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Abstract

The purpose of this paper is to introduce the notion of dependent ele-
ments and free actions in inverse semirings. We consider some mappings
on semiprime inverse semirings and prove that they are free actions.

Mathematics Subject Classification: 16Y60, 16W25

Keywords: Inverse semiring, semiprime inverse semiring, left central-
izer,derivation, generalized derivation, dependent element, free action

1 Introduction

By semiring we mean a nonempty set S with two binary operations ’+’ and
’.’ such that (S,+) and (S, .) are semigroups where + is commutative with
absorbing zero 0 (i.e; a + 0 = 0 + a = a, a.0 = 0.a = 0 ∀a ∈ S) and both left
and right distributive laws holds in S. Introduced by Karvellas[7], a semiring
S is called inverse semiring if for every a ∈ S there exists a unique element
á ∈ S such that a+ á+ a = a and á+ a+ á = á, á is called pseudo inverse of
a. Karvellas [7] proved that for all a, b ∈ S, (a.b)́ = á.b = a.b́ and áb́ = ab. In
[2], Bandlet and Petrich also considered inverse semirings with some conditions
namely (A-1)-(A-4). Throughout this paper, S we will denote inverse semiring
which satisfies (A-2) condition of Bandlet and Petrich[2] i.e; for every a ∈ S,
a+ á is in center Z(S) of S. This class of inverse semiring has been identified
and studied as MA semirings in [3, 4]. It is significant to note that commutative
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inverse semiring and a distributive lattice are generalization of MA semirings.
Also, if R is non-commutative ring and S is inverse semiring satisfying A2

then S1 = {(r, s) : r ∈ R, s ∈ S} is a non-commutative inverse semiring where

addition and multiplication are pointwise and (r, s)́ = (−r, ś).An ideal J of S
is inverse ideal if j ∈ J implies j́ ∈ J . For more examples, we refer readers to
[3].

By [3], xy + yx́ = xy + ýx means commutator in inverse semiring and it
will be denoted by [x, y]. We will make use of commutator identites [xy, z] =
x[y, z] + [x, z]y and [x, yz] = [x, y]z + y[x, z](for proof see [3]). S is prime if
aSb = (0) implies a = 0 or b = 0 and semiprime if aSa = (0) implies a = 0.
A mapping d : S → S is called derivation if d(x + y) = d(x) + d(y) and
d(xy) = d(x)y + xd(y),∀x, y ∈ S. If α and β are automorphisms of S then an
additive mapping d is (α, β) derivation if d(xy) = d(x)α(y)+β(x)d(y), x, y ∈ S
.Following [13], an additive mapping T : S → is called left(right) centralizer
if T (xy) = T (x)y (xT (y)),∀x, y ∈ S and T is centralizer if it is both left and
right centralizer.

The concept of free action was introduced by Murray and von Neumann
[9] and von Neumann for commutative von Neumann algebras[10]. Recently,
Vukman and Kosii-Ulble[12] further explored dependent elements of certain
mappings on prime and semiprime rings.
Here in this paper, we define dependent element in inverse semirings as follows:
An element a ∈ S is dependent element of the mapping F : S → S if F (x)a+

áx = 0,∀x ∈ S. Consider S2 = {
(

0 0
(r1, s) (r2, s)

)
, r1, r2 ∈ R, s ∈ S} ⊆

M2(S1) then S2 is inverse semiring with respect to usual operation of addition

and multiplication of matrices. Define F : S2 → S2 by F

(
0 0

(r1, a) (r2, a)

)
=

(
0 0

(r1, a) 0

)
,∀(r, a) ∈ S1. If we fix (t, b) ∈ S1 then c =

(
0 0

(t, b) 0

)
is

dependent element of F. The set of all dependent element of the mapping
F will be represented by D(F ). If the only dependent element of a mapping
F : S → S is zero then F is known as free action. Motivated by the work
of Laraji and Thaheem[8] and then Chadhary and Samman[1], we prove that
an element a is dependent element of left centralizer T on semiprime inverse
semiring S iff it is in center of S and T (a) + á = 0 holds. We also consider
a few mappings related to centralizer and derivation and show them they are
free actions.

