International Mathematical Forum, Vol. 12, 2017, no. 4, 185 - 194 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612176

On the Distribution of Certain Subsets of Quadratfrei Numbers

Rafael Jakimczuk

División Matemática Universidad Nacional de Luján Buenos Aires, Argentina

Copyright © 2017 Rafael Jakimczuk. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this article we study the distribution of certain subsets of quadratfrei numbers.

Mathematics Subject Classification: 11A99, 11B99

Keywords: Subsets of quadratfrei numbers, distribution

1 Introduction and Preliminary Results

A positive integer n is quadratfrei if it is either a product of different primes or 1. For example, n=2 and n=5.7.23 are quadratfrei. Let Q be the set of quadratfrei numbers, it is well-known this set has positive density $\frac{6}{\pi^2}$. That is, if Q(x) is the number of quadratfrei numbers not exceeding x we have

$$\lim_{x \to \infty} \frac{Q(x)}{x} = \frac{6}{\pi^2}.$$

More precisely we have the following Theorem.

Theorem 1.1 The following formula holds

$$Q(x) = \frac{6}{\pi^2}x + f(x)\sqrt{x},$$

where f(x) is a bounded function for $x \ge 1$.

Proof. See, for example, [2, Chapter XVIII, Theorem 333].

We now establish some theorems and formulae that we need in the next sections.

The following theorem is sometimes called either the principle of inclusion-exclusion or the principle of cross-classification. We now enunciate the principle.

Theorem 1.2 Let S be a set of N distinct elements, and let S_1, \ldots, S_r be arbitrary subsets of S containing N_1, \ldots, N_r elements, respectively. For $1 \leq i < j < \ldots < l \leq r$, let $S_{ij\ldots l}$ be the intersection of S_i, S_j, \ldots, S_l and let $N_{ij\ldots l}$ be the number of elements of $S_{ij\ldots l}$. Then the number K of elements of S not in any of S_1, \ldots, S_r is

$$K = N - \sum_{1 \le i \le r} N_i + \sum_{1 \le i < j \le r} N_{ij} - \sum_{1 \le i < j < k \le r} N_{ijk} + \ldots + (-1)^r N_{12\dots r}.$$

Proof. See, for example, either [2, page 233] or [3, page 84].

In this article (as usual) |.| denotes the integer-part function. Note that

$$0 \le x - \lfloor x \rfloor < 1. \tag{1}$$

The function $\phi(n)$ shall denote the number of positive integers less than or equal to m that are relatively prime to m. This well-known function is called the Euler $\phi(n)$ – function. We have the following Theorem

Theorem 1.3 The following formula holds

$$\phi(n) = n \prod_{p/n} \left(1 - \frac{1}{p} \right)$$

with p taking as values the distinct prime divisors of n.

Proof. See, for example, [2, Chapter XVI, Theorem 261].

In this article, the sum $\sum_{n\leq x}$ is interpreted as $\sum_{n=1}^{\lfloor x\rfloor}$.

Theorem 1.4 (The second Mobius inversion formula) Let f(x) and g(x) be functions defined for $x \ge 1$. If

$$g(x) = \sum_{n \le x} f\left(\frac{x}{n}\right) \qquad (x \ge 1)$$

then

$$f(x) = \sum_{n \le x} \mu(n) g\left(\frac{x}{n}\right)$$
 $(x \ge 1)$

where $\mu(n)$ is the Mobius function.

Proof. See, for example, either [1, Chapter VI, Theorem 19] or [2, Chapter XVI, Theorem 268].

Theorem 1.5 The following formula holds

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = \frac{6}{\pi^2}$$

Proof. See, for example, [2, Chapter XVII, Theorem 287 and page 245].

The following formula is well-known

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \qquad (x \neq 1)$$
 (2)

2 Quadratfrei Multiple of a Set of Primes

Let q_1, q_2, \ldots, q_s be $s \geq 1$ different primes fixed. Let A_{q_1, \ldots, q_s} be the set of positive integers such that in their prime factorization q_1, q_2, \ldots, q_s have odd exponents. Let $A_{q_1, \ldots, q_s}(x)$ be the number of these numbers not exceeding x. We have the following lemma.

