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Abstract

In this paper, we introduce a new family of continuous distributions
called Marshall-Olkin Kumaraswamy (MOKS) distribution.We study
some mathematical properties and derive distribution of order statis-
tics, record value properties, two types of entropies, Lorenz,Bonferroni
and Zenga curves.We construct an autoregressive model with minifica-
tion structure.The model parameters are estimated by the maximum
likelihood method. An application to a real data set is discussed.
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1 Introduction

One of the preferred area of research in the field of the probability distributions
is that of generating new distributions starting with a base line distribution by
adding one or more additional parameters. While the additional parameters
bring in more flexibility at the same time they also complicate the mathemat-
ical form of the resulting distribution. But with the advent of sophisticated
powerful mathematical and statistical softwares unlike in past nowadays more
and more complicate distributions are getting accepted as viable models for
data analysis.

The Kumaraswamy’s distribution was introduced by Kumaraswamy (1980)
as a new probability distribution for double bounded random process with hy-
drological applications. This distribution is applicable to many natural phe-
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nomena whose outcomes have lower and upper bounds such as height of indi-
viduals, scores obtained on a test, atmospheric temperature, hydrological data
such as daily rainfall, daily stream flow etc. Many papers in hydrology used
Kumaraswamy’s distribution as a better alternative to the beta distribution.
Kumaraswamy (1980) and Ponnambalam et.al ; (2001) have pointed out that
depending on the choice of the parameter a and b, Kumaraswamy’s distribu-
tion can be used to approximate many distribution such as uniform ,triangular
or almost any single model distribution and can also reproduce results of beta
distribution. The Kumaraswamy’s distribution doesn’t seem to be very fa-
miliar to the Statisticians. Kumaraswamy introduced a distribution with two
shape parameters a > 0 and b > 0 (real). The cumulative distribution function
F (x) and the probability density function f(x) are given by,

F (x) = 1− (1− xa)b; 0 < x < 1 (1)

and

f(x) = f(x; a, b) = abxa−1(1− xa)b−1; 0 < x < 1 (2)

The most convenient feature of this distribution is that its CDF has a sim-
ple form and it is easy to convert. Kumaraswamy’s densities are unimodal,
uniantimodal, increasing, decreasing or constant which is same as the beta
distribution.
a > 1, b > 1⇒ unimodal; a < 1, b < 1⇒ uniantimodal
a > 1, b ≤ 1⇒ increasing; a ≤ 1, b > 1⇒ decreasing
a = b = 1⇒ constant.
Kumaraswamy’s distribution has its genesis in terms of uniform order statis-
tics, and has particularly straightforward distribution and quantile function
which do not depend on special functions. In probability and Statistics, the
Kumaraswamy’s double bounded distribution is a family of continuous prob-
ability distribution defined on the interval [0, 1] differing in the values of their
two non negative shape parameters a and b. In reliability and life testing
experiments many times the data are modeled by finite range distributions.

The Kumaraswamy’s distribution is similar to the Beta distribution but
much simpler to use especially in simulation studies due to the simple closed
form of both its probability density function and cumulative distribution func-
tion. This distribution was originally proposed by Kumaraswamy for variables
that are lower and upper bounded. Boundary behaviour and the main special
cases are also common to both Beta and Kumaraswamy’s distribution . This
distribution could be appropriate in situations where scientists use probability
distribution which have infinite lower or upper bounds to fit data, when in
reality the bounds are finite.

The Kumaraswamy’s distribution is closely related to Beta distribution.
Assume that X(a,b) is a Kumaraswamy distributed random variable with pa-
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rameters a and b. Then X(a,b) is the ath root of a suitably defined Beta dis-
tributed random variable. Let Y(1,b) denote the Beta distributed random vari-

able with α = 1 and β = b. Then X(a,b) = Y
( 1
a

)

(1,b) with equality in distribution.

P [Xa,b ≤ x] =

∫ x

0

abt(a−1)(1− ta)(b−1)dt

=

∫ x

0

b(1− t)(b−1)dt

= P{Y1,b ≤ xa} = P{Y (1/a)
1,b ≤ x}.

