International Mathematical Forum, Vol. 12, 2017, no. 4, 151 - 158 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.612167

Encryption through Labeled Graphs Using Strong Face Bimagic Labeling

Mohammed Ali Ahmed

Department of Mathematics, Anna University Chennai - 600 025, India &

Department of Mathematics College of Education for Pure Sciences Ibn AL Haitham University of Baghdad, Iraq

J. Baskar Babujee

Department of Mathematics, Anna University Chennai - 600 025, India

Copyright © 2016 Mohammed Ali Ahmed and J. Baskar Babujee. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Modern cryptography is heavily based on mathematical theory and secure communication. It has been recognized that encryption and decryption mostly emerges from mathematical disciplines. In this paper we present a new combinatorial technique to encrypt and decrypt twin numbers through labeled graphs using strong face bimagic labeling.

Mathematics Subject Classification: 05C78

Keywords: graph labeling, bimagic, strong face graph, encryption and decryption

1 Introduction

The concept of graph labeling was introduced by Rosa 1967 in [6]. A labeling of a graph G is any mapping that sends a certain set of graph elements to a

certain set of positive integers. If the domain is the vertex set, or the edge set respectively, the labeling is called a vertex labeling, or an edge labeling, respectively. If the domain is $V(G) \cup E(G)$ then the labeling is called total labeling.

In 2004 Babujee [2] introduced the notion of edge bimagic total labeling and also studied in [3] that a generalization of super edge magic total labeling in which there exists two distinct constants k_1 and k_2 such that the edge weights involved in this labeling are either equal to k_1 or k_2 . An edge bimagic labeling is of interest for graphs that do not have any super edge magic total labeling. More precisely, a graph G with p vertices and q edges is said to be edge bimagic total if there exists a bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., p+q\}$ such that $f(u) + f(v) + f(uv) = k_1$ or k_2 .

In 2015 Mohammed Ali and Babujee [1] introduced the concept of strong face graph and studied bimagic on strong face plane graphs.

In [1], it is proved that the strong face wheel graph W_n^* admits (1, 1, 0) super bimagic labeling for every $n \ge 4$, with two magic constants $K_1 = 15n + 9$ and $K_2 = 15n + 8$.

Encryption by using labeling was first introduced by J. Baskar Babujee and S. Babitha by doing pair labeling for vertices and edges in [4].

In this paper we will use the technique of strong face graph to encrypt two numbers using the idea of digits number.

2 Main Results

Definition 2.1. [1] Let G be a simple, connected, plane graph. A strong face graph G^* is obtained from G by adding a new vertex to every face of G except the external face and joining this vertex with all vertices surrounding that face, so that all faces of a new graph G^* are isomorphic to the cycle C_3 .

Moreover, if the faces of original graph G itself are C_3 , then the number of faces increases twice.

Encryption and Decryption twin numbers using strong face wheel graph W_n^* .

Algorithm 2.2. (Encryption)

Input: The two positive secret numbers S_1 and S_2 , where S_1 have n digits and S_2 have m digits, $n \ge m$.

Output: Encrypted labeled strong face wheel graph W_n^* .

begin Step 1:

 $V_1(W_n^*) = \{u, v_i : i = 1, 2, \dots, n\}, \ V_2(W_n^*) = \{u_i : i = 1, 2, \dots, n\}, \ V(W_n^*) = V_1(W_n^*) \cup V_2(W_n^*),$

$$E_1(W_n^*) = \{uv_i : i = 1, 2, \dots, n\} \cup \{v_1v_n, v_iv_{i+1} : i = 1, 2, \dots, n-1\},$$

$$E_2(W_n^*) = \{uu_i, u_iv_i : i = 1, 2, \dots, n\}$$

$$\cup \{u_nv_1, u_iv_{i+1} : i = 1, 2, \dots, n-1\},$$

$$E(W_n^*) = E_1(W_n^*) \cup E_2(W_n^*),$$

 $E(W_n^*) = E_1(W_n^*) \cup E_2(W_n^*),$ **Step 2:** Define a bijection $f: V(W_n^*) \cup E(W_n^*) \to \{1, 2, \dots, 7n+1\}$ such that f(u) = 1, $f(u_n v_1) = 4n + 1,$ $f(v_n v_1) = 6n + 2,$ for i = 1, 2, ..., n, $f(v_i) = i + 1,$ $f(u_i) = n + 1 + i,$ $f(u_i v_i) = 4n + 2 - 2i,$

