‖f(t)‖
dµ

∥∥∥∥) ess sup(‖f(·)‖).

(1.2)

where f (respectively a) is assumed to be an, almost everywhere nonzero (re-
spectively positive), integrable X-valued (respectively real valued) function on
a measure space (Ω, µ) with positive measure µ. Obviously, inequalities (1.1)
is a special case of inequalities (1.2).

On the another hand, Pecaric-Rajic [6] obtained the following inequalities
which are sharper than inequalities (1.1) above.

min
i∈{1,··· ,n}

{
1
‖xi‖

(∥∥∥∑n
j=1 xj

∥∥∥+
∑n

j=1 |‖xj‖ − ‖xi‖|
)}

≤
∥∥∥∑n

j=1
xj

‖xj‖

∥∥∥
≤ max

i∈{1,··· ,n}

{
1
‖xi‖

(∥∥∥∑n
j=1 xj

∥∥∥−∑n
j=1 |‖xj‖ − ‖xi‖|

)}
.

(1.3)

But, then, Sever S. Dragomir [4] further proved the following inequalities
for an arbitrary number of finitely many elements of a normed linear space X,
which also generalized inequalities (1.3) above.

min
k∈{1,··· ,n}

{
|ak|

∥∥∥∑n
j=1 xj

∥∥∥+
∑n

j=1 |aj − ak|‖xj‖
}

≤
∥∥∥∑n

j=1 ajxj

∥∥∥
≤ max

k∈{1,··· ,n}

{
|ak|

∥∥∥∑n
j=1 xj

∥∥∥−∑n
j=1 |aj − ak|‖xj‖

}
.

(1.4)

Where aj ∈ K and xj ∈ X for j ∈ {1, · · · , n} with n ≥ 2.

Motivated by inequalities (1.2), in our paper [1], a generalisation of in-
equalities (1.3) is established for strongly integrable functions with values in a
Banach space. In this paper, we shall further consider the continuous versions
of the Dragomir inequalities (1.4) in a normed linear space. Some applications
will also be given.
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2 Dragomir inequalities for integrable func-

tions

Theorem 2.1. Let X be a normed linear space, (Ω, µ) be a measure space
with positive measure µ, and a(·) be an essentially bounded measurable function
a : (Ω, µ) → (−∞,∞). Let f ∈ L1(Ω, X), and b(·) be an essentially bounded
positive integrable function on Ω, then for any fixed t1, t2 ∈ Ω, the following
inequalities hold:

|a(t1)|
∥∥∥∥∫

Ω

b(t)f(t)dµ

∥∥∥∥+

∫
Ω

|a(t)− a(t1)|b(t)‖f(t)‖dµ

≤
∥∥∥∥∫

Ω

a(t)b(t)f(t)dµ

∥∥∥∥
≤ |a(t2)|

∥∥∥∥∫
Ω

b(t)f(t)dµ

∥∥∥∥− ∫
Ω

|a(t)− a(t2)|b(t)‖f(t)‖dµ.

(2.5)

Proof. Obviously, if a(·) is constant almost everywhere in Ω, then both in-
equalities (2.5) hold with equalities. Therefore, we may assume this is not the
case. For the first inequality in (2.5), let us fix t1 ∈ Ω, then we have∥∥∥∥∫

Ω

a(t)b(t)f(t)dµ

∥∥∥∥ =

∥∥∥∥∫
Ω

a(t1)b(t)f(t)dµ+

∫
Ω

(a(t)− a(t1))b(t)f(t)dµ

∥∥∥∥
≤
∥∥∥∥∫

Ω

a(t1)b(t)f(t)dµ

∥∥∥∥+

∥∥∥∥∫
Ω

(a(t)− a(t1))b(t)f(t)dµ

∥∥∥∥
≤ |a(t1)|

∥∥∥∥∫
Ω

b(t)f(t)dµ

∥∥∥∥+

∫
Ω

|a(t)− a(t1)|b(t)‖f(t)‖dµ.