The Beta and Kumaraswamy’s distribution have special cases. Beta(1, 1) and
Kumaraswamy(1, 1) are both uniform(0, 1).

If X ∼ B(1, b) then X ∼ KS(1, b)

X ∼ B(a, 1) then X ∼ KS(a, 1)

X ∼ KS(a, b) then X ∼ GB1(a, 1, 1, b)

KS(a, 1) distribution is the power function distribution and KS(1, a) distri-
bution is the distribution of one minus that power function random variable.

One of the simplest and widely used time series models is the autoregressive
models and it is well known that autoregressive process of appropriate orders
is extensively used for modeling time serie and h(x; a, bk + 1) denotes the Ku-
maraswamy’s density with parameters a and b(k+1). Thus the MOKS density
function can be expressed as an infinite linear combination of Kumaraswamy’s
densities. Similarly , we can write the cdf of MOKS as,

G(x) =

∫ x

0

g(x)dx

=
∑
k

qkH(x; a, b(k + 1))

where H(x; a, b(k+ 1)) denotes the Kumaraswamy’s cumulative function with
parameter a and b(k+1) s data. The pth order autoregressive model is defined
by

Xn = a1Xn−1 + a2Xn−2 + . . .+ apXn−p + εn

where {εn} is a sequence of independent and identically distributed random
variables and a1, a2, . . . , an are autoregressive parameters.
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A minification processes of the first order is given by

Xn = Kmin(Xn−1, εn), n ≥ 1 (3)

where K > 1 is a constant and {Xn} is a stationary Markov process with
marginal distribution function FX(x). Because of the structure of (3), the
process {Xn} is called a minification process.

2 Theory of Marshall - Olkin Distributions

Marshall and Olkin (1997) proposed a flexible semi - parametric family of
distributions and defined a new survival function Ḡ(x) by introducing and
additional parameter α such that α = 1− ᾱ;α > 0 called the tilt parameter.

Ḡ(x, α) =
αF̄ (x)

1− ᾱF̄ (x)
;x ∈ R,α > 0 (4)

is the survival function of Marshall - Olkin family of distributions which is
related to the proportional odds (PO) model in survival analysis . See Sankaran
and Jayakumar (2006), Bennet (1983).
For α = 1, we have Ḡ(x) = F̄ (x). The probability density function and hazard
rate function corresponding to (4) is given by

g(x;α) =
αf(x)

[1− (1− α)F̄ (x)]2

and

h(x;α) =
hF (x)

(1− (1− α)F̄ (x))

where hF (x) is the hazard rate function of F .

Then, hF (x) = f(x)

F̄ (x)
see Alice and Jose (2003, 2004 a,b)

3 Marshall-Olkin Kumaraswamy Distribution

A new family of distributions is proposed by using Kumaraswamy’s distribu-
tion as the baseline distribution in the Marshall - Olkin construction. Consider
the Kumaraswamy’s distribution with survival function F̄ (x) = (1−xa)b; a, b >
0;x ∈ (0, 1). Substituting in (4) we obtain a new family of continuous dis-
tribution called the Marshall -Olkin Kumaraswamy distribution denoted by
MOKS(α, a, b) with survival function given by

Ḡ(x) =
α(1− xa)b

1− ᾱ(1− xa)b
;α, a, b > 0; 0 < x < 1 (5)
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The corresponding density function is given by

g(x) =
αabxa−1(1− xa)b−1

[1− ᾱ(1− xa)b]2
;α, a, b > 0; 0 < x < 1 (6)

If α = 1, g(x) = f(x). ie, we obtain the Kumaraswamy’s distribution with
parameter a, b > 0. The hazard rate function for Kumaraswamy distribution
is

hF (x) =
abxa−1(1− xa)b−1

(1− xa)b

The hazard rate function for MOKS distribution is

hG(x) =
abxa−1

(1− xa)[1− ᾱ(1− xa)b]
(7)

Reverse hazard rate function for Kumaraswamy distribution is

rF (x) =
g(x)

