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Abstract

Modern cryptography is heavily based on mathematical theory and
secure communication. It has been recognized that encryption and de-
cryption mostly emerges from mathematical disciplines. In this paper
we present a new combinatorial technique to encrypt and decrypt twin
numbers through labeled graphs using strong face bimagic labeling.
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1 Introduction

The concept of graph labeling was introduced by Rosa 1967 in [6]. A labeling
of a graph G is any mapping that sends a certain set of graph elements to a
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certain set of positive integers. If the domain is the vertex set, or the edge
set respectively, the labeling is called a vertex labeling, or an edge labeling,
respectively. If the domain is V(G) U E(G) then the labeling is called total
labeling.

In 2004 Babujee [2] introduced the notion of edge bimagic total labeling and
also studied in [3] that a generalization of super edge magic total labeling in
which there exists two distinct constants k; and ks such that the edge weights
involved in this labeling are either equal to k; or k. An edge bimagic labeling
is of interest for graphs that do not have any super edge magic total labeling.
More precisely, a graph G with p vertices and g edges is said to be edge bimagic
total if there exists a bijection f : V(G)U E(G) — {1,2,...,p+ ¢} such that
F(u) + f(0) + f(uv) = ky or ks.

In 2015 Mohammed Ali and Babujee [1] introduced the concept of strong
face graph and studied bimagic on strong face plane graphs.

In [1], it is proved that the strong face wheel graph W,* admits (1, 1, 0) super
bimagic labeling for every n > 4, with two magic constants K; = 15n 4+ 9 and

Encryption by using labeling was first introduced by J. Baskar Babujee and
S. Babitha by doing pair labeling for vertices and edges in [4].

In this paper we will use the technique of strong face graph to encrypt two
numbers using the idea of digits number.

2 Main Results

Definition 2.1. [1] Let G be a simple, connected, plane graph. A strong
face graph G* is obtained from G by adding a new vertex to every face of G
except the external face and joining this vertexr with all vertices surrounding
that face, so that all faces of a new graph G* are isomorphic to the cycle Cs.

Moreover, if the faces of original graph G itself are Cs3, then the number of
faces increases twice.

Encryption and Decryption twin numbers using strong face wheel
graph W.

Algorithm 2.2. (Encryption)

Input: The two positive secret numbers S7 and So, where Sy have n digits
and Sy have m digits, n > m.

Output: Encrypted labeled strong face wheel graph W.

begin

Step 1:
ViWr) ={u,v; i =1,2,...,n}, Vo(W¥) ={u; :i=1,2,...,n},
V(W5 = Vi(W) UVa (W),
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Step 2:

Step 3:

Step 4:

Step 5:

end.

E(W!) ={w; :i=1,2,... ,n}U{viv,,vv41 10 =1,2,...,n— 1},
Ex(W)) ={uus,uv; 1i=1,2,...,n}
U{unvr, ujvigq st =1,2,...,n— 1},

E(W;) = Ei(W;) U Ey(Wy),
Define a bijection f: V(W)U E(Wy) — {1,2,...,7n+ 1} such that
flu) =1,
f(unvl) =4n + 1;
f(opvy) = 6n+ 2,
fori=1,2,....n,
flo) =i+1,
flui) =n+1+1,
fluwv;) = 4n + 2 — 24,
fluw;) =5n+2—1,
fluv;) =5n+ 141,
fori=1,2,....n—1,
fluivipr) = dn+1 - 2i,
f(vivigr) = 6n+ 2+,
Split the first secret number Sy into n digits, S1 = dids . .. d,,
where dy,ds, ..., d,, are the first, second, ..., last digits of Si
respectively,
Split the second secret number Sy into n digits (n > m), such that
if m =n, then all the digits of S, e; > 0, for 1 < i <mn, and if
m < n, then the digits e, 11, €mia, ..., €n, are blank spaces,
Define a function g : V(W}) — N such that
g(v) = flu)) +(n+1)+d; fori=1,2,...,n,

flu;)) +2n+e; fori=1,2,... ,n if the digit e; > 0,
g(u;) = ¢ f(uy) fori=1,2,... n if the digits are

blank spaces.

Algorithm 2.3. (Decryption)

Input: Total labeled strong face wheel graph W with twin secret numbers

as a vertices labeling.

Output: The two secret numbers S; and Ss.

begin
Step 1:

Step 2:

Create vertex labeled matriz A, «2, where
B {g(vi) forj=1,1=1,2,...,n,
A glu;) forj=2,i=1,2,....n
Construct a matrix B,,yxo, where
b“:{n+1 forj=1,i=1,2,...,n,
Y 3n—1 forj=2,i=12...,n
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Step 3: Construct a matriz Cpx2, where ¢;j =1+ j for j = 1,2,

i=1,2,...,n,

Step 4: Calculate the matrix H,ywo = Anxa — My, x2, where

ml-j:bij—l—cl-jfm’j:l,li:1,2,...,n

Step 5: Calculate the two secret numbers, S1 = didad,, = hi1ha1 ... hp1 and

end.

