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Abstract

In this paper, we investigate the influence of minimal X-ss-semipermutable
subgroups on the structure of finite groups and give some new criteria
of p-nilpotency of finite groups.
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1 Introduction

Throughout the following, G always denotes a finite group. Most of the nota-
tion is standard and can be found in [2, 7].
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Let A and B be subgroups of a group G. A is said to permute with B if
AB = BA. It is known that AB is a subgroup of G if and only if A permutes
with B. Some generalizations of permutable subgroups were introduced. For
example, A is said to be s-semipermutable in G [9] if AP = PA for any Sylow
p-subgroup P of G with (|A|, p) = 1. Let X be a nonempty subset of G. Then
A is said to be X-permutable with B [3] if there exists some element x in X
such that ABx = BxA. A is said to be X-s-semipermutable in G[4] if A is
X- permutable with every Sylow subgroup of some supplement T of A in G.
There were many papers related with the applications of partially permutable
subgroups of various types (for example the work in [1, 3, 4, 6, 8, 9]).

As a continuation, the concept of X-ss-semipermutability[10] was intro-
duced:

Let X be a nonempty subset of a group G. Let H be a subgroup of a
group G. Then we say that X-ss-semipermutable in G if H has a supplement
T in G such that H is X-permutable with every Sylow p-subgroups of T with
(p, |H|) = 1.

Obviously, the X-permutability and X-s-semipermutability imply the X-
ss-semipermutability. However, the converse does not hold. For example, let
G = [C5]C4, where C5 is a group of order 5 and C4 is the automorphism group
of C5 of order 4. Let X = 1 and H be a subgroup of C4 of order 2. Then H
is X-ss-semipermutable in G, but not X-s-semipermutable in G.

In this paper, we will analyze the structure of finite groups with minimal
X-ss-semipermutable subgroups and give some new criteria of p-nilpotency of
finite groups.

2 Preliminaries

Throughout this paper, we will use Xss(H) to denote the set of all such sup-
plements T of H in G that H is X-permutable with every Sylow p-subgroups
of T with (p, |H|) = 1.

Lemma 2.1 [10] Let A be a subgroup of a group G, X be a nonempty subset
ofG and let N be a normal subgroup of G.

(1) If A is X-ss-semipermutable in G, then AN/N is XN/N-s-semipermutable
in G/N .

(2) If A is X-ss-semipermutable in G, A ≤ D ≤ G and X ⊆ D, then A is
X-ss-semipermutable in D.

(3) If A is X-ss-semipermutable in G and X ⊆ D, then A is D-ss-
semipermutable in G.

(4) If T ∈ Xss(A) and A ≤ NG(X), then T x ∈ Xss(A) for any x ∈ X.

Lemma 2.2 Let P be a p-subgroup of G, Q a q-subgroup of G and PQ ≤ G.
If R is a subnormal subgroup of G, then PQ ∩R = (P ∩R)(Q ∩R).
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Proof. Since (|PQ : P |, |PQ : Q|) = 1, (|PQ ∩ R : P |, |PQ ∩ R : Q|) = 1. By
[2, Lemma 3.8.2], PQ ∩R = (PQ ∩R ∩ P )(PQ ∩R ∩Q) = (P ∩R)(Q ∩R).

Lemma 2.3 [9] Let A be a subgroup of a group G. If A is s-semipermutable
in G and A ≤ H ≤ G, then A is s-semipermutable in H.

3 Main results

Theorem 3.1 Let G be a group, p be the smallest prime diving |G| and X be a
soluble normal subgroup of G. Suppose that every subgroup of G of order p or 4
(if the Sylow p-subgroup of G is a non-abelian 2-group) is X-ss-semipermutable
in G. Then G is p-nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of
minimal order. We prove the theorem by the following steps:

(1) Op′(G) = 1.
If Op′(G) 6= 1. Since X is a soluble normal subgroup of G, XOp′(G)/Op′(G)

is a soluble normal subgroup of G/Op′(G). Let K/Op′(G) is a subgroup of
G/Op′(G) of order p or 4 (if the Sylow p-subgroup of G/Op′(G) is a non-
abelian 2-group), then there exists a subgroup L of G of order p or 4 (if Sylow
p-subgroup of G is a non-abelian 2-group) such that K = LOp′(G). By Lemma
2.1, G/Op′(G) satisfies the hypothesis. The choice of G yields that G/Op′(G) is
p-nilpotent. ConsequentlyG is p-nilpotent, a contradiction. HenceOp′(G) = 1.