G(x)
=
abxa−1(1− xa)b−1

[1− (1− xa)b]

Reverse hazard rate function for MOKS distribution is

rG(x) =
αabxa−1(1− xa)b−1

[1− ᾱ(1− xa)b][1− (1− xa)b]

Cumulative hazard rate function for Kumaraswamy distribution is

HF (x) = −lnG(x) = bln(1− xa)

Cumulative hazard rate function for MOKS distribution is

HG(x) =

∫ x

0

h(x)dx = ln[1− ᾱ(1− xa)b]− ln[1− (1− xa)b]

If BG(x) = Ḡ(x)
G(x)

is known as the odds function of a random variable X. It
measures the ratio of the probability that the unit will survive beyond X to
the probability that it will fail before X. In Kumaraswamy’s distribution,

BG(x) =
(1− xa)b

[1− (1− xa)b]
=

1

[(1− xa)−b]− 1

In MOKS distribution,

BG(x) =
α

[(1− xa)−b]− 1
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Figure 1: plot of density function for fixed alpha and various a and b

Figure 2: plot of density function for fixed a and various alpha and b
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Figure 3: plot of density function for fixed b and various alpha and a

Figure 4: plot of hazard rate function for fixed alpha and various a and b
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Figure 5: plot of hazard rate function for fixed a and various alpha and b

4 Theoretical properties

4.1 Expansion for the cumulative and density function

Now we give a useful expansion for the MOKS density (6). For any positive
real numbers and for |z| < 1, a generalized binomial expansion,

(1− z)−s =
∞∑
k=0

(
s+ k − 1

k

)
zk (8)

Using (8) in (6) we have,

g(x) = αabxa−1(1− xa)b−1

∞∑
k=0

(
k + 1

k

)
(1− α)k(1− xa)bk

=
∞∑
k=0

qkh(x; a, b(k + 1))

Where

qk =
α(1− α)k

k + 1

(
k + 1

k

)
and h(x; a, bk + 1) denotes the Kumaraswamy’s density with parameters a and
b(k+1). Thus the MOKS density function can be expressed as an infinite linear
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combination of Kumaraswamy’s densities. Similarly , we can write the cdf of
MOKS as,

G(x) =

∫ x

0

g(x)dx

=
∑
k

qkH(x; a, b(k + 1))

where H(x; a, b(k+ 1)) denotes the Kumaraswamy’s cumulative function with
parameter a and b(k + 1)

5 Moments and Quantiles

Let X ∼ MOKS(α, a, b) for α = 1, 2, . . ., the rth moment is given by

E(Xr) =

∫ 1

0

xrαabxa−1(1− xa)b−1

[1− ᾱ(1− xa)b]2
dx

Using the expansion,

1

[1− ᾱ(1− xa)b]2
=
∞∑
j=0

(j + 1)(1− α)j(1− xa)bj

We obtain,

E(Xr) = αb
∞∑
j=0

(j + 1)(1− α)jB(1 +
r

a
, b(j + 1)) (9)

Mgf sayM(t) = E[etx] of MOKS(α, a, b) is

M(t) =
∞∑
r=0

tr

r!
E(Xr)

where E(Xr) follows from (9). The Mean,Variance, Skewness and Kurtosis
can be obtained from (9).
Therefore,

E(X) = αb
∞∑
j=0

(j + 1)(1− α)jB

(
1 +

1

a
, b(j + 1)

)
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The qth quantile of MOKS distribution is

Q(y) = xq = G−1(q) =

[
1−

(
q

1− ᾱ(1− q)

) 1
b

] 1
a

; 0 ≤ q ≤ 1 (10)