$$f(uu_i) = 5n + 2 - i,$$

 $f(uv_i) = 5n + 1 + i,$

for
$$i = 1, 2, ..., n - 1,$$

 $f(u_i v_{i+1}) = 4n + 1 - 2i,$

$$f(v_i v_{i+1}) = 6n + 2 + i,$$

- **Step 3:** Split the first secret number S_1 into n digits, $S_1 = d_1 d_2 \dots d_n$, where d_1, d_2, \ldots, d_n , are the first, second, ..., last digits of S_1 respectively,
- **Step 4:** Split the second secret number S_2 into n digits $(n \ge m)$, such that if m = n, then all the digits of S_2 , $e_i \ge 0$, for $1 \le i \le n$, and if m < n, then the digits $e_{m+1}, e_{m+2}, \ldots, e_n$, are blank spaces,

Step 5: Define a function
$$g: V(W_n^*) \to N$$
 such that
$$g(v_i) = f(v_i) + (n+1) + d_i \text{ for } i = 1, 2, \dots, n,$$

$$g(u_i) = \begin{cases} f(u_i) + 2n + e_i & \text{for } i = 1, 2, \dots, n \text{ if the digit } e_i \geq 0, \\ f(u_i) & \text{for } i = 1, 2, \dots, n \text{ if the digits are blank spaces.} \end{cases}$$

end.

Algorithm 2.3. (Decryption)

Input: Total labeled strong face wheel graph W_n^* with twin secret numbers as a vertices labeling.

Output: The two secret numbers S_1 and S_2 .

Step 1: Create vertex labeled matrix $A_{n\times 2}$, where

Step 1. Greate vertex tabeled matrix
$$A_{n\times 2}$$
, where
$$a_{ij} = \begin{cases} g(v_i) & \text{for } j = 1, i = 1, 2, \dots, n, \\ g(u_i) & \text{for } j = 2, i = 1, 2, \dots, n \end{cases}$$
Step 2: Construct a matrix $B_{n\times 2}$, where

$$b_{ij} = \begin{cases} n+1 & \text{for } j = 1, i = 1, 2, \dots, n, \\ 3n-1 & \text{for } j = 2, i = 1, 2, \dots, n \end{cases}$$

- Step 3: Construct a matrix $C_{n\times 2}$, where $c_{ij} = i + j$ for j = 1, 2, i = 1, 2, ..., n,
- Step 4: Calculate the matrix $H_{n\times 2}=A_{n\times 2}-M_{n\times 2}$, where $m_{ij}=b_{ij}+c_{ij}$ for $j=1,2,\ i=1,2,\ldots,n$
- **Step 5:** Calculate the two secret numbers, $S_1 = d_1 d_2 d_n = h_{11} h_{21} \dots h_{n1}$ and $S_2 = e_1 e_2 \dots e_n = h_{12} h_{22} \dots h_{n2}$, respectively and ignore all negative values.

end.

Illustration for Encryption and Decryption Algorithm

Let $S_1 = 274011$ and $S_2 = 3050$, be two secret numbers. Since the digits of $S_1 = n = 6$, digits of $S_2 = m = 4$, take a strong face wheel graph W_6^* .

• As per step 1 of algorithm 2.2, the vertex set and edge set of W_6^* is defined as

$$V(W_6^*) = V_1(W_6^*) \cup V_2(W_6^*), \text{ where } V_1(W_6^*) = \{u, v_i : i = 1, 2, \dots, 6\},$$

$$V_2(W_6^*) = \{u_i : i = 1, 2, \dots, 6\} \text{ and } E(W_6^*) = E_1(W_6^*) \cup E_2(W_6^*), \text{ where }$$

$$E_1(W_6^*) = \{uv_i : i = 1, 2, \dots, 6\} \cup \{v_1v_6, v_iv_{i+1} : i = 1, 2, \dots, 5\},$$

$$E_2(W_6^*) = \{uu_i, u_iv_i : i = 1, 2, \dots, 6\} \cup \{u_6v_1, u_iv_{i+1} : i = 1, 2, \dots, 5\}.$$

