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Abstract

In the paper we present a research on heterogeneity of Saint Peters-
burg districts with respect to children morbidity rate. We used methods
of cluster analysis for discovering groups of similar districts. As most of
present distances work well with long time series but have biased results
for short ones, the dissimilarity measure for short time series based on
its characteristics is proposed. We constructed several clustering mod-
els to determine clusters which did not depend on the method. Five
objects (districts) were distributed to several clusters in different mod-
els. For dealing with this problem an heuristic algorithm for inclusion
of indeterminate objects to potential clusters was built. As a result we
got three groups of districts which were similar in some sense.
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1 Introduction

It is a problem to organize a healthcare system in megapolis. A hierarchical
structure of system simplifies healthcare managment. Each district of Saint
Petersburg has an executive body responsible for control and supervision of
hospitals, clinics, ambulance activity. They collect the statistics and transmit
it to higher level organizations. Health problems of inhabitants can be con-
nected with different factors such as enviromental problems, age of population,
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economic problems, activity of executive body of every district and the whole
city and so on. To define the reason it is necessary to know if districts are dif-
ferent. That is why we study a problem of heterogeneity of Saint Petersburg
districts. The morbidity rate was choosen as indicator of population health.
This article contains the research on children morbidity rate as it is important
factor in development of the city.

Methods of cluster analysis was utilised for detection of homogeneous groups
of districts. Key feature is that data are time dependent so it is necessary
to use special dissimilarity measures. There are a huge amount of studies of
time series dissimilarity measures which are based on autocorrelation [1], spec-
tral characteristics [2], assumptions of time series model [3,4], correlation [5],
wavelet transformation [6,7] and others.

Three stable clusters were discovered by applying several methods, one of
them is proposed by us in section 2. Five districts were assigned to several
clusters so we built an algorithm based on Borda count, which determined
each of controversial objects to a particular cluster [8].

2 Time series dissimilarity measures

Clustering is one of the machine learning approaches for unsupervised learn-
ing. We do not know the number of clusters or the distribution of objects to
groups, so the model of clustering and distance define the results. That is why
aplication of cluster analysis requires precision of dissimilarity measure selec-
tion. Our problem calls for methods that take into account that data are time
dependent. The Euclidean distance could be relevant for the time series
clustering only in the situation when dynamics of values is not important. The
statement ensues the fact that after permutation of observations the distance
between time series does not change.

In 1906 a French mathematician Maurice René Fréchet suggested an ap-
proach for measuring of similarity between curves. T. Eiter and H. Mannila
proposed a discrete Fréchet distance and gave intuitive definition in [9].

Assume that time series belongs to the class of invertible and stationary
ARMA processes. Then dissimilarity between two time series can be com-
puted by testing whether or not two time series have significantly different
generating processes. This method was introduced by E. A. Maharaj in 2000
[3].

Computation of the Euclidean distance between the periodogram coeffi-
cients of the time series was described by J. Caiado, D. Peña and N. Crato in
2006 [2]. If correlation structure of time series is essential then application of
the Euclidean distance between the normalized periodogram ordinates is more
appropriate.
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A. D. Chouakria and P. N. Nagabhushan (2007) presented an adaptive
dissimilarity index (ADI) for measuring time series proximity [10]. It covers
both the conventional measure for the proximity with respect to values and
the temporal correlation for the proximity with respect to behavior. Besides
researcher can regulate the influence of both constituents.

Many present dissimilarity measures work well only with long time series.
Unfortunately such fields as economics or demography are more presented by
short time series. Therefore we propose a new dissimilarity measure based
on time series characteristics (CBD — characteristics based distance).
This section contains a brief review of the method.