Where G−1(.) is the inverse of the distribution function .
The density of the quantile function is

q(y) =
1

ab

1− ᾱ
(1− yᾱ)2

(
1− y

1− yᾱ

) 1
b
−1
[

1−
(

1− y
1− yᾱ

) 1
b

] 1
a
−1

;α, a, b > 0; 0 < y < 1

The Median of the distribution is

Median(X) =

[
1−

(
1

1 + α

) 1
b

] 1
a

The Mode for this distribution can be found by solving the first derivative of
the function log g(x) = 0.
ie,

d log g

dx
=
a− 1

x
− a(b− 1)xa−1

1− xa
− 2ᾱabxa−1(1− xa)b−1

1− ᾱ(1− xa)b
= 0

The probability weighted moments (PWMs), first proposed by Greenwood
et al.(1979) are expectations of certain functions of a random variable whose
mean exists. A general theory for these moments covers the summarization
and description of theoretical probability distributions and observed data sam-
ples, non parametric estimation of the underlying distribution of an observed
sample, estimation of parameters, quantiles of probability distributions and
hypothesis tests. The PWMs method can generally be used for estimating pa-
rameters of a distribution whose inverse form cannot be expressed explicitly.
The (p, r)th PWM of X is defined by,

τ(p,r) = E{XpF (X)r} =

∫ ∞
−∞

xpF (x)rf(x)dx

Hence for MOKS(α, a, b),

τ(p,r) = αb
r∑
j=0

∞∑
k=0

(
r + k + 1

k

)(
r

j

)
(−1)jᾱkB(

p

a
+ 1, b(j + k + 1))
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6 Lorenz, Bonferroni and Zenga curves

Lorenz and Bonferroni curves are applied in many fields such as Economics,
Reliability, Demography, Insurance and Medicine (Kleiber and Kotz 2003).
Zenga curve was presented by zenga (2007). According to Oluyede and Ra-
jasooriya(2013), the Lorenz curve LF (x),Bonferroni B(F (x)) and ZengaA(x)
are defined as follows.

LF (x) =

∫ x
0
tf(t)dt

E(X)

B(F (x)) =

∫ x
0
tf(t)dt

F (x)E(X)
=
LF (x)

F (x)

A(x) = 1−
[1− F (x)][

∫ x
0
tf(t)dt]

F (x)
∫∞
x
tf(t)dt

Using the MOKS distribution , we have
Lorenz curve,

LF (x) =

∑∞
j=0(j + 1)(1− α)jB(xc; 1 + 1

a
, b(j + 1))∑∞

j=0(j + 1)(1− α)jB(1 + 1
a
, b(j + 1))

Bonferroni curve,

B(F (x)) =

∑∞
j=0(j + 1)(1− α)jB(xc; 1 + 1

a
, b(j + 1))∑∞

j=0(j + 1)(1− α)jB(1 + 1
a
, b(j + 1))qjH(x; a, b(j + 1))

Zenga curve,

A(x) = 1−
[1−

∑∞
k=0 qkH(x; a, b(k + 1))][

∑∞
j=0(j + 1)(1− α)

j
B(xc; 1 + 1

a , b(j + 1))]

[
∑∞

j=0 qkH(x; a, b(k + 1))]
∑∞

j=0(j + 1)[B(1 + 1
a , b(j + 1))−B(tc; 1 + 1

a , b(j + 1))]

7 Order Statistics

Let X1, X2, . . . Xn be a random sample of size n from MOKS (α, a, b) distri-
bution. Let Xi:n denotes the ith order statistics. Then the probability density
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function of Xi:n is

gi:n(x) =
n!

(i− 1)!(n− i)!
g(x)Gi−1(x)(1−G(x))n−i

where g(.) and G(.) are the pdf and cdf of the MOKS distribution.
Hence

gi:n(x) =
n!

(i− 1)!(n− i)!
αabxa−1(1− xa)b−1

[1− ᾱ(1− xa)b]2

{
1− (1− xa)b

1− ᾱ(1− xa)b

}i−1{
α(1− xa)b

1− ᾱ(1− xa)b

}n−i
=

n!

(i− 1)!(n− i)!
αn−i+1{

∞∑
j=0

∞∑
k=0

(−1)j
(
n+ k

k

)(
i− 1

j

)
(1− α)kabxa−1(1− xa)b(n−i+j+k+1)−1

}

=
n!