(2) Op(G) 6= 1
Suppose that Op(G) = 1. Since Op′(G) = 1, X = 1. Let R be a minimal

subnormal subgroup of G. If |R| = q, where q is a prime divisor of |G|. Then
R ≤ Oq(G), a contradiction. Therefore R is a non-abelian simple subgroup.
Let H be a subgroup of G of order p, then H is X-ss-permutable in G. Set
T ∈ Xss(H), then G = HT . Let Q ∈ Sylq(G) and M ∈ Sylq(T ), where q 6= p.
Then there exists an element g of G such that Q = M g. Since H ≤ G =
NG(X), T g ∈ Xss(H). Thus HQ = QH. Hence H is s-semipermutable in G.
For any a ∈ R, HQa ≤ G. By Lemma 2.2, HQa ∩ R = (H ∩ R)(Qa ∩ R) =
(H ∩R)(Q ∩R)a. Since HQa ∩R is a pq-group, (H ∩R)(Q ∩R)a is solvable.
It follows that (H ∩R)(Q∩R)a 6= R. Hence R is not a simple subgroup by [5,
Theorem 3]. This contradiction shows that Op(G) 6= 1.

(3) Op(G) ≤ Z∞(G).
Since p is the smallest prime diving |G|, it is equivalent to prove that every

G-chief factor L/K in Op(G) is of prime order. Assume that the assertion is not
true and let L/K be a counterexample with |K| minimal, that is, L/K is non-
cyclic but for every chief factor U/V of G below Op(G) with |V | < |K|, U/V
is cyclic. Let R/K be a chief factor of P/K, where P is a Sylow p-subgroup
of G and R ≤ L. Then R =< a > K for any a ∈ R \ K. Let H =< a >.



442 Fengyan Xie, Zhina Zhang and Yongyan Yang

If |H| = p or 4 (if P is non-abelian 2-group). Then by the hypothesis, H is
X-ss-semipermutable in G. Set T ∈ Xss(H), then G = HT . Let Q ∈ Sylq(T ),
where q 6= p. Then HQx = QxH for some x ∈ X. Since Qx is a Sylow q-
subgroup of G, HQx ∩ L = (H ∩ L)(Qx ∩ L) = H by Lemma 2.2. Thus H is
normal in HQx. It follows that R/K is normal in HQxK/K. Since R/K is a
chief factor of P/K, R/K is normal in G/K. The choice of L/K shows that
L/K = R/K is cyclic. This contradiction means that all elements of R \K of
order p and order 4 (if P is a non-abelian 2-group) are contained in K. Since
L/K = (R/K)G/K = RG/K, we have that all elements of L of order p and
4 (if P is a non-abelian 2-group) are contained in K. Let U/V be any chief
factor of G below K. Then, by the choice of L/K, U/V is of order p and so
G/CG(U/V ) is abelian of exponent dividing p− 1. Put W = ∩U≤KCG(U/V ),
where U/V is a G-chief. Then W is normal in G and G/W is abelian of
exponent dividing p− 1. Let Q be any Sylow q-subgroup of W , where q 6= p.
Then by [2, A(12.3)], Q acts trivially on K. Moreover, since all elements of
L of order p and 4 (if P is a non-abelian 2-group) are contained in K, Q
acts trivially on L/K by the well-known Blackburn’s theorem, from which we
conclude that W/CW (L/K) is a p-group. It follows that W ≤ CG(L/K) by
[2, Lemma 1.7.11]. Since G/W = G/ ∩U≤K CG(U/V ) is abelian of exponent
dividing p − 1, also G/CG(L/K) is. Now, by [7, I, Lemma 1.3], we have that
L/K is of order p. This contradiction shows that (3) holds.

(4) F ∗(G) = F (G) = Op(G).