Let M = [n × m] is a matrix where each row is a time series with m
observations, then Mk = {Mk,1,Mk,2, . . . ,Mk,m} is time series that corresponds
to row k ∈ {1, 2, . . . , n}. The distance depends on three addends

DistCBD(Mk1 ,Mk2) = α D1(Mk1 ,Mk2) + β D2(Mk1 ,Mk2) +

+ (1− α− β)D3(Mk1 ,Mk2).
(1)

The first addend of (1) shows dissimilarity with respect to values. To
compute α D1(Mk1 ,Mk2), firstly data normalization is accomplished

mk,t =
mk,t −minM

mk,t −maxM
,

M = {mk,t}, k ∈ {1, 2, . . . n}, t ∈ {1, 2, . . .m},

Then for each row a vector with five characteristics is computed. These are
such values as mean, standard deviation, median, minimum and maximum val-
ues of M . The Euclidean distance between the vectors is D1(Mk1 ,Mk2). Coef-
ficient α belongs to [0, 1] and determines the influence of D1 on the DistCBD.

The second addend βD2(Mk1 ,Mk2) is dissimilarity with respect to dynamics
where β is in [0, 1]. For every row of matrix M we construct four binary
vectors. Elements of the first vector, which are equal to 1, correspond to
increasing intervals. Ones of the second vector show the elements which are
equal to mean of time series or higher. The third and the fourth vectors present
fluctuations around E(Mk) + sd(Mk) and E(Mk)− sd(Mk).

The third addend of (1) is dissimilarity with respect to variability of time
series. Firstly we normalize data in such a way that every time series has the
maximal value equal to 1 and minimal value equal to 0, it is given by

m̃k,t =
mk,t −minMk

maxMk −minMk

, (2)

M̃k = {m̃k,1, m̃k,2, . . . , m̃k,m}, k ∈ {1, 2, . . . n}.
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Table 1: Evaluation of clustering models with different distances and number of
clusters

Name of distance
Dunn index Silhouette index

2 3 4 2 3 4

Fréchet 0.49 0.33 0.39 0.45 0.34 0.23

Euclidean 0.31 0.45 0.47 0.33 0.30 0.24

ADI(2) 0.16 0.17 0.17 0.32 0.32 0.23

ADI(3) 0.05 0.11 0.11∗ 0.25 0.33 0.29∗

Periodogram coefficients 1.28∗ 0.75∗ 0.94∗ 0.72∗ 0.58∗ 0.51∗

ARMA 0.32∗ 0.32∗ 0.31∗ −0.43∗ −0.43∗ −0.42∗

CBD(0.4, 0.4) 0.54 0.31 0.49 0.32 0.17 0.22

CBD(0.8, 0.1) 0.37 0.50 0.49 0.32 0.30 0.26

CBD(0.6, 0.1) 0.32 0.42 0.50 0.31 0.23 0.26

The transformation (2) allows us to ignore the differences in values and focus

on differences in variability. We construct matrices of differences F̃D(1) and

F̃D(2) of new matrix M̃ = {M̃1, M̃2, . . . , M̃n}T , whose elements are given by

F̃Dk,t(l) = M̃k,t+l − M̃k,t,

for l ∈ {1, 2}, k ∈ {1, 2, . . . , n}, t ∈ {1, 2, . . . ,m−1}. Then a vector of variabil-
ity characteristics Vk = [1 × 15] for each time series k is computed. The first

three components, calculated for F̃D(1), correspond to average growth, decline
and fluctuation. The next three elements are the same but they are computed
for F̃D(2). Components Vk,7 and Vk,8 refer to the greatest growth and decline

of F̃D(1), while Vk,9 and Vk,10 are the greatest growth and decline of F̃D(2) .
The last five elements of Vk are minimal value, quartiles and maximal value of
F̃D(1).

We conducted experiments with 3 sets of synthetic data. A description of
experiments is beyond the purpose of our paper. We just note that the results
showed that application of CBD was appropriate as the similarity between the
true cluster solution and the one obtained with CBD was higher than majority
of present dissimilarity measures had.