(i− 1)!(n− i)!
αn−i+1

∞∑
j=0

∞∑
k=0

(−1)j
(
n+ k

k

)(
i− 1

j

)
(1− α)k

1

(n− i+ j + k + 1)
KS(x; a, b(n− i+ j + k + 1))

Where KS(x; a, b(n− i+ j+k+1)) denoted the Kumaraswamy’s density func-
tion with parameters a and b(n − i + j + k + 1). So the density function of
the order statistics is simply an infinite linear combination of Kumaraswamy’s
density.

8 Record Values

Chandler (1952) introduced the concept of records. Record values and associ-
ated statistics are of greater importance in many real life situations involving
data relating to sports, weather, Economics, life testing etc. Galambos and
Kotz (1987), Sultan et al (2003) etc have made significant contributions to the
theory of records . Let X1, X2, . . . be an infinite sequence of iid random vari-
ables having an absolutely continuous cdf F (x) and pdf f(x). An observation
Xj will be called an upper record value or a record if its value exceeds that of
all previous observations. Then Xj is a record if Xj > Xi ∀i < j. Let fRn(x)
denotes the pdf of the nth record then

fRn(x) =
f(x)[− log(1− F (x))]n

n!
(11)
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If gRn(x) be the density function of the nth record value from MOKS (α, a, b)
then

gRn(x) =
αabxa−1(1− xa)b−1

[1− ᾱ(1− xa)b]2n!

[
− log

α(1− xa)b

1− ᾱ(1− xa)b

]n
;α, a, b > 0; 0 < x < 1

8.1 Recurrence relation for moments of record values

The recurrence relation can be used to compute all the single moments of
record values which is useful for the inference.For the MOKS(α, a, b) distribu-
tion with pdf g(x) and cdf G(x) we obtain ,

1− xa

abxa−1
[1− ᾱ(1− xa)b]g(x) = 1−G(x)

For a record Rn we obtain,

1− xa

abxa−1
[1− ᾱ(1− xa)b]gRn(x) =

[1−G(x)][−log(1−G(x))]n]

n!

The above relation will be used to derive a recurrence relation for the moments
of record value.

9 Entropies

The entropy of a random variable is a measure of uncertainity variation and
has been used in various situations in Science and Engineering.Two popular
entropy measures are the Renyi and Shannon entropies.
The Renyi entropy is defined as

IR(γ) =
1

1− γ
log

∫ ∞
−∞

gγ(x)dx; γ > 0, γ 6= 1.

Then

gγ(x) =

[
αabxa−1(1− xa)b−1

[1− ᾱ(1− xa)b]2

]γ
.

Using [
1− ᾱ(1− xa)b

]−2γ
=
∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!
(1− α)k(1− xa)bk
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we have

∫ ∞
0

gγ(x)dx =

∫ 1

0

αγaγbγxγ(a−1)(1− xa)γ(b−1)

∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!
(1− α)k(1− xa)bkdx

= αγaγ−1bγ
∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!
(1− α)k

Γγ(a−1)+1
a

Γ(bk + γ(b− 1))

Γ
(
γ(a−1)+1

a
+ bk + γ(b− 1)

)
Therefore,

IR(γ) =
1

1− γ
log

αγaγ−1bγ
∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!
(1− α)k

Γγ(a−1)+1
a

Γ(bk + γ(b− 1) + 1)

Γ
(
γ(a−1)+1

a
+ bk + γ(b− 1)

)


The Shannon entropy of a random variable X is defined by E[− log g(X)].
It is the special case of the Renyi entropy when γ ↑ 1.

E[− log g(X)] = − logαab+2E[log(1−ᾱ(1−xa)b)]−(a−1)E(logX)−(b−1)E[log(1−xa)]

where,

E
[
log(1− ᾱ(1− xa)b)

]
= αab

∫ 1

0

log
[
1− ᾱ(1− xa)b

] xa−1(1− xa)b−1

[1− ᾱ(1− xa)b]2
dx

=
1

α
[logα− α + 1]

E [logX] = αab

∫ 1

0

log x
xa−1(1− xa)b−1

[1− ᾱ(1− xa)b]2
dx

=
−αb

a(J + 1)2

∞∑
k=0

(
k + 1

k

)
α−k

∞∑
j=0

(−1)j
(
b(k + 1)− 1

j

)