Sy =ejey...¢, = hiohoy ... hyo, respectively and ignore all negative
values.

Illustration for Encryption and Decryption Algorithm

Let S; = 274011 and Sy = 3050, be two secret numbers.

Since the digits of S; = n = 6, digits of S5 = m = 4, take a strong face wheel
graph W¢.

o As per step 1 of algorithm 2.2, the vertex set and edge set of W is

defined as

V(W§) = Vi(Wg) U Va(WE), where Vi(W§) = {u,v; :i=1,2,...,6},
Vo(Wg) ={u; 1 =1,2,...,6} and E(Wg) = Ey(W§) U Ey(W§), where
Ex(W§) ={uwv; :i=1,2,...,6} U{vivg,v;v41 11 =1,2,...,5},

Ey(W§) = {uug,wv; 1 i =1,2,...,6} U{ugvr, uvipr :i=1,2,...,5}.
As per step 2 of algorithm 2.2, define a bijection f: V(W¢)U E(W§) —
{1,2,...,42 4 1} such that

f(u) =1, where u is a center vertex of Wy,

flupvy) =4n+ 1= f(ugvy) = 25,

fopvy) = 6n+2 = f(vgvy) = 38,

fori=1,2,...,6,

f(UZ):Z+1,
flu))=Mn+1)+i="7+1,
fuv;) = 4n + 2 — 2i = 26 — 24,

fluu;) =5n+2—1=32—1,
fluv;)) =5n+14+1i=31+1,
fore=1,2,...,5,

fuvigr) = 4n+ 1 — 2i = 25 — 24,
f(vvis1) =6n+2+4+1i=38+1.
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Figure 1:

It is easy to observe that the strong face wheel graph W given in figure 1
admits face bimagic labeling with two different magic constants K; = 15n+9 =
99, Ky = 15n 4+ 8 = 98.

Encryption: Now to encrypt twin secret numbers 57, S5, as per step 3
and 4 of algorithm 2.2, split these numbers into n digits for each one, S; have
six digits, so that let d; for ¢ = 1,2,...,6, is the digits of S7, and S5 have four
digits, so that let e; for i = 1,2,...,6, are the digits of Sy, where the last two
digits of Sy are blank spaces. Hence

d1:2,d2:77d3:47d4:0,d5:1andd6:17Whﬂe€1:3,€2:07
e3 = b, e, = 0, e5 and eg are blank spaces.

e As per step 5 of algorithm 2.2, define a function g : V(W§) — N such
that
g(v;) = flv;))+(n+1)+d; fori=1,2,...,6,

flu))+2n+e fori=1,2,...,4,
9(u;) = .
f(uy) for i = 5,6,

Hence the new graph given in figure 2 is encrypted labeled strong face wheel
graph W¢, with twin secret numbers S; = 274011 and Sy = 3050,

Decryption: Consider the encrypted labeled strong face wheel graph W,
given in figure 2.

e As per step 1 of algorithm 2.3, Find the matrix A, o, where

g(v)) forj=1,i=1,2,...,n,
iy = . .
! g(u;)) forj=2i=12,...,n,
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Figure 2:
(11 23]
g(v1) g(w) 17 21
g(v2)  g(ug) 15 27
g(vn)  g(uy) 1412
15 13

e As per step 2 and 3 of algorithm 2.3, construct a matrix B, «2 and C,, 2,
where

b - n+1 forj=11=1,2,...,n,
Y 18n—1 forj=2,i=1,2,...,n,
And ¢;; =1+ jfor j =1,2,7i=1,2,...,n, respectively, thus

- 7 17]
n+1 3n—-1 7 17
n+1 3n—-1 7 17
Byxa = : : = Bgxa = 7 17
n+1 3n—-1 (Y
) |7 17]
) 2 3]
1+1 1+2 3 4
2+1 242 4 5
Cpxa = : : = Cpxa = 5 6
n+1 n+2 6 7
) |7 8]
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e As per step 4 of algorithm 2.3, calculate H,,xo = A,x2 — M, 2, where
mij = bij + Cij

for j=1,2,i=1,2,...,n. Thus

Hn><2 =

g(v1)
9(?12)

g(u1)
g(uz)

9(0a) g(un)
231

11
17
15
12
14
15

21
27
23
12
13

[ 9

10
11
12
13
14

(n+1)+(2)
(n+1)+ (3)

(3n — 1)+ (3)

(3n—1) + (4) N

D)+ (n+1) Bn-1)+n+2)
20|

21
22
23
24
25

— o= O R =~ N

3

0

5

0
~12
~13,

e As per step 5 of algorithm 2.3, S1 = dids . ..dg = hy1hey ... hgr = 274011
and 52 — €1€2...€64 = h12h22h32h42 = 3050.

3 Conclusion

We have exhibited encryption of twin numbers using strong face wheel graphs.
This will be useful to communicate secretly the twin passwords or pin numbers
to a single graph. Note that by changing the definition of the function in step
5 of algorithm 2.2, and step 2, 3 and 4 in algorithm 2.3, one can easily create
different ways of encryption.
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