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Abstract

In this paper, we consider the Bruhat ordering in a Coxeter group, and we get some results
about it.
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1. INTRODUCTION

Let W = (W, S) be a Coxeter system. We can define < on W as following. y < w for
y, w € W if and only if y is a subexpression of any reduced expression of w. Clearly
< is a partial order on W which is called the Bruhat (or Bruhat-Chevally) ordering on
W (See [4]). In particular, let W be the dihedral group D,,, for any y, w € W, we can
get that y < w if and only if I(y) < [(w).

In [1], Shi have that if s ¢ R(X)J£L(Y). Then XY < XsY for X, Y € W and s € S.
Enlightened by Shi in [1], we generalize this result as follows.

Let X, Y € W, s € §. Then XY < XsY if and only if either s ¢ R(X)|J £(Y) or
s € R(X)N£(Y). We get this result in Section 3.

And in section 4, we also consider the question about the Bruhat ordering : Let X, Y, Z €
W, s, t €S, when dose XY Z < XsYtZ hold ?
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2. PREPARATION

Let W = (W, S) be a Coxeter system with S the set of its Coxeter generators, subject
only to relations of the form

(88’)m(s,sl) =1,
where m(s, s)=1, m(s,s') > 2 for s # s in S.

For w € W, let l(w) be smallest integer ¢ > 0 such that w = s159---w, with
81,52, , 8, in S. At the same time we say that s;sy---s, is a reduced expression of
w and [(w) is the length of w.

Let “<” be the Bruhat ordering on W and w = sys5 - -+ s, be reduced, s; € S. We say
that the form s; s, ---s;, (1 <4 <y < --- < iy < 7)is a subexpression of w, and we
write that s; s;, -+ s, < 518275,

Now let w € W, s € S and
Lw)={seS|sw<w} Rw) ={s e S |ws <w}.
Let z; € S, y; € S. Then x125-- -2, = y1y2--- W, if @ = b, x;=y;, for each i. Let
X =x1@9++ Za, Y = thy2--- yp and X = Y. Then there exist (A),(B), (C) Coxeter
transformations, such that X can be passed to Y.
(A) If there exist some s,t € S, with s #t and 1 <i < j < a such that
TiTig1 - Tj = Stst---, J—1+1=mg,.
Where my, is the order of st and i, j are integer.
Then we can define a transformation
T1To -+ Tg > T1Tg- - T (EStS--) Tjyq -+ Tq.
———
ms,¢ factors
(B) If there exist some ¢ € Z,1 < i < a such that s; = s;41. Then we define transformation
T1Tg -+ Tgtrr T1To:-- Li1Tj+2 " Lq-
(C) For any i € Z,s € S and 0 < i < a. Then we define transformation
QLo+ Lo > T1Tg -+ T;(SS)Tig1 -+ + Ty

Thus if X and Y are reduced. Then X can be only passed to Y by (a).
For X)Y, Z e W,s,t € S, Let

P(X,s,Y)=1(X)+1Y)+1—-1(XsY),

P(X,s, Y, t,2)=U(X)+ 1Y)+ 1U(Z)+2—-UXsYtZ).

3. SOME GENERALIZED CONCLUSIONS ABOUT XY < XsY

Lemma 3.1. (See[1]) Let X, Y e W,se€ S, X =mzo--- 20, Y = y19a - -y and they are
reduced. Let g = 2129+ TaSY1Y2 - Y, s € R(X)UJ £(Y) and P(X,s,Y) > 0. Then there
exists a sequence of expressions g = Go, g1, s Guy s Gu, Of XY for some h,uy,--- ,u,
such that for each 1,1 < i < u,, g; is obtained from g;_1 by cozeter transform of kind
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# (C) and they satisfy that

(ii) There exists some integer 1 < h < uy such that the expressions x(i,1) - x(i, k;) and
y(i,1) - - y(i,m;) are reduced for all i, 0 < i < h.

(iii) Either x(h,1)---x(h,ky) or y(h,1)---y(h,my) is not reduced expression, for h in
(i1).