E [log(1− xa)] = αb

∞∑
k=0

(
k + 1

k

)
α−k

∞∑
j=0

(−1)j

j + 1

(
b(k + 1)− 1

j

)
Therefore the entropy of X is given by,

E[− log g(X)] = − logαab+
2

ᾱ
[logα− α + 1] + αbβjk

[
a− 1

a(j + 1)
− (b− 1)

]
,
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where

βjk =
∞∑
k=0

(
k + 1

k

)
α−k

∞∑
j=0

(−1)j

j + 1

(
b(k + 1)− 1

j

)
.

10 Mean residual life and mean waiting time

The mean residual life function (MRL) or life expectancy denoted by m(t) at
a time t measures the expected remaining lifetime of an individual of age t. If
S(t) is the survival function at t then,

m(t) =
1

S(t)

[
E(t)−

∫ t

0

tf(t)dt

]
− t

=

∑∞
j=0 qj

[
B(1 + 1

a
, b(j + 1))−B(tc; 1 + 1

a
, b(j + 1))

]
1−

∑∞
j=0 qjH(x; a, b(j + 1))

− t.

The mean waiting time (MWT) of an item failed in an interval [0, t] is given
by

µ̄(t, θ) = t− 1

F (t)

∫ t

0

tf(t)dt

= t−
∑∞

j=0 qjB(tc; 1 + 1
a
, b(j + 1))∑∞

j=0 qjH(x; a, b(j + 1))

11 Stress - Strength Analysis

Gupta et al (2010) showed that for two independent random variables represent
strength (Y ) and stress (X) follow the Marshall-Olkin extended distribution
with tilt parameter α1 and α2.The system fails if stress exceeds the strength.
So the reliability of the system is R = P (X < Y ). This measure of reliability
is widely used in engineering problems. Hence,

R =

∫ ∞
−∞

P (Y > X | X = x)g(x)dx

=
α1

α2(
α1

α2
− 1
)2

[
−logα1

α2

+
α1

α2

− 1

]
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To estimate R, it is enough to estimate α1 and α2 by the method of mle. Let
(x1, x2, . . . , xm) and (y1, y2, . . . , yn) be two independent random samples of size
m and n from MOKS distribution with tilt parameter α1 and α2 and unknown
parameters a and b. Then the log-likelihood equation is

L(α1, α2, a, b) =

m∑
i=1

log g(xi;α1, a, b) +

n∑
i=1

log g(yi;α2, a, b)

= m logα1 + (m+ n) log a+ (m+ n) log b+ n logα2

+(a− 1)

[
m∑
i=1

log xi +

n∑
i=1

log yi

]
+ (b− 1)

[
m∑
i=1

log(1− xia) +

n∑
i=

log(1− yia)

]

−2

m∑
i=1

log
[
1− (1− α1)(1− xia)b

]
− 2

n∑
i=1

log
[
1− (1− α2)(1− yia)b

]
The maximum likelihood estimates of α1 and α2 are the solutions of the non

linear equations,

∂L

∂α1

=
m

α1

− 2
m∑
i=1

(1− xia)b

[1− (1− α1)(1− xia)b]
= 0

∂L

∂α2

=
n

α2

− 2
n∑
i=1

(1− yia)b

[1− (1− α2)(1− yia)b]
= 0

The information matrix has the elements,

I11 = −E
(
∂2L

∂α1
2

)
=

m

α2
1

− 2m

∫ 1

0

(1− xai )2bα1abx
a−1
i (1− xai )b−1

[1− (1− α1)(1− xai )b]4
dx

=
m

3α2
1

Similarly,

I22 = −E
(
∂2L

∂α2
2

)
=

n

3α2
2

I12 = I21 = −E
(

∂2L

∂α1∂α2

)
= 0

Using the property of mle for m→∞, n→∞,

(
√
m(α̂1 − α1),

√
n(α̂2 − α2))

d→N2(0, diag(a−1
11 , a

−1
22 )),

where,

a11 = lim
m,n→∞

1

m
I11 =

1

3α2
1

a22 = lim
m,n→∞

1

n
I22 =

1

3α2
2
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Now the 95% confidence interval for R is