3 Cluster analysis of children morbidity rate

We have annual children morbidity data from 1999 to 2014 for every district
of Saint Petersburg. It is important for us to define homogeneous groups of
districts. Values of morbidity rate are more important than the dynamics,
moreover the last observations are more substantial than old ones.

Firstly we calculated the distance matrices using dissimilarity measures
which were described in previous section. We used the k-medoids algorithm
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Table 2: Distribution of districts in the clusters

Name Districts
of distance 1-2 3 4-6 7 8 9 10 11 12 13 14 15 16 17-18

Fréchet 3 2 1 2 2 3 2 2 3 3 2 3 1 2

Euclidean 1 2 1 2 1 3 1 2 1 3 2 3 1 2

ADI(2) 1 2 1 2 2 3 1 2 1 3 2 3 1 2

CBD(0.8, 0.1) 1 2 1 2 2 3 2 2 1 3 2 3 1 2

for breaking the dataset up into groups. Table 1 with values of Dunn and
Silhouette indexes helped us to determine that the number of clusters was
3. The asterisk above the value means that the cluster with only one object
was produced by the procedure, apparently it was not desirable outcome. The
reason of comparing models with only 2, 3 and 4 clusters is that greater number
of groups is a source of single-object clusters. We can see that dissimilarity
measures based on periodogram coefficients and ARMA-model have a single-
object clusters in all cases (notice that the districts in single-object clusters
are different), that is why we excluded them from further analysis. Moreover
ADI(2) and ADI(3) represent the same method but with different values of
parameter so correspondingly to Table 1 we chose ADI(2). Similarly we chose
parameters α = 0.8, β = 0.1 for CBD. So we continued cluster analysis with
four distances and considered that there were 3 clusters.

The next step was to find stable clusters. Stable cluster is a group of objects
which are placed to the same cluster by all dissimilarity measures, which are
applied in analysis. We noticed, that stable clusters were {4, 5, 6, 16}, {3, 7, 11,
14, 17, 18}, {9, 13, 15} (Table 2 ) while objects {1, 2, 8, 10, 12} were distributed
to different clusters. For dealing with this problem we built heuristic algorithm.
We considered the selection of the cluster as voting game where clusters were
candidates.

Step 1. Make a list Lind = {x1, x2, . . . , xl} of indeterminate objects.
Step 2. Make a list Lk

cl = {ck1, ck2, . . . , ck3} of potential clusters for every
indeterminate object xk ∈ Lind.
Step 3. Compose a key characteristic F0 which evaluates the quality of
cluster. We assume that when F0 is going down (going up) the quality
of clustering is increasing.
Step 4. Compose several other characteristics F1, F2, . . . , Fm which de-
fine the quality of clustering. These characteristics are voters. As on
the previous step we assume that when Fi, i ∈ 1, 2, . . . ,m is going down
(going up) the quality of clustering is increasing.
ITERATION
Step 5. Assume that x1 ∈ Lk

cl is added to every c1i ∈ L1
cl. Compute F0
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Table 3: Iteration 1, step 5. The smallest value has a grey color

Lind 1 2 8 10 12

Lcl 1 3 1 3 1 2 1 2 1 3

F0 1.76 1.83 1.58 1.66 1.76 1.55 2.06 1.50 1.88 1.53

for every new c1i ∈ L1
cl. Then do the same actions for every object in

Lind.
Step 6. Choose the candidate with the lowest (highest) F0, let it be the
cluster cnd which corresponds to the object xn.
Step 7. Compute F1, F2, . . . , Fm for every candidate in Ln

cl.
Step 8. Rank the voters as in Borda count method. Give m points to
candidate with the lowest (highest) Fi, (m− 1) point to candidate, who
has the next lowest (highest) Fi and so on.
Step 9. Find a sum of points for every candidate in Ln

cl. Candidate with
the highest sum is a winner cne .
Step 10. If cluster cne coincides with cluster cnd then continue, else go to
the step 6, but exclude cnd from the game on this iteration.
Step 11. Include object xn in cluster cne . Remove xn from Lind. If Lind

is empty then finish the algorithm, else go to the Step 5 (new iteration).