From this we can get the first inequality in the first inequality in (2.5). In
order to obtain the second inequality in (2.5), we can proceed in a similar way,
for a fixed t2 ∈ Ω, we can obtain,∥∥∥∥∫

Ω

a(t)b(t)f(t)dµ

∥∥∥∥ =

∥∥∥∥∫
Ω

a(t2)b(t)f(t)dµ−
∫

Ω

(a(t2)− a(t))b(t)f(t)dµ

∥∥∥∥
≥
∥∥∥∥∫

Ω

a(t2)b(t)f(t)dµ

∥∥∥∥− ∥∥∥∥∫
Ω

(a(t2)− a(t))b(t)f(t)dµ

∥∥∥∥
≥ |a(t2)|

∥∥∥∥∫
Ω

b(t)f(t)dµ

∥∥∥∥− ∫
Ω

|a(t)− a(t2)|b(t)‖f(t)‖dµ.

Therefore, we obtain two inequalities (2.5). this completes the proof.

If we choose a(t1) = ‖f(t1)‖ (respectively a(t2) = ‖f(t2)‖) in Theorem 2.1,
then it is easy to get the following result.
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Corollary 2.1. Let X be a normed linear space, (Ω, µ) be a measure space
with positive measure µ, and b(·) be an essentially bounded positive integrable
function on Ω. Let f ∈ L1(Ω, X), then for any fixed t1, t2 ∈ Ω, the following
inequality holds:

‖f(t2)‖
∥∥∥∥∫

Ω

b(t)f(t)dµ

∥∥∥∥− ∫
Ω

|‖f(t)‖ − ‖f(t2)‖|b(t)‖f(t)‖dµ

≤
∥∥∥∥∫

Ω

‖f(t)‖b(t)f(t)dµ

∥∥∥∥
≤ ‖f(t1)‖

∥∥∥∥∫
Ω

b(t)f(t)dµ

∥∥∥∥+

∫
Ω

|‖f(t)‖ − ‖f(t1)‖|b(t)‖f(t)‖dµ.

(2.6)

From inequality (2.6), we can also get the following.

Corollary 2.2. Let X be a normed linear space and (Ω, µ) be a measure space
with positive measure µ, and let b(·) be an essentially bounded positive inte-
grable function on Ω, f ∈ L1(Ω, X), then the following inequalities hold:(∫

Ω

b(t)‖f(t)‖dµ−
∥∥∥∥∫

Ω

b(t)f(t)dµ

∥∥∥∥) ess inf(‖f(·)‖)

≤
∫

Ω

b(t)‖f(t)‖2dµ−
∥∥∥∥∫

Ω

‖f(t)‖b(t)f(t)dµ

∥∥∥∥
≤
(∫

Ω

b(t)‖f(t)‖dµ−
∥∥∥∥∫

Ω

b(t)f(t)dµ

∥∥∥∥) ess sup(‖f(·)‖).

(2.7)

Proof. In order to obtain the results, let us assume that ess inf(‖f(·)‖) =
‖f(t′1)‖ with t′1 ∈ Ω. Then, using the second inequality in (2.6) we have∥∥∥∥∫

Ω

‖f(t)‖b(t)f(t)dµ

∥∥∥∥
≤ ‖f(t′1)‖

∥∥∥∥∫
Ω

b(t)f(t)dµ

∥∥∥∥+

∫
Ω

|‖f(t)‖ − ‖f(t′1)‖|b(t)‖f(t)‖dµ,

= ‖f(t′1)‖
∥∥∥∥∫

Ω

b(t)f(t)dµ

∥∥∥∥+

∫
Ω

b(t)‖f(t)‖2dµ− ‖f(t′1)‖
∫

Ω

b(t)‖f(t)‖dµ.

which is clearly equivalent to the first inequality in (2.7). The second part of
(2.7) follows likewise and the details are omitted.