Lemma 2.1 The following asymptotic formula holds

$$A_{q_1,\dots,q_s}(x) = \frac{1}{(q_1+1)(q_2+1)\cdots(q_s+1)}x + g_{q_1,\dots,q_s}(x)\log^s x \tag{3}$$

where the function $g_{q_1,...,q_s}(x)$ is bounded on the interval $\left(\frac{3}{2},\infty\right)$. That is $|g_{q_1,...,q_s}(x)| < K_1$ on the interval $\left(\frac{3}{2},\infty\right)$ and K_1 is a positive number. If $1 \le x \le \frac{3}{2}$ then $A_{q_1,...,q_s}(x) = 0$.

Proof. Suppose that the k_i $(1 \le i \le s)$ are fixed odd numbers and suppose that $q_1 \cdots q_s$ and r_i $(1 \le r_i \le q_1 \cdots q_s - 1)$ are relatively prime. Note that the number of r_i is (see Theorem 1.3) $(q_1 - 1) \cdots (q_s - 1)$. Consider the inequality

$$q_1^{k_1} \cdots q_s^{k_s} \left(q_1 \cdots q_s n - r_i \right) \le x \tag{4}$$

Equation (4) gives

$$n \le \frac{x}{q_1^{k_1+1} \cdots q_s^{k_s+1}} + \frac{r_i}{q_1 \cdots q_s}$$

That is, either

$$n = 1, 2, \dots, \left| \frac{x}{q_1^{k_1 + 1} \cdots q_s^{k_s + 1}} + \frac{r_i}{q_1 \cdots q_s} \right|$$
 (5)

or

$$\left[\frac{x}{q_1^{k_1+1} \cdots q_s^{k_s+1}} + \frac{r_i}{q_1 \cdots q_s} \right] = 0 \tag{6}$$

Now, consider the inequality

$$\frac{x}{q_1 \cdots q_i^{2h_i} \cdots q_s} + \frac{r_i}{q_1 \cdots q_s} < 1$$

We search the positive integers h_i that satisfy this inequality.

This inequality will be true for all r_i if it is true for the greater r_i , namely $q_1 \cdots q_s - 1$. Therefore we consider the inequality

$$\frac{x}{q_1 \cdots q_i^{2h_i} \cdots q_s} + \frac{q_1 \cdots q_s - 1}{q_1 \cdots q_s} < 1$$

That is,

$$\frac{x}{q_1 \cdots q_i^{2h_i} \cdots q_s} < \frac{1}{q_1 \cdots q_s}$$

That is,

$$\frac{x}{q_i^{2h_i}} < \frac{1}{q_i}$$

That is,

$$q_i^{2h_i-1} > x$$

That is

$$h_i > \frac{\log_{q_i} x + 1}{2}$$

Therefore we choose

$$h_i = \left| \frac{\log_{q_i} x + 1}{2} \right| + 1 = \frac{1}{2} \log_{q_i} x + \frac{3}{2} - \epsilon_i(x) = \frac{1}{2} \frac{\log x}{\log q_i} + \frac{3}{2} - \epsilon_i(x)$$
 (7)

where $0 \le \epsilon_i(x) < 1$. Consequently we have (see (5) and (6))

$$A_{q_1,\dots,q_s}(x) = \sum_{\substack{k_i+1 \in S_i \\ i=1,\dots,s}} \sum_{r_i} \left[\frac{x}{q_1^{k_1+1} \cdots q_s^{k_s+1}} + \frac{r_i}{q_1 \cdots q_s} \right]$$
(8)

where

$$S_i = \{2, 4, \dots, 2h_i\}$$
 $(i = 1, \dots, s)$

If we eliminate [.] then equation (8) gives

$$A_{q_1,\dots,q_s}(x) = \sum_{\substack{k_i+1 \in S_i \\ i=1,\dots,s}} \sum_{r_i} \frac{x}{q_1^{k_1+1} \cdots q_s^{k_s+1}} - F_1(x) + F_2(x)$$