The algorithm unambiguously determines the order of addition of elements
from Lind to potential clusters. If it is impossible to select the cluster for xi
from Lind using Borda count method then inclusion or exclusion of Fi from
F1, F2, . . . , Fm or application of modified Borda method are eligible.

We applied the algorithm presented above. On the steps 1-2 we got the
lists Lind = {1, 2, 8, 10, 12} and Lcl = {{1, 3}, {1, 3}, {1, 2}, {1, 2}, {1, 3}}.

We decided to lower the influence of statistical error by computing simple
moving average (with lag equal to 3). Considering that absolute differences
between smoothed time series are going down when the quality of cluster is
going up we chose this value as F0.

Characteristics for step 4 were calculated for every cluster,

• F1: maximum absolute difference between values of last 3 periods;
• F2: maximum coefficient of variation;
• F3: ratio of the sum of absolute differences between last 3 observations

in the cluster without a new element to the sum of absolute differences
between last 3 observations in the cluster with a new element;
• F4: ratio of the standard deviation in the cluster without a new element

to the standard deviation in the cluster with a new element;

We show implementation of one iteration of the algorithm for clarity. Cor-
respondingly to step 5 we calculate F0 for every element in Lind assuming that
we add objects to potential clusters. The minimum of the sum of absolute
differences between observations of smoothed time series is reached when dis-
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Table 4: Iteration 1, steps 7-9

(a) Characteristics values for clusters 1, 2
after inclusion of object 11

Clus-
ters

Characteristics
F1 F2 F3 F4

1 851.16 0.16 2.55 1.21

2 418.15 0.16 1.38 1.07

(b) The ranking of candidates
correspondingly to Table 4 (a)

Candi-
dates

Voters
F1 F2 F3 F4 Sum

1 1 2 1 1 5

2 2 2 2 2 8

trict 10 is included in the cluster 2 (Table 3 ). So we compute characteristics
F1 − F4 for clusters {4, 5, 6, 16} ∪ 10 and {3, 7, 11, 14, 17, 18} ∪ 10 (Table 4 ).

As the winner is cluster 2 (Table 4 (b)) and it coincides with cluster with
the lowest F0 from step 5 (Table 3 ), we can add object 10 to cluster 2. Thus
we get Lind = {1, 2, 8, 12} and Lcl = {{1, 3}, {1, 3}, {1, 2}, {1, 3}}. This is the
end of the first iteration and we go to step 5. As a result we got 3 groups of
districts (Figure 1 ).

Figure 1: The map of Saint Petersburg. Districts from one cluster have the same
color. Districts: 1 – Admiralteysky, 2 – Frunzensky, 3 – Kalininsky, 4 – Kirovsky,
5 – Kolpinsky, 6 – Krasnogvardeysky, 7 – Krasnoselsky, 8 – Kronshtadtsky, 9 –
Kurortny, 10 – Moskovsky, 11 – Nevsky, 12 – Petrodvortsovy, 13 – Petrogradsky, 14
– Primorsky, 15 – Pushkinsky, 16 – Tsentralny, 17 – Vasileostrovsky, 18 – Vyborgsky.

4 Conclusion

Cluster analysis of 18 time series, which respond to the children morbidity rate
in each district of Saint Petersburg, was conducted. We gave a brief review of
dissimilarity measure based on time series characteristics that works well with
short time series and several other distances in the second section and then we
used them in the third section. Firstly we constructed 9 different variants of
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clustering but the worst 5 ones were excluded. Applying 4 different methods
we found 3 groups of objects which were included in the same cluster in all
clustering models. Unfortunately 5 districts had several possible variants of
distribution. That is why we proposed the algorithm for selection the only
cluster for problematic objects. Following the algorithm we got such 3 clusters
such that districts inside one of the clusters were more similar to each other
than two districts from the different clusters were.
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