• As per step 2 of algorithm 2.2, define a bijection $f: V(W_6^*) \cup E(W_6^*) \rightarrow \{1, 2, \dots, 42 + 1\}$ such that

$$f(u) = 1$$
, where u is a center vertex of W_6^* ,

$$f(u_n v_1) = 4n + 1 \Rightarrow f(u_6 v_1) = 25,$$

$$f(v_n v_1) = 6n + 2 \Rightarrow f(v_6 v_1) = 38,$$

for
$$i = 1, 2, \dots, 6$$
,

$$f(v_i) = i + 1,$$

$$f(u_i) = (n+1) + i = 7 + i,$$

$$f(u_i v_i) = 4n + 2 - 2i = 26 - 2i,$$

$$f(uu_i) = 5n + 2 - i = 32 - i,$$

$$f(uv_i) = 5n + 1 + i = 31 + i,$$

for
$$i = 1, 2, ..., 5$$
,

$$f(u_i v_{i+1}) = 4n + 1 - 2i = 25 - 2i,$$

$$f(v_i v_{i+1}) = 6n + 2 + i = 38 + i.$$

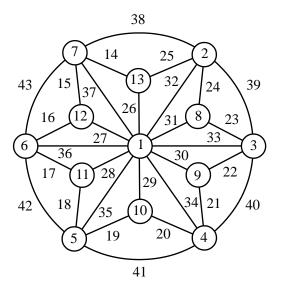


Figure 1:

It is easy to observe that the strong face wheel graph W_6^* given in figure 1 admits face bimagic labeling with two different magic constants $K_1 = 15n+9 = 99$, $K_2 = 15n+8 = 98$.

Encryption: Now to encrypt twin secret numbers S_1, S_2 , as per step 3 and 4 of algorithm 2.2, split these numbers into n digits for each one, S_1 have six digits, so that let d_i for i = 1, 2, ..., 6, is the digits of S_1 , and S_2 have four digits, so that let e_i for i = 1, 2, ..., 6, are the digits of S_2 , where the last two digits of S_2 are blank spaces. Hence

 $d_1 = 2$, $d_2 = 7$, $d_3 = 4$, $d_4 = 0$, $d_5 = 1$ and $d_6 = 1$, while $e_1 = 3$, $e_2 = 0$, $e_3 = 5$, $e_4 = 0$, e_5 and e_6 are blank spaces.

• As per step 5 of algorithm 2.2, define a function $g:V(W_6^*)\to N$ such that

$$g(v_i) = f(v_i) + (n+1) + d_i \text{ for } i = 1, 2, \dots, 6,$$

$$g(u_i) = \begin{cases} f(u_i) + 2n + e_i & \text{for } i = 1, 2, \dots, 4, \\ f(u_i) & \text{for } i = 5, 6, \end{cases}$$

Hence the new graph given in figure 2 is encrypted labeled strong face wheel graph W_6^* , with twin secret numbers $S_1 = 274011$ and $S_2 = 3050$,

Decryption: Consider the encrypted labeled strong face wheel graph W_6^* , given in figure 2.

• As per step 1 of algorithm 2.3, Find the matrix $A_{n\times 2}$, where

$$a_{ij} = \begin{cases} g(v_i) & \text{for } j = 1, i = 1, 2, \dots, n, \\ g(u_i) & \text{for } j = 2, i = 1, 2, \dots, n, \end{cases}$$

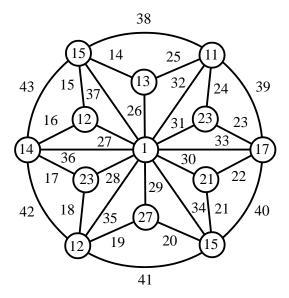


Figure 2:

$$A_{n\times 2} = \begin{bmatrix} g(v_1) & g(u_1) \\ g(v_2) & g(u_2) \\ \vdots & \vdots \\ g(v_n) & g(u_n) \end{bmatrix} \Rightarrow A_{6\times 2} = \begin{bmatrix} 11 & 23 \\ 17 & 21 \\ 15 & 27 \\ 12 & 23 \\ 14 & 12 \\ 15 & 13 \end{bmatrix}$$