() Let X(i) = x(i,1)---x(i,k;), Y (i) = y(i,1)---y(i,m;), for 0 < i <
XY = X(@)Y (i), XsY = X(i)s(@)Y (i), s(i) ¢ RX(0)U£(Y(4)), for 0 < i
POX (i), (i), Y (7)

=P(X,s,Y) with0 <i<h, P(X(3),s(i),Y(:) < P(X,s,Y) with h <i < u,.
(V)Gu,—1 is not reduced. Gy,,- -+ ,Gu, are reduced and they contain all reduced expressions

of XsY. Then P(X(i),s(i),Y(:)) =0, foruy <i < u,.

u,. Then
< u, and

Theorem 3.2. (See [1]) Let X, Y € W and s € S. If s ¢ R(X)UL(Y). Then XY <
XsY.

Theorem 3.3. Let X,)Y ¢ W, s € 5, s %(X)ﬂff(Y) and P(X,s,Y) > 2. Then
there exist g(h) = z(h.1)-- (h k:h)s(h)y( 1) - -y(h,mp) for some integer h, where
X(h)=xz(h1)---x(h, kp), ( y=y(h,1)---y(h, mh) which satisfy that

(1) XY = X(h)Y(n),

(i) XsY = X (h)s(h)Y (h),

(i) s(h) € R(X(h)) N £(Y (h)),

(i11i) P(X(h),s(h),Y(h)) < P(X,s,Y).

).
1, we have that Xs¥ = X'sY" = X' (h)s (h)Y'(h):(X'(h) (h))s (h)(s(h)Y’(h)):X(h)s(h)
Y(h), where X (h) = X'(h)s(h), Y (k) = s(h)Y"(h).

Then we have that XY = X’Y’ = X' (R)Y'(h) = (X'(R)s(h))(s(h)Y'(h)) = X(R)Y (h)
Since s(h) ¢ (X (h NULY '(h)), then s(h) € R(X(h)) N £(Y (h)). P(X(h),s(h),Y(h)) =
P(X'(h)s(h),s(h),s(R)Y'(h)) = P(X'(h),s(h),Y (h))+2 < P(X',s,Y')4+2 = P(Xs,s,sY)+

2=P(X,s,Y).

Lemma 3.4. Let XY ¢ W, se€ S. Then
(1)XY < XsY if and only if (XsY) > (XY).
(1)) X sY < XY if and only if (XY) > [(XsY).

Proof. Since XY = XsY (Y 1sY), XsY = XY (Y ~'sY). Then the result is clear. O

Proposition 3.5. Let X, Y € W, s € S. If (XsY) > I(XY) and s ¢ R(X). Then
sé¢ £(Y).

Proof. If s € £(Y). Let Y = sY, then s ¢ £(Y"). By Lemma 3.4 and Theorem3. 2, we
know XsY = XY > XsY' = XY. Since s ¢ R(X)J£(Y'). This is a contradiction. [

Proposition 3.6. Let X,Y € W, s € S. If(XsY) > I(XY) and s ¢ £(Y). Then
s ¢ R(X).
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Proof. The proof is similar to proof of Proposition 3.5. O

Corollary 3.7. Let X, Y e W, s € S. Ifl(XsY) > (XY'). Then eithers ¢ R(X)|J £(Y)
ors e RIX)NLY).

Proof. We can get the result easily by Proposition 3.5 and Proposition 3.6. U
Theorem 3.8. Let X, Y e W, se S. Ifse R(X)N£L(Y). Then XY < XsY.

Proof. Since s € R(X) () £(Y), then XsY = (Xs)s(sY) = X'sY'". Thus s ¢ R(X')J £(Y").
Hence XsY = X'sY' > X'V = (X's)(sY') = XV. O

Corollary 3.9. Let X,Y € W, s € S. Then XY < XsY if and only if either s ¢
RX)ULY) orse R(X)N£L(Y).

Proof. 1t is easy from Theorem 3.8, Theorem 3.2 and Corollary 3.7. U

Lemma 3.10. GivenY € W, let w = $183 -+ s, be reduced, s; € S. Then l(s189-+-8.Y)
=U(Y)—r if and only if s; € £(si41--+8.Y) for each 1 < i <.