$$= (q_{1} - 1) \cdots (q_{s} - 1)x \sum_{\substack{k_{i} + 1 \in S_{i} \\ i = 1, \dots, s}} \frac{1}{q_{1}^{k_{1} + 1} \cdots q_{s}^{k_{s} + 1}} - F_{1}(x) + F_{2}(x)$$

$$= (q_{1} - 1) \cdots (q_{s} - 1)x \left(\frac{1}{q_{1}^{2}} + \cdots + \frac{1}{q_{1}^{2h_{1}}}\right) \cdots \left(\frac{1}{q_{s}^{2}} + \cdots + \frac{1}{q_{s}^{2h_{s}}}\right)$$

$$- F_{1}(x) + F_{2}(x)$$

$$(9)$$

We have (see (1))

$$0 \leq F_{1}(x) = \sum_{\substack{k_{i}+1 \in S_{i} \\ i=1,\dots,s}} \sum_{r_{i}} \left(\frac{x}{q_{1}^{k_{1}+1} \cdots q_{s}^{k_{s}+1}} + \frac{r_{i}}{q_{1} \cdots q_{s}} \right)$$

$$- \sum_{\substack{k_{i}+1 \in S_{i} \\ i=1,\dots,s}} \sum_{r_{i}} \left[\frac{x}{q_{1}^{k_{1}+1} \cdots q_{s}^{k_{s}+1}} + \frac{r_{i}}{q_{1} \cdots q_{s}} \right]$$

$$\leq (q_{1}-1) \cdots (q_{s}-1) 2^{s} h_{1} \cdots h_{s}$$

$$(10)$$

That is

$$F_1(x) = f_1(x)(q_1 - 1) \cdots (q_s - 1)2^s h_1 \cdots h_s$$

= $f_1(x)(q_1 - 1) \cdots (q_s - 1)2^s \frac{h_1}{\log x} \cdots \frac{h_s}{\log x} \log^s x$ (11)

where

$$0 \le f_1(x) \le 1. \tag{12}$$

Now, we have (see (7))

$$\frac{h_i}{\log x} = \frac{1}{2\log q_i} + \left(\frac{3}{2} - \epsilon_i(x)\right) \frac{1}{\log x}$$

If $x > \frac{3}{2}$ then

$$0 < \frac{1}{\log x} < \frac{1}{\log \frac{3}{2}}$$
$$\frac{1}{2} < \frac{3}{2} - \epsilon_i(x) \le \frac{3}{2}$$

and consequently

$$\frac{1}{2\log q_i} < \frac{h_i}{\log x} < \frac{1}{2\log q_i} + \frac{3}{2\log\frac{3}{2}} \tag{13}$$

Equations (11), (12) and (13) give

$$F_1(x) = g_1(x) \log^s x \tag{14}$$

190 Rafael Jakimczuk

where $g_1(x)$ is bounded in the interval $(3/2, \infty)$.

We have (compare with (10))

$$0 \le F_2(x) = \sum_{\substack{k_i + 1 \in S_i \\ i = 1, \dots, s}} \sum_{r_i} \frac{r_i}{q_1 \cdots q_s} \le (q_1 - 1) \cdots (q_s - 1) 2^s h_1 \cdots h_s$$

Therefore, in the same way we obtain

$$F_2(x) = f_2(x)(q_1 - 1) \cdots (q_s - 1)2^s h_1 \cdots h_s = g_2(x) \log^s x \tag{15}$$

where $g_2(x)$ is bounded in the interval $(3/2, \infty)$.

Note that (see (2))

$$\frac{1}{q_i^2} + \frac{1}{q_i^4} + \dots + \frac{1}{q_i^{2h_i}} = \frac{1}{q_i^2} \left(1 + \frac{1}{q_i^2} + \dots + \frac{1}{q_i^{2(h_i - 1)}} \right)$$

$$= \frac{1}{q_i^2} \left(\frac{1 - \left(\frac{1}{p_i^2}\right)^{h_i}}{1 - \frac{1}{q_i^2}} \right) = \frac{1}{q_i^2 - 1} \left(1 - \frac{1}{q_i^{2h_i}} \right) \qquad (i = 1, \dots, s) \qquad (16)$$