R̂± 1.96

(
α̂1b1(α̂1, α̂2)

√
3

m
+

3

n

)
,

where R̂ = R(α̂1, α̂2) is the estimate of R and

b1(α1, α2) =
∂R

∂α1

=
α2

(α1 − α2)3

[
2(α1 − α2) + (α1 + α2) log

α2

α1

]

12 Marshall-Olkin Kumaraswamy Minification

process

We construct a first order autoregressive minification process with the structure
as follows:

Xn =

{
εn with probability p
min(Xn−1, εn) with probability 1− p (12)

where 0 ≤ p ≤ 1 and {εn, n ≥ 1} is a sequence of iid random variables with
KS(a, b) and is independent of {Xn}.

Theorem 12.1 Consider the minification process given by (12) with X0 dis-
tributed as MOKS(p, a, b) distribution, {Xn, n ≥ 0} is a stationary Marko-
vian autoregressive model with the marginal as MOKS(p, a, b) iff {εn} has a
KS(a, b).

Proof: From (12), we have

F̄Xn(x) = pF̄εn(x) + (1− p)F̄Xn−1(x)F̄εn(x) (13)

If X0 has MOKS(p, a, b) and ε1 has KS(a, b) distribution for n = 1 we have,

F̄X1(x) = [p+ (1− p)F̄X0(x)]F̄ε1(x) =
p(1− xa)b

1− p̄(1− xa)b

Therefore, X1 has MOKU(p, a, b) distribution . Using induction method, we
can show that Xn has MOKS(p, a, b) distribution. Hence {Xn} is a stationary
Markovian autoregressive model and its marginal are MOKS(p, a, b). Conver-
sly, let {Xn} be a stationary Markovian autoregressive model with marginal
as MOKS distribution ,then the stationary equilibrium is

F̄ε(x) =
F̄X(x)

p+ (1− p)F̄X(x)
= (1− xa)b
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which means εn has KS(a, b) distribution. Hence the converse of the theorem
is true.

Remark: Even if X0 is arbitrary, it is easy to prove that {Xn} is station-
ary and is asymptotically marginally distributed as MOKS(p, a, b)

In order to study the behaviour of the process we simulate the sample
paths of MOKS AR(1) for various values of a, b and p. Now we consider some
properties of MOKS minification process. The joint survival function of Xn

and Xn−1 is given by,

F (x, y) = P (Xn > x,Xn−1 > y) =
(
pFX(y) + (1− p)FX(max(x, y))

)
· F ε(x)

=

{(
pFX(y) + (1− p)FX(x)

)
· F ε(x), 0 < y < x,

FX(y) · F ε(x), 0 < x < y.

=


(1−xa)b{p2(1−ya)b+p(1−p)(1−xa)b[1−(1−ya)b]}

[1−p(1−ya)b][1−p(1−xa)b]
, 0 < y < x,

p(1−ya)b(1−xa)b

1−p(1−ya)b
, 0 < x < y.

The joint survival function is not an absolutely continuous since,

P (Xn = Xn−1) = (1− p)P (εn ≥ Xn−1)

= (1− p)
∫ 1

0

P (εn ≥ x)fXn−1(x)dx

= (1− p)
∫ 1

0

F̄ε(x)fXn−1(x)dx

=
(1− p+ p log p)

1− p
∈ (0, 1)

We have,

P (Xn > Xn−1) = pP (εn > Xn−1)

= p

∫ 1

0

P (εn > x)fXn−1(x)dx

=
p(1− p+ p log p)

(1− p)2
∈ (0, 1/2)

LetE(Xk
n) = µk and E(εn) = bB(1 + 1

a
, b) = r

Consider the autocovariance,

Cov(Xn, Xn−1) = E(XnXn−1)− µ2
1

= (1− p)E[Min(Xn−1, εn)Xn−1] + prµ1
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E[Min(Xn−1, εn)Xn−1] = E[I(Xn−1 < εn)X2
n−1] + E[I(Xn−1 > εn)Xn−1ε

n]