Proof. 1f s; € £(sj11-+-,Y), for each 1 < i < r, then we obtain easily the result. Assume
that [(s1s9---,Y) = 1(Y) —r. We can apply induction on r. If r = 1, then it is trivial.
Now suppose that r > 1. By the inductive hypothesis, then s; € £(s;41---s,Y) for each
2<i<r and l(sg---5Y) =UY)—r+1,since l(sg---s,) <7r. If 59 ¢ £(sg---5.Y),
then I(s182-+-8.Y) = l(sg--+5Y)+ 1 =1(Y)—r+1+1=101Y)—r+2 This is a
contradiction. 0

Theorem 3.11. Let X,Y € W, J = R(z) and w € Wy, l(wY) = 1Y) — l(w). Where
(W, J) is a Cozeter system. Then XY < XwY.

Proof. Let w = s189--- s, be reduced, s; € S. We can apply induction on r. If r =1, it
is trivial. Now suppose that » > 1. By the inductive hypothesis, then XY < Xs5---5,.Y
by Lemma 3.10, since I(sy---s,) < r. We know that s; € £(sy---5,Y) and s; € R(X),
hence Xsg---5,Y < XwY. Then XY < XwY. ]

4. RESULTS ABOUT XY Z < XsYtZ

Theorem 4.1. Let XY, Z € W, s,t € S. Ift ¢ R(XsY)U £(Z), s ¢ R(X)U LY Z).
Then XY Z < XsYtZ.

Proof. If t ¢ R(XsY)J£(Z), then XsYZ < XsYtZ. If s ¢ R(X)UJ£L(YZ), then
XY Z < XsY Z from Corollary 3.9.

Thus XYZ < XsYtZ.

Similarly, if t € R(XsY) N £(Z), s ¢ R(X)JL(Y Z), then XY Z < XsYtZ.

Ift ¢ R(XsY)£(Z), s e RX)NLYZ) then XYZ < XsYtZ.

If ¢ € R(XsY) ) £(2), s € RIX) ) £(Y Z), then XY Z < XsYtZ. O

Theorem 4.2. Let X, Y, Z e W, s,t € S. If s¢ RIX)UL(YtZ), t ¢ R(XY) U L(Z).
Then XY Z < XsYtZ.
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Proof. We know that s ¢ R(X)|J£(YtZ). Then XYtZ < XsYtZ. lft ¢ R(XY)U £(Z2).
Then XY Z < XYtZ by Corollary 3.9. Thus XY 7 < XsYtZ.

Similarly, if s € R(X)£(YtZ), t ¢ R(XY)J £L(Z), then XY Z < XsYtZ.

If s ¢ R(X) U £(YEZ), t € RIXY) ) £(Z), then XY Z < XsYtZ.

If s € RX) N £(Y1Z), t € RIXY) ) £(2), then XY Z < XsY1Z. O

Let W = Dyg = (s,t) be the with my; = 10, X = tst, Y = sts, Z = ststs. Then
XYZ =t, XsYtZ = ststs. Thus XY Z < XsYtZ. Clearly they do not satisfy these
conditions above.

Theorem 4.3. Let X,Y,Z € W, s,;t € S. If s ¢ RIX)UJ£LY) and P(X,s,Y) =
P(X,s,Y,t,Z). Then XYZ < XsYtZ.

Proof. We can apply induction on P(X,s,Y,t, Z). Since [(XsYtZ) = [(X)+I(Y)+I(Z)+2
mod 2, [(XsY) = [(X)+I(Y)+1 mod 2, therefore P(X,s,Y)and P(X,s,Y,t, Z) are even.
Now if P(X,s,Y,t,Z) =0, then it is tr1v1al Now suppose that P(X,s,Y,t,Z) > 0, hence
P(X,s,Y) > 0. We know that there exist g(h) = a:(h 1)« -x(h, ky)s(h)y(h,1) - ~y(h, mp) =
X (h)s(h)Y (h) by Lemma 1, where X (h) = z(h.1) - - k), Y (h) =y(h,1)---y(h,my).