Substituting (16) into (9) we find that

$$A_{q_1,\dots,q_s}(x) = \frac{1}{(q_1+1)\cdots(q_s+1)} x \prod_{i=1}^s \left(1 - \frac{1}{q_i^{2h_i}}\right) - F_1(x) + F_2(x)$$
 (17)

Note that (see (7))

$$-\frac{1}{q_i^{2h_i}} = \frac{1}{x} \left(-q_i^{2\epsilon_i(x)-3} \right) \tag{18}$$

Now, we have

$$-3 \le 2\epsilon_i(x) - 3 < -1$$

Therefore

$$q_i^{-3} \le q_i^{2\epsilon_i(x)-3} < q_i^{-1}$$

and finally

$$-q_i^{-1} < -q_i^{2\epsilon_i(x)-3} \le -q_i^{-3} \tag{19}$$

On the other hand if $x > \frac{3}{2}$ we have

$$0 < \frac{1}{x^r} < \frac{2^r}{3^r} \qquad (r \ge 1) \tag{20}$$

and

$$0 < \frac{1}{\log^s x} < \frac{1}{\log^s \frac{3}{2}} \tag{21}$$

Equations (17), (18), (19), (20) and (21) give

$$A_{q_1,\dots,q_s}(x) = \frac{1}{(q_1+1)\cdots(q_s+1)}x + g_3(x)\log^s x - F_1(x) + F_2(x)$$
 (22)

where $g_3(x)$ is bounded in the interval $(3/2, \infty)$.

Finally equations (22), (14) and (15) give (3). The lemma is proved.

Let $Q_{q_1,\ldots,q_s}(x)$ be the number of quadratfrei numbers multiple of the primes q_1,\ldots,q_s not exceeding x. We have the following theorem.

Theorem 2.2 The following asymptotic formula holds

$$Q_{q_1,\dots,q_s}(x) = \frac{1}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} x + h_{q_1,\dots,q_s}(x) \sqrt{x} \log^s x$$
 (23)

where the function $h_{q_1,...,q_s}(x)$ is bounded on the interval $\left(\frac{3}{2},\infty\right)$.

Proof. We have (see the definitions of $A_{q_1,...,q_s}(x)$ and $Q_{q_1,...,q_s}(x)$)

$$A_{q_1,\dots,q_s}(y^2) = \sum_{d \le y} Q_{q_1,\dots,q_s} \left(\frac{y^2}{d^2}\right)$$
 (24)

Equation (24) and Theorem 1.4 give

$$Q_{q_1,\dots,q_s}(y^2) = \sum_{d \le y} \mu(d) A_{q_1,\dots,q_s} \left(\frac{y^2}{d^2}\right)$$
 (25)

Suppose $y \geq y_o$ where y_0 is large. Note that

$$1 \le \frac{y^2}{d^2} \le \frac{3}{2}$$

if and only if

$$\sqrt{\frac{2}{3}} \ y \le d \le y \tag{26}$$

Consequently, in this case, we have (see Lemma 2.1)

$$A_{q_1,\dots,q_s}\left(\frac{y^2}{d^2}\right) = 0\tag{27}$$

Therefore we have (see (25), (26), (27) and Lemma 2.1)

$$Q_{q_1,\dots,q_s}(y^2) = \sum_{d \le y} \mu(d) A_{q_1,\dots,q_s} \left(\frac{y^2}{d^2}\right) = \sum_{d < \sqrt{\frac{2}{3}}} \mu(d) A_{q_1,\dots,q_s} \left(\frac{y^2}{d^2}\right) + \sum_{\sqrt{\frac{2}{3}}} y \le d \le y$$