= µ2 − E{Fε(Xn−1)X2
n−1}+ E{Fε(Xn−1)Xn−1}

= µ2 −
∫ 1

0

x2Fε(x)g(x)dx+

∫ 1

0

xFε(x)g(x)dx

Thus

Cov(Xn, Xn−1) = (1− p){µ2 − αbΣs
j=0Σ∞k=0

(
k + 1

k

)
α−k

(−1)j[B(
2

a
+ 1, b(j + k + 1)) +B(

1

a
+ 1, b(j + k + 1)) + prµ1]}

The first order process can be easily extended to high order process and the
corresponding results can be derived.

13 Estimation of parameters

Here we estimate the parameters of MOKS distribution using the maximum
likelihood estimation method. Let X = x1, x2, . . . , xn be a random sample of
size n from MOKS (α, a, b), then the log-likelihood function is

logL = nlogα + nlog a+ nlog b+ (a− 1)
n∑
i=1

log xi

+(b− 1)
n∑
i=1

log(1− xai )− 2
n∑
i=1

log[1− ᾱ(1− xai )b]

The normal equations are ,

∂ logL

∂a
=
n

a
+

n∑
i=1

log xi − (b− 1)
n∑
i=1

xai log xi
1− xai

−2bᾱ
n∑
i=1

xai (1− xai )b−1 log xi
[1− ᾱ(1− xai )b]

= 0

∂ logL

∂b
=
n

b
+

n∑
i=1

log(1− xai ) + 2ᾱ
n∑
i=1

(1− xai )b log(1− xai )
[1− ᾱ(1− xai )b]

= 0

∂ logL

∂α
=
n

α
− 2

n∑
i=1

(1− xai )b

[1− ᾱ(1− xai )b]
= 0
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The above system of non linear equations does not have an analytic so-
lutions in α, a and b. So the maximum likelihood estimates can be easily
obtained using nlm function in R program.

14 Application

In this section, a data set is fitted to the MOKS distribution. The data
set in Table 1 represents Floyd river flood rates for the years 1935-1973 in
Iowa,USA. The maximum likelihood estimates, the Akaike Information Cri-
terion (AIC), consistent Akaike Information Criterion (CAIC ), the Bayesian
Information Criterion(BIC), Hannan-Quinn Information Criterion (HQIC )
and the Kolmogrov- Smirnov(K-S) test statistic and the p-value for the K-S
statistics for the fitted distributions are reported in Tables 2. The MOKS dis-
tribution is fitted to the data set and compared the result with Kumaraswamy.
The result shows that MOKS distribution provide good fit to the data. All
the computations were done using R programme.

Table 1: Annual flood discharge rates of the Floyd river data(1935-1973)

1460 4050 3570 2060 1300 1390 1720 6280 1360 7440
5320 1400 3240 2710 4520 4840 8320 13900 71500 6250
2260 318 1330 970 1920 15100 2870 20600 3810 726
7500 170 2000 829 17300 4740 13400 2940 5660

15 Conclusion

In this paper,we propose the new Marshall-Olkin Kumaraswamy distribution.
We study some of its structural properties like moments, quantile function,
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Table 2: Parameter estimates for annual flood discharge rates

Distribution Estimates AIC CAIC BIC HQIC K-S p-value
MOKS(α, a, b) 0.00362 1.53452 0.69249 -140.208 -139.522 -135.217 -138.417 0.0681 0.9879
KS(a, b) 0.72762 6.77254 -126.622 -126.289 -123.295 -125.423 0.1487 0.3253

order statistics, record values, entropies, Lorenz, Bonferroni and Zenga curves.
Autoregressive model with minification structure is also discussed. The max-
imum likelihood method is used for estimating the model parameters. An
application to a real data set shows that the fit of the new model is superior to
the other model. We hope that the proposed model will attract wider applica-
tions in several areas like engineering, survival and lifetime data, hydrology etc.
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