(h, )
They satisfies that s(h) ¢ R(X(h))U£(Y (h)), ( (h),s(h),Y(h)) < P(X,s,Y) and
XsY = X(h)s(h)Y(h). Let P(X(h),s(h),Y(h)) = P(X,s,Y) — 2m, then [(X(h)) +
I(Y(h)=UX)+1UY)—2mand P(X,s,Y,t,Z) =1 )+ (Y)+1i(Z )—I—Q—Z(XsYtZ)—
WX (h) + 1Y (h)) + U(Z) + 2 = I(X(h)s(h)Y (h)t Z) 2m = P(X(h),s(h),Y(h),t, Z) +
2m. Hence P(X(h),s(h),Y(h),t,Z) = P(X,s, 7Z) — = P(X,s,Y) —2m =

P(X(h),s(h), Y (h)). s(h)  R(X(h)) U £(Y (h)).
By induction hypothesis, we have XY Z = X(h)Y (h)Z < X(h)s(h)Y (h)tZ = XsYtZ,
since XY = X (h)Y (h).

Corollary 4.4. Let X,Y,Z € W, s,t € S. Ift ¢ RY)U £(Z) and P(Y,t,Z) =
P(X,s,Y,t,Z). Then XYZ < XsYtZ.

O

Proof. The proof is similar to proof of Theorem 4.3. OJ

Theorem 4.5. Let XY, Z e W, s,t € S,s e RIX)N£(Y). IfP(X,s,Y)=P(X,s,Y,t,Z).
Then XY Z < XsYtZ.

Proof. Since s € R(X)( £(Y), hence P(Xs,s,sY) = P(Xs,s,sY,t, Z)and s ¢ R(Xs)J £(sY).
We have (Xs)(sY)Z < (Xs)s(sY)tZ by Theorem 3.4. Thus XY Z < XsYtZ. O

Corollary 4.6. Let X, Y, Z e W, s,t € S,t e R(Y)N £(Z), If P(Y,t,Z) = P(X,s,Y,t, Z).
Then XY Z < XsYtZ.

Proof. The proof is similar to proof of Theorem 4.5.

Let X,Y,Z € W, s,t € S. Let X(r)s(r)Y(r)t(r)Z(r) be an expression obtained
from the expression XsYtZ by some Coxeter transformations of kind # (C'). Namely
XsYtZ — X(1)s()Y(1)t(1)Z(1) — -+ — X(r)s(r)Y (r)t(r)Z(r). Where we suppose
that these Coxeter transformations do not involve s and ¢, (if some Coxeter transforma-
tion involves s or ¢, then it must be Coxeter transformation of kind (A).)

Clearly, XYZ = X(1)Y(1)Z(1) =--- = X(n)Y(r)Z(r),
XsYtZ = X(1)s(H)Y()t(1)Z(1) =--- = X(r)s(r)Y (r)t(r)Z(r). O
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Theorem 4.7. Let X,Y,Z € W, s,t € S. If there exist X (r)s(r)Y (r)t(r)Z(r) obtained
as above. Let Y(r) = y1ya---yp be a reduce expression. If they satisfy either s(r) ¢
RX(r)ULYx) or s(r) € R(X(r)(£(Yr) and satisfy t(r) ¢ RY'r)UJL(Z(k)) or
t(r) € ROY'W) N L(Z(K)) and U(X (r)s(r)Y (r)t(r) Z(r)) = U(X (r)s(r)Ys) + 1(Yt(r) Z(r))
for some 0 < k < b, where Y, = y1 - - Y, Yk/ =Yks1 Yo (Whenk =0 orb, thenY, =e
or'Y, e is identity of W.) Then XY Z < XsYtZ.

Proof. We can apply Induction on P(X(r), s(r),Y( ),t(r), Z(r)). We know that
P(X(r),s(r), Y (r), t(r), Z(r)) =1 (X (r) +1(Yi) H1 (Vi) +H(Z (1) + 2-UX (r)s(r)Y (r)t(r) Z(r)),
P(X(r),s(r), Vi) = UX(r)) + 1Y) + 1 = UX(r)s(r)Ya), P(Y,t(r), Z(r)) = 1(Y;) +

1(t(r)) +1 = 1Y, t(r)Z(r)). ,
)+ P(Y,,t(r), Z(r)) if and

Then we have P(X(r),s(r),Y %
only if L(X(1)s(r)Y (r)t(r) Z(r)) = I(X (r)s(r)¥i) + LY} H(r) Z(r))
Now If P(X(r),s(r),Y (r),t(r Z(r
then XY Z = X (r)Y(r)Z(r) < X(r

