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Abstract
In this article we study the distribution of certain subsets of quadrat-

frei numbers.
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1 Introduction and Preliminary Results

A positive integer n is quadratfrei if it is either a product of different primes
or 1. For example, n = 2 and n = 5.7.23 are quadratfrei. Let ) be the set of
quadratfrei numbers, it is well-known this set has positive density %. That is,
if Q(x) is the number of quadratfrei numbers not exceeding = we have
x 6
lim Q) =

More precisely we have the following Theorem.

Theorem 1.1 The following formula holds
6
Q) = o+ [V,

where f(x) is a bounded function for x > 1.
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Proof. See, for example, [2, Chapter XVIII, Theorem 333].

We now establish some theorems and formulae that we need in the next sec-
tions.

The following theorem is sometimes called either the principle of inclusion-
exclusion or the principle of cross-classification. We now enunciate the princi-
ple.

Theorem 1.2 Let S be a set of N distinct elements, and let Sy,...,S,
be arbitrary subsets of S containing Ni,..., N, elements, respectively. For
1 <i<j<...<l<r, let Si.y be the intersection of S;,5;,...,5 and let
Nij..1 be the number of elements of Si;.;. Then the number K of elements of
S not in any of S1,...,5S, is

K =N — Z N; + Z Nij — Z Nije + ...+ (=1)" Nz

1<i<r 1<i<j<r 1<i<j<k<r

Proof. See, for example, either [2, page 233] or [3, page 84].

In this article (as usual) |.| denotes the integer-part function. Note that
0<z—|z] <Ll (1)

The function ¢(n) shall denote the number of positive integers less than or
equal to m that are relatively prime to m. This well-known function is called
the Euler ¢(n)— function. We have the following Theorem

Theorem 1.3 The following formula holds
1
¢(n)=n]](1--
p/n p
with p taking as values the distinct prime divisors of n.

Proof. See, for example, [2, Chapter XVI, Theorem 261].

In this article, the sum 3°, -, is interpreted as Z}fzjl.

Theorem 1.4 (The second Mobius inversion formula) Let f(x) and g(x)
be functions defined for x > 1. If

o= 7(;) =

then

fa@) =S umg(T) @z

n<x

where p(n) is the Mobius function.
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Proof. See, for example, either [1, Chapter VI, Theorem 19] or [2, Chapter
XVI, Theorem 268].

Theorem 1.5 The following formula holds

i pn) _

n

6

T2

Proof. See, for example, [2, Chapter XVII, Theorem 287 and page 245].

The following formula is well-known

1 — xn—l—l

2 Quadratfrei Multiple of a Set of Primes

Let q1,42,...,qs be s > 1 different primes fixed. Let A, . be the set of
positive integers such that in their prime factorization ¢q, ¢s, ..., qs have odd
exponents. Let A, . (z) be the number of these numbers not exceeding =.
We have the following lemma.