192 Rafael Jakimczuk

$$= \sum_{d < \sqrt{\frac{2}{3}} y} \mu(d) A_{q_1, \dots, q_s} \left(\frac{y^2}{d^2} \right) = \sum_{d < \sqrt{\frac{2}{3}} y} \mu(d) \left(\frac{1}{(q_1 + 1) \cdots (q_s + 1)} \frac{y^2}{d^2} \right)$$

$$+ g_{q_1, \dots, q_s} \left(\frac{y^2}{d^2} \right) \log^s \left(\frac{y^2}{d^2} \right) = \frac{1}{(q_1 + 1) \cdots (q_s + 1)} y^2 \sum_{d < \sqrt{\frac{2}{3}} y} \frac{\mu(d)}{d^2}$$

$$+ \sum_{d < \sqrt{\frac{2}{3}} y} \mu(d) g_{q_1, \dots, q_s} \left(\frac{y^2}{d^2} \right) \log^s \left(\frac{y^2}{d^2} \right)$$

$$(28)$$

Now, we have (see Theorem 1.5)

$$\sum_{d < \sqrt{\frac{2}{3}} \ y} \frac{\mu(d)}{d^2} = \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} - \sum_{d \ge \sqrt{\frac{2}{3}} \ y} \frac{\mu(d)}{d^2} = \frac{6}{\pi^2} - \sum_{d \ge \sqrt{\frac{2}{3}} \ y} \frac{\mu(d)}{d^2}$$
(29)

On the other hand, we have

$$\left| \sum_{d \ge \sqrt{\frac{2}{3}} \ y} \frac{\mu(d)}{d^2} \right| \le \sum_{d \ge \sqrt{\frac{2}{3}} \ y} \frac{1}{d^2} \le \int_{\sqrt{\frac{2}{3}} \ y-1}^{\infty} \frac{1}{x^2} \ dx = \frac{1}{\sqrt{\frac{2}{3}} \ y-1}$$

That is

$$\sum_{d \ge \sqrt{\frac{2}{3}} \ y} \frac{\mu(d)}{d^2} = f_1(y) \frac{1}{\sqrt{\frac{2}{3}} \ y - 1}$$
 (30)

where $-1 \le f_1(y) \le 1$.

Equations (29) and (30) give

$$\sum_{d < \sqrt{\frac{2}{3}} y} \frac{\mu(d)}{d^2} = \frac{6}{\pi^2} - f_1(y) \frac{1}{\sqrt{\frac{2}{3}} y - 1}$$

Consequently

$$\frac{1}{(q_1+1)\cdots(q_s+1)}y^2 \sum_{d<\sqrt{\frac{2}{3}}} \frac{\mu(d)}{d^2} = \frac{1}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} y^2$$

$$- \frac{1}{(q_1+1)\cdots(q_s+1)} f_1(y) \frac{y}{\sqrt{\frac{2}{3}} y-1} y = \frac{1}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} y^2$$

$$+ f_2(y)y \tag{31}$$

where $f_2(y)$ is bounded for $y \geq y_0$.

We have (see Lemma 2.1)

$$\left| \sum_{d < \sqrt{\frac{2}{3}}} \mu(d) g_{q_1, \dots, q_s} \left(\frac{y^2}{d^2} \right) \log^s \left(\frac{y^2}{d^2} \right) \right| \leq \sum_{d < \sqrt{\frac{2}{3}}} |\mu(d)| \left| g_{q_1, \dots, q_s} \left(\frac{y^2}{d^2} \right) \right| \log^s \left(\frac{y^2}{d^2} \right)$$

$$\leq K_1 \sum_{d < \sqrt{\frac{2}{3}}} \log^s \left(\frac{y^2}{d^2} \right) \leq K_1 \log^s y^2 \sum_{d < \sqrt{\frac{2}{3}}} 1 \leq K_1 \log^s y^2 \sum_{d \leq y} 1 \leq K_1 y \log^s y^2$$

That is

$$\sum_{d < \sqrt{\frac{2}{3}}} \mu(d) g_{q_1, \dots, q_s} \left(\frac{y^2}{d^2} \right) \log^s \left(\frac{y^2}{d^2} \right) = f_3(y) y \log^s y^2$$
 (32)

where $-K_1 \leq f_3(y) \leq K_1$ for $y \geq y_0$.

Equations (28), (31) and (32) give $(y \ge y_0)$

$$Q_{q_1,\dots,q_s}(y^2) = \frac{1}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} y^2 + f_2(y)y + f_3(y)y \log^s y^2$$
$$= \frac{1}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} y^2 + f_4(y)y \log^s y^2$$

where $f_4(y)$ is bounded for $y \geq y_0$.