• As per step 2 and 3 of algorithm 2.3, construct a matrix $B_{n\times 2}$ and $C_{n\times 2}$, where

$$b_{ij} = \begin{cases} n+1 & \text{for } j = 1, i = 1, 2, \dots, n, \\ 3n-1 & \text{for } j = 2, i = 1, 2, \dots, n, \end{cases}$$

And $c_{ij} = i + j$ for j = 1, 2, i = 1, 2, ..., n, respectively, thus

$$B_{n\times 2} = \begin{bmatrix} n+1 & 3n-1\\ n+1 & 3n-1\\ \vdots & \vdots\\ n+1 & 3n-1 \end{bmatrix} \Rightarrow B_{6\times 2} = \begin{bmatrix} 7 & 17\\ 7 & 17\\ 7 & 17\\ 7 & 17\\ 7 & 17 \end{bmatrix}$$

$$C_{n\times 2} = \begin{bmatrix} 1+1 & 1+2\\ 2+1 & 2+2\\ \vdots & \vdots\\ n+1 & n+2 \end{bmatrix} \Rightarrow C_{6\times 2} = \begin{bmatrix} 2 & 3\\ 3 & 4\\ 4 & 5\\ 5 & 6\\ 6 & 7\\ 7 & 8 \end{bmatrix}$$

• As per step 4 of algorithm 2.3, calculate $H_{n\times 2} = A_{n\times 2} - M_{n\times 2}$, where $m_{ij} = b_{ij} + c_{ij}$

for
$$j = 1, 2, i = 1, 2, ..., n$$
. Thus

$$H_{n\times 2} = \begin{bmatrix} g(v_1) & g(u_1) \\ g(v_2) & g(u_2) \\ \vdots & \vdots \\ g(v_n) & g(u_n) \end{bmatrix} - \begin{bmatrix} (n+1)+(2) & (3n-1)+(3) \\ (n+1)+(3) & (3n-1)+(4) \\ \vdots & \vdots \\ (n+1)+(n+1) & (3n-1)+(n+2) \end{bmatrix} \Rightarrow$$

$$H_{6\times2} = \begin{bmatrix} 11 & 23 \\ 17 & 21 \\ 15 & 27 \\ 12 & 23 \\ 14 & 12 \\ 15 & 13 \end{bmatrix} - \begin{bmatrix} 9 & 20 \\ 10 & 21 \\ 11 & 22 \\ 12 & 23 \\ 13 & 24 \\ 14 & 25 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 7 & 0 \\ 4 & 5 \\ 0 & 0 \\ 1 & -12 \\ 1 & -13 \end{bmatrix}$$

• As per step 5 of algorithm 2.3, $S_1 = d_1 d_2 \dots d_6 = h_{11} h_{21} \dots h_{61} = 274011$ and $S_2 = e_1 e_2 \dots e_4 = h_{12} h_{22} h_{32} h_{42} = 3050$.

3 Conclusion

We have exhibited encryption of twin numbers using strong face wheel graphs. This will be useful to communicate secretly the twin passwords or pin numbers to a single graph. Note that by changing the definition of the function in step 5 of algorithm 2.2, and step 2, 3 and 4 in algorithm 2.3, one can easily create different ways of encryption.

Acknowledgements. Mohammed Ali Ahmed gratefully acknowledges the financial support from Baghdad University, Ministry of Higher Education and Scientific Research, Iraq and to Indian Council for Cultural Relations for supporting to peruse research in Anna University, Chennai, India.

References

- [1] M.A. Ahmed and J. Baskar Babujee, Bimagic labelling for strong face plane graphs, *International Conference on Mathematical Computer Engineering*, VIT University, Chennai, India, (2015).
- [2] J. Baskar Babujee, Bimagic labeling in path graphs, *The Mathematics Education*, **38** (2004), 12-16.
- [3] J. Baskar Babujee, On edge bimagic labeling, J. Combin. Inf. Syst. Sci., 28 (2004), 239-244.

- [4] J. Baskar Babujee and S.Babitha, Encrypting and decrypting number using labeled graphs, *European Journal of Scientific Research*, **75** (2012), 14-24.
- [5] J. Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, (2015), #DS6.
- [6] A. Rosa, On Certain Valuations of the Vertices of Graph, Theory of Graphs (Internat. Sympos, Rome, 1966), Gordon and Breach, N.Y. and Dunod Paris, 1967, 349-355.

Received: December 24, 2016; Published: January 23, 2017