Lemma 2.1 The following asymptotic formula holds

1 S
Ag, e (z) = T+ Ggu,....q6 (z)log® x (3)

.....
~~~~~

.....

Proof. Suppose that the k; (1 < i < s) are fixed odd numbers and suppose
that ¢; - -gs and r; (1 <r; < q---qs — 1) are relatively prime. Note that the
number of 7; is (see Theorem 1.3) (¢ —1)---(gs — 1). Consider the inequality

qllﬂqfs(qlqsn—?"l)gl' (4)

Equation (4) gives

That is, either
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or
x T;
+ =0 6
qllf1+1... §s+1 g+ qs ( )
Now, consider the inequality
x T;
+——x<1

ql...q?hi...qs ql...qs

We search the positive integers h; that satisfy this inequality.
This inequality will be true for all r; if it is true for the greater r;, namely
q1---qs — 1. Therefore we consider the inequality

T 8_1
- p BT
Q-+ q; Qs q1- Qs
That is,
T - 1
C]quQhZQS ql"'qs
That is,
T - 1
" g
That is,
Gt >
That is
log, x +1
Z>#

Therefore we choose

log, x +1 1 3

llogz 3

“0) = Siogq T 2

where 0 < ¢;(z) < 1. Consequently we have (see (5) and (6))

T
AQly--wCIs Z Z \‘ ki+1 ks+1 + qi- (8)

ki+1€S; Ti s
1—1, .S

where

812{2,4,,2h1} (izl,...78)

If we eliminate |.] then equation (8) gives

q1,.--,q5 Z Z k,‘l—‘rl X k.s+1 - Fl(l‘) + FQ('Z‘)

k;+1eS; Ti
i=1,...,s

A
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1
= (-1 (- Y Sy — File) + B(z)
ki+1es; 41 “4sF
2:1 ..... s
1 1 1 1
= (q —1)--- qs_l x<+...+>...<+...+
( 1 ) ( ) q% q%hl qg ghs
— Fi(z) + Fy(z)
We have (see (1))
i
0< Fi(x) = +
© - 2 Xt
'L*l ..... s
> x|, "
k;+1€S; Ti P Q§ s+l q1- Qs
'L:l ..... s
< 1) (= 2N
That is
Fi(z) = file)(@—1)- (g —1)2%hs -+ hy
hl hs
= -1 s — 1)2° s
file)(g —1) - (gs = 1) ogr Togr 8"
where
0< filz) <1
Now, we have (see (7))
h; 1 n <3 ( )) 1
logx  2logg; 2 log x
Ifx> % then
1 1
log log%
1 3 3
Z : < Z
p < A=
and consequently
1 h; 1 N 3 1
2logq; logz  2logg; QIOg%
Equations (11), (12) and (13) give
Fi(x) = g1(x) log® x

)

189

(10)

(13)

(14)
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where g;(x) is bounded in the interval (3/2, c0).
We have (compare with (10))

T; s
k;+1€S; Ti qi- (s
i=1,...,s

Therefore, in the same way we obtain
Fy(x) = fo(x)(gn — 1) -+ (gs — 1)2°hy - - - hs = go(x) log® z (15)

where go(x) is bounded in the interval (3/2, 00).
Note that (see (2))

11 11 1 1
Sttt =S (1t gt ey

@ 4 Mg q; @
)"
1 v; 1 < 1 ) ,
2 1 2 2h; ) )
4q; 1 - 2 q — 1 4;
Substituting (16) into (9) we find that
A 2) 1 (1= ) - A+ ) )
Tyeeey s xr) = T - N — X €T
Q1514 (Q1 + 1) . (qs + 1) bl qizhz 1 2
Note that (see (7))
1 1, i
S Y R 18

2h;
qG "

Now, we have
—3 < 2€¢(x) —3< —1

Therefore
g0 < g < g
and finally
—q ' < =" < —g? (19)

0t > (20)

and

0< < 3 (21)
2
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Equations (17), (18), (19), (20) and (21) give

x + g3(x)log® x — Fy(z) + Fy(x) (22)

(@ +1)---(gs +1)

where gs(x) is bounded in the interval (3/2, 00).
Finally equations (22), (14) and (15) give (3). The lemma is proved.

.....

2
Agros (y2) = Z 7 <Z2> (24)

Equation (24) and Theorem 1.4 give

Qu )= D () )

d<y

Suppose y > y, where y, is large. Note that

<= <

DO W

2
if and only if

2

3 Y <d<y (26)

2
Y
A‘]l ----- qs <d2> = (27)

d<y
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d< % Y d< %
2 2
Yy s Yy 1 2 lu(d)
g ) ;o
d d (@+1)-le+ )7 5
Y Y
+ Y wd)gy..q <d2> log® <d2) (28)
d< % Y
Now, we have (see Theorem 1.5)
a2 d? a2 72 d?
d<y/Z y d=1 d>\/2 y d>+\/2 y
On the other hand, we have
1 oo 1 1
> T <L, w0
d>\/_ y d> % Y 3 ¥ 3 Y- 1
That is (@) .
i
D ) — (30)
d>\/% y sy—1
where —1 < fi(y) < 1.
Equations (29) and (30) give
u(d) 6 1
02 = o2 fi (9)27
d<\/§ y 3 U 1
Consequently
1 2 pul(d) 1 6 5
PR OESIE ? R TR R
1 1 E
TED BT [y_l Tt (g’
+ fy (31)

where f>(y) is bounded for y > yq.
We have (see Lemma 2.1)

>, wd)gq,..q (’f;) log® (Zz>< S |u(d)|

2 2
Goras | 2= | [1og® [ 2
q1;---39s d2 d2

2
< Ky ) logt (y) < K log® y? > 1< K log® e > 1< Kyylog® y?
d<\/Z y d<y/Z y d=y

d< %y
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That is

y2 S y2 _ s 2
> i(d)gay.a, | 5 Jlog™ | 25 ) = Fs(w)ylog™y (32)
d<\/% y
where — K7 < f3(y) < K for y > .
Equations (28), (31) and (32) give (y > o)

Qo)) = oy aet + R+ By log's?
1

6 S
- (g +1)-(gs+1) ﬁyz + fa(y)ylog® y*

where f4(y) is bounded for y > yq.
Replacing y? by z, we obtain (z > y3)

1 6

Qus,..0s () = @+ D (1) ﬁx + fa(vVx)Vwlog® x (33)

where f4(y/x) is bounded for = > 2.
If 3/2 < x < y? we can write the equality

1 6 s
ch ..... gs (l‘) = (QI i 1) “. (qs n 1) ﬁl’ + f5($)\/510g (34)
That is
1 1 6
f5($) = m <Qq1 ,,,,, qs(x) - (Q1 0 (g + 1>7T2x>

Consequently f5(z) is bounded in the interval 3/2 < = < 2.
If we put

ha,q (@) = (V7)) (2> 0)
and
hasae(@) = f5(2)  (3/2 <@ <yp)
then (33) and (34) give (23). The theorem is proved.

..... 4. (z) be the number of quadratfrei numbers not divisible by ¢ - - - ¢s
not exceeding x. We have the following Corollary.

Corollary 2.3 The following asymptotic formula holds

.....
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Proof. If z > 3/2 we have (see Theorem 1.2, Theorem 1.1 and Theorem 2.2)

Ng.go(@) = Qz) — Z Qq () + Z QQiy(Ij(:E)_ Z Q%a‘ljv‘]k(x)

1<i<s 1<i<j<s 1<i<j<k<s
6 6 1
+ -+ (=1 r)=—r — — x
( ) QQI ~~~~~ ‘Zs( ) 7T2 1§<5 7T2 qz + 1
6 1
_|_ P
1<§j<s 72 (q; +1)(q; + 1)
-y 6 1
1<i<j<k<s 7 (¢ +1)(g; + 1)(qr + 1)
6 1
+ -+ (-1 T+ [y (@)Vrlog’ x

The corollary is proved.
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