Let F = F ∗(G). By (1), F (G) = Op(G) and Op′(F ) = 1. Then by F
is a quasinilpotent normal subgroup of G, Op(F ) = Op(G) is the maximal
normal subgroup of F . Thus the soluble normality of X shows that X ∩ F ≤
Op(F ). Set X = XOp(F )/Op(F ), F = F/Op(F ). Then X ∩ F = 1 and hence
F ≤ CGX. If F 6= F (G). Let R/Op(F ) be a minimal subnormal subgroup
of G/Op(F ) and R ≤ F . We assume that R is not p-nilpotent. If not, let
S be a normal Hall p′-subgroup. Since p is the smallest prime diving |G|, S
is soluble. Then the minimal subnormal subgroup of S is prime order and
contained in Op′(G). By Op′(G) = 1, S = 1. It follows that R is p-group and
therefore R ≤ Op(F ). This contraction shows that R is not p-nilpotent. Let
G = G/Op(F ), R = R/Op(F ) Since R is the minimal subnormal subgroup of
G, R is a non-abelian simple subgroup. Let M be a minimal non-p-nilpotent
subgroup of R. Thus M = [A]B, where A is a Sylow p-subgroup of M ,
exp(A) = p or 4 and B is a p′-subgroup of M . If A ≤ Op(F ), then by (3) M
is p-nilpotent. If A 
 Op(F ), then there exists an element a of A such that
a ∈ A \ Op(F ). Let H =< a >, then |H| = p or |H| = 4. By the hypothesis,
H is X-ss-semipermutable in G. Let H = HOp(F )/Op(F ). Hence H is X-
ss-permutable in G. Set T ∈ Xss(H), then G = H T . Let Q ∈ Sylq(G) and
M ∈ Sylq(T ), where q 6= p. Then there exists an element g of G such that

Q = M
g
. Since H ≤ F ≤ CGX, T

g ∈ Xss(H). Thus H Q = Q H. Hence H is
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s-semipermutable in G. Since H ≤ R, H is s-semipermutable in R by Lemma
2.3. Let K ∈ SylqR. For any α ∈ R, H K

a
is pq-subgroup of R. SinceR is a

non-abelian simple subgroup, H K
a 6= R. Hence R is not a simple subgroup

by [5, Theorem 3]. This contradiction shows that F 6= F (G).
(5) Final contradiction.
Put W = ∩U≤KCG(U/V ), where U/V is a G-chief in Op(G). Since F (G) ≤

CG(U/V ), F (G) ≤ W . Suppose that F (G) 6= W and let R/F (G) be a minimal
normal subgroup of G/F (G) with R ≤ W . Thus R/F (G) is quasinilpotent
and so is R. It follows that R ≤ F (G), a contradiction. Thus, F (G) = W .
Since G/CG(U/K) is is abelian of exponent dividing p − 1 by the preceding
argument (3), G/F (G) = G/W is abelian of exponent dividing p− 1. By (3),
G is p-nilpotent. Thus the proof is complete.

Corollary 3.2 Let G be a group and p be the smallest prime diving |G|. Sup-
pose that every subgroup of G of order p or 4 (if the Sylow p-subgroup of G is
a non-abelian 2-group) is s-semipermutable in G. Then G is p-nilpotent.

Corollary 3.3 Let G be a soluble group and p be the smallest prime diving
|G|. Suppose that every subgroup of G of order p or 4 (if the Sylow p-subgroup
of G is a non-abelian 2-group) is G-permutable in G. Then G is p-nilpotent.

Corollary 3.4 Let G be a group and p be the smallest prime diving |G|. Sup-
pose that every subgroup of G of order p or 4 (if the Sylow p-subgroup of G is
a non-abelian 2-group) is F (G)-permutable in G. Then G is p-nilpotent.

Corollary 3.5 Let G be a group, p be the smallest prime diving |G| and X be a
soluble normal subgroup of G. Suppose that every subgroup of G of order p or 4
(if the Sylow p-subgroup of G is a non-abelian 2-group) is X-s-semipermutable
in G. Then G is p-nilpotent.

Corollary 3.6 Let G be a group and X be a soluble normal subgroup of G.
Suppose that every primary cyclic subgroup of G (if the Sylow 2-subgroup of
G is a non-abelian 2-group) is X-ss-semipermutable in G. Then G is a Sylow
Tower group.
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