In case of P(X( ), s(r), Y (r),t(r), Z(r)) > 0. We have that elther P(X(r),s(r), Yr)
> 0 or P(Y,,t(r),Z(r)) > 0 (or both). We assume that P(X(r),s(r),Ys) > 0 and
s(r) ¢ R(X(r)) U £(Ys), then there exist that X (r, h)s(r, h)Yx(h) obtained from the ex-
pression X (r)s(r)Y} by coxeter transformation of kind (A) (B) by Lemma 1 which satisfy
POC(r 1)o7, i) < POX(7) o). Vo)
Thus P(X(r, h), 5(r, h), Yi(B)Y7, #(r), Z()) = P(X(r, ) s(r, h), Yi(h)+ P(Y,, t(r), Z(r) <
PX(r),s(r),Y(r),t(r), 2(r)), s(r, h) ¢ R(X(r, h)) U £(Y(h)), (7“ h)s(r, h)Yi(h)Yit(r) Z(r) =
X(r)s(r)Y(r)t(r)Z/(r) = XsYtZ
and X (r, h)Yp(h)Y, Z(r) = X(r)Y (r)Z(r) = XY Z.
So By induction hypothesis, we have XY Z = X (r, h)Yi(h)Y, Z(r) < X (r, h)s(r, h)Yi(h)Y,t(r) Z(r) =
XsYtZz.
If s(r) € R(X(r)) N £(Yz), then s(r) & R(X(r)s(r)) U £(s(r)Ys),

P(X(r)s(r),s(r),s(r)Y (r),t(r), Z(r)) = P(X(r)s(r), s(r), s(r)Ya)+P(Yy, t(r), Z(r)), XsYtZ
= (X (r)s(r))s(r)(s(r)Y (r)t(r)Z(r)
and
XYZ = (X(r)s(r)(s(r)Y(r))Z(r).
Therefore
XYZ = (X(r)s(r)(s(r)Y (r)t(r)Z(r) < (X (r)s(r))s(r)(s(r)Y (r)t(r)Z(r) = XsYtZ.
Similarly for P(Y,,t(r), Z(r)) > 0. O

Let W = Hy = (s1, S2, 83, 54) be the with my, 5, = 5, Mgy 55 = 3, May.5, = 3y My .55 = 2,
Mgy sy = 2, Mgy s, = 2. Let X = 54525182, Y = 59515981, £ = 52545354, S = 51, t = 51.
Then XY Z < XsYtZ. Clearly, they do not satisfy the conditions of Theorem 4.1 and
Theorem 4.2. But we can get XY Z < XsYtZ by Theorem 4.7. We will provide the
Coxeter transformation’s process that X (r)s(r)Y (r)t(r)Z(r) was obtained from XsYtZ
by certain Coxeter transformations as following
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(5482)5152 (81) 59515251 (81) 59548384 > (8284)8182 (81) 5251592851 (81) 59545354
— T N —— N T N

X s Y t Z X(1) s(1) Y@ o) 2Z(Q)
—> 82(8184)82 (81> 595159251 <81> 59545354 —> 8281(8284) (81) S$9515251 (81) 59545354
— T T e
X(2) s2) Y@ w2 22 X(3) s3) Y3 3 Z03)
> S95152 (81) S452515251 (S1) $2545384 F> S25152 (51) (S254)515281 (51) 2545354
N ——\ N—— —— e " N —
X(4)  s(4) Y (4) t4)  Z(4) X(5)  s(5) Y (5) t(5)  Z(5)
—> 825182 ( ) (8154)8281 <81> $9545354 — S$951S9 (51) 8251(8254>81 (81) $2545354
%/—’\/Hf_/ — N — ——
XW) 5(6) Y (6) t6)  Z(6) X(7) s(7) Y (7) t(r)  Z(7)
— 828152 ( ) 52515951854 (81) 59545354
~— —
)

X(S) ( Y'(8) t8)  Z(8)

We can see s(8) & R(X(8)) U £(Ya(8)), t(8) ¢ R(Y,(8)) U £(Z(8)) and
(X (8)s(8)Y (8)t(8)2(8))
= (X (8)s(8)Yy) + I(Y; (8)¢(8)Z(8)). Thus XYZ < XsYtZ.
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