Replacing y^2 by x, we obtain $(x > y_0^2)$

$$Q_{q_1,\dots,q_s}(x) = \frac{1}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} x + f_4(\sqrt{x})\sqrt{x}\log^s x$$
 (33)

where $f_4(\sqrt{x})$ is bounded for $x \ge y_0^2$. If $3/2 < x < y_0^2$ we can write the equality

$$Q_{q_1,\dots,q_s}(x) = \frac{1}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} x + f_5(x)\sqrt{x}\log^s x$$
 (34)

That is

$$f_5(x) = \frac{1}{\sqrt{x} \log^s x} \left(Q_{q_1, \dots, q_s}(x) - \frac{1}{(q_1 + 1) \cdots (q_s + 1)} \frac{6}{\pi^2} x \right)$$

Consequently $f_5(x)$ is bounded in the interval $3/2 < x < y_0^2$.

If we put

$$h_{q_1,...,q_s}(x) = f_4(\sqrt{x}) \qquad (x \ge y_0^2)$$

and

$$h_{q_1, \dots, q_s}(x) = f_5(x)$$
 $(3/2 < x < y_0^2)$

then (33) and (34) give (23). The theorem is proved.

Let $N_{q_1,\dots,q_s}(x)$ be the number of quadratfrei numbers not divisible by $q_1\cdots q_s$ not exceeding x. We have the following Corollary.

Corollary 2.3 The following asymptotic formula holds

$$N_{q_1,\dots,q_s}(x) = \frac{q_1 \cdots q_s}{(q_1+1)\cdots(q_s+1)} \frac{6}{\pi^2} x + f_{q_1,\dots,q_s}(x) \sqrt{x} \log^s x$$

where the function $f_{q_1,\ldots,q_s}(x)$ is bounded on the interval $(\frac{3}{2},\infty)$.

194 Rafael Jakimczuk

Proof. If x > 3/2 we have (see Theorem 1.2, Theorem 1.1 and Theorem 2.2)

$$N_{q_{1},\dots,q_{s}}(x) = Q(x) - \sum_{1 \leq i \leq s} Q_{q_{i}}(x) + \sum_{1 \leq i < j \leq s} Q_{q_{i},q_{j}}(x) - \sum_{1 \leq i < j < k \leq s} Q_{q_{i},q_{j},q_{k}}(x)$$

$$+ \dots + (-1)^{s} Q_{q_{1},\dots,q_{s}}(x) = \frac{6}{\pi^{2}} x - \sum_{1 \leq i \leq s} \frac{6}{\pi^{2}} \frac{1}{q_{i} + 1} x$$

$$+ \sum_{1 \leq i < j \leq s} \frac{6}{\pi^{2}} \frac{1}{(q_{i} + 1)(q_{j} + 1)} x$$

$$- \sum_{1 \leq i < j < k \leq s} \frac{6}{\pi^{2}} \frac{1}{(q_{i} + 1)(q_{j} + 1)(q_{k} + 1)} x$$

$$+ \dots + (-1)^{s} \frac{6}{\pi^{2}} \frac{1}{(q_{1} + 1) \dots (q_{s} + 1)} x + f_{q_{1},\dots,q_{s}}(x) \sqrt{x} \log^{s} x$$

$$= \frac{6}{\pi^{2}} x \left(1 - \frac{1}{q_{1} + 1}\right) \dots \left(1 - \frac{1}{q_{s} + 1}\right) + f_{q_{1},\dots,q_{s}}(x) \sqrt{x} \log^{s} x$$

$$= \frac{q_{1} \dots q_{s}}{(q_{1} + 1) \dots (q_{s} + 1)} \frac{6}{\pi^{2}} x + f_{q_{1},\dots,q_{s}}(x) \sqrt{x} \log^{s} x$$

The corollary is proved.

Acknowledgements. The author is very grateful to Universidad Nacional de Luján.

References

- [1] K. Chandrasekharan, Introduction to Analytic Number Theory, Springer-Verlag, 1968. https://doi.org/10.1007/978-3-642-46124-8
- [2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
- [3] W. J. LeVeque, Topics in Number Theory, Addison-Wesley, 1958.

Received: January 3, 2017; Published: January 24, 2017