Example 2.2. Let b(t) ≡ 1 and let f ∈ L1([−1, 1],R2) be defined by f(t) =
(t,−1) for t ∈ [−1, 0] and f(t) = (t, 1 + t) for t ∈ (0, 1]. Then ‖f(t)‖1 = 1− t
for t ∈ [−1, 0] and ‖f(t)‖1 = 1 + 2t for t ∈ (0, 1], and so inf(‖f(t)‖1) = 1 and
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sup(‖f(t)‖1) = 3. Elementary calculation shows that∥∥∥∥∫ 1

−1

f(t)dt

∥∥∥∥
1

=
1

2
,

∫ 1

−1

‖f(t)‖1dt =
7

2
,∫ 1

−1

(‖f(t)‖1)2dt =
20

3
,

∥∥∥∥∫ 1

−1

f(t)‖f(t)‖1dt

∥∥∥∥
1

= 2.

Therefore, we have by the inequality (2.7) in Corollary 2.2:

(
7

2
− 1

2
)× 1(= 3) <

20

3
− 2(=

14

3
) < (

7

2
− 1

2
)× 3(= 9).

Example 2.3. Let b(t) ≡ 1 and let f ∈ L1([0, 1],R2) be defined by f(t) =
(t, 1 − t) for t ∈ [0, 1]. Then ‖f(t)‖1 = t + (1 − t) = 1 for t ∈ [0, 1], and so
inf(‖f(t)‖1) = sup(‖f(t)‖1) = 1. Elementary calculation shows that all the
equalities in (2.7) hold.

3 Application to infinite series

For discrete versions of the results in Section 2, by letting Ω = N, µ(n) := 1
and a(n) := an, b(n) := bn for n ∈ N. Then using the results established in
Theorem 2.1, Corollary 2.1, and Corollary 2.2, we can obtain the following
results about the generalized Dragomir inequality and its reverse for infinite
series.

Theorem 3.1. Let {an} be any sequence of numbers, {bn} be a sequence of
nonnegative numbers such that

∑∞
n=1 bn <∞. Then for any sequence {xn} in

a normed linear space X such that
∑∞

n=1 bn‖xn‖ <∞, we have

sup
i

{
|ai|
∥∥∥∑∞j=1 bjxj

∥∥∥−∑∞j=1 |aj − ai|bj‖xj‖
}

≤
∥∥∥∑∞j=1 bjxj

∥∥∥
≤ inf

i

{
|ai|
∥∥∥∑∞j=1 bjxj

∥∥∥+
∑∞

j=1 |aj − ai|bj‖xj‖
}
.

Corollary 3.1. Let {bn} be a sequence of nonnegative numbers such that∑∞
n=1 bn < ∞. Then for any sequence {xn} in a normed linear space X such

that
∑∞

n=1 bn‖xn‖ <∞, we have

sup
i

{
‖xi‖

∥∥∥∑∞j=1 bjxj

∥∥∥−∑∞j=1 |‖xj‖ − ‖xi‖|bj‖xj‖
}

≤
∥∥∥∑∞j=1 bjxj

∥∥∥
≤ inf

i

{
‖xi‖

∥∥∥∑∞j=1 bjxj

∥∥∥+
∑∞

j=1 |‖xj‖ − ‖xi‖|bj‖xj‖
}
.



832 Jianbing Cao

Corollary 3.2. Let {bn} be a sequence of nonnegative numbers such that∑∞
n=1 bn < ∞. Then for any sequence {xn} in a normed linear space X such

that
∑∞

n=1 bn‖xn‖ <∞, we have(∑∞
j=1 bj‖xj‖ −

∥∥∥∑∞j=1 bjxj

∥∥∥) inf
i
‖xi‖

≤
∑∞

j=1 bj‖xj‖2 −
∥∥∥∑∞j=1 ‖xj‖bjxj

∥∥∥
≤
(∑∞

j=1 bj‖xj‖ −
∥∥∥∑∞j=1 bjxj

∥∥∥) sup
i
‖xi‖.

4 Conclusions

In this paper, we have considered the continuous versions of the Dragomir
inequalities in a normed linear space. As a result, we have obtained upper and
lower bounds for the norm estimates. Some applications to series inequalities
also presented in our paper. It may be interesting to establish conditions that
guarantee equality attainedness for each of our inequalities in a strictly convex
Banach space. We would like to propose this issue as one project for further
research interest.
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