We start with the following useful Lemma.

Lemma 1.1.{Lemma 1.1, [11]} Let S be inverse semiring then a + b = 0
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implies that a = b́ ,∀a, b ∈ S.

Theorem 2.1. Let S be a semiprime inverse semiring and T be a left central-
izer on S then a ∈ D(T ) if and only if a ∈ Z(S) and T (a) + á = 0.

Proof. Let a ∈ D(T ) then

T (x)a+ áx = 0 (1)

Replacing x by xy and post multiplying (1) by z and using Lemma 1.1, we get
T (x)yaz = axyz. Replacing x by xyz in (1), we have T (x)yza+áxyz = 0. Thus,
we get [a, z]T (x) = 0. By (1) and Lemma 1.1., we obtain [a, z]a = 0. Replacing
z with zwz, we have [a, z]wa = 0. Put w = wz, we get [a, z]wza = 0. Also, we
have [a, z]waz = 0. Adding pseudo inverse of [a, z]wza = 0 in last equation and
then using semiprimeness, we have [a, z] = 0.By Lemma 1.1 a ∈ Z(S). Thus
T (a)x = T (x)a,∀x ∈ S. From this and (1) we obtain T (a)+ á = 0. Conversely,
let a ∈ Z(S) and T (a) + á = 0 then T (x)a + áx = (T (a) + á)x = 0,∀x ∈ S.
Hence a ∈ D(T ).

Corollary 2.2. If T is left centralizer on semiprime inverse semiring S then
D(T ) is subsemiring of Z(S).

Proof : Let a, b ∈ D(T ), then by theorem 2.1 a, b ∈ Z(S) and T (a) + á =

0, T (b) + b́ = 0. Thus a + b ∈ Z(S) and T (a + b) + (a + b)́ = 0 which implies
that a+ b ∈ D(T ). Also if a ∈ D(T ) then T (x)a+ax́ = 0,∀x ∈ S which shows
á ∈ D(T ). Hence D(T ) is subsemiring of Z(S).

Corollary 2.3. If T is left centralizer on semiprime inverse semiring S then
J = Ann(D(T )) is inverse ideal of S such that T (J) ⊆ J.

Proof. As D(T ) ∈ Z(S) so an easy calculation shows that J is ideal. Also,
if i ∈ J then ai = 0,∀a ∈ D(T ) which implies that ái = 0,∀a ∈ D(T ). Thus
Ann(D(T )) is inverse ideal of S. As D(T ) ⊆ Z(S) so T (i)a = T (ia) = T (ai) =
0, ∀a ∈ D(T ). This shows that T (J) ⊆ J .

Theorem 2.4. Every left centralizer T on prime inverse semiring is a free
action provided T is not an identity map.

Proof. Let a ∈ D(T ) then T (x)a + áx = 0,∀x ∈ S. Replacing x with xy
and using Theorem 2.1., we have (T (x) + x́)ya = 0, ∀x, y ∈ S. This implies
that either a = 0 or T (x) + x́ = 0. If T (x) + x́ = 0 then by Lemma 1.1 , T
becomes identity map.
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Theorem 2.5. Let T be a left centralizer of a semiprime inverse semiring
S. Then ψ : S → S, defined by ψ(x) = [T (x), x], x ∈ S is a free action.

Proof. Let a ∈ D(ψ) then by definition

[T (x), x]a+ áx = 0, x ∈ S (2)

By lemma 1.1. , we have [T (x), x]a = ax, x ∈ S. Linearizing (2), we get

[T (x), y]a+ [T (y), x]a = 0 (3)

Replacing y with ay , we get

a[T (x), y]a+ [T (x), a]ya+ T (a)[y, x]a+ [T (a), x]ya = 0 (4)

Using lemma 1.1 in (3) and using it in (4), we have a[T (y), x]á+ [T (x), a]ya+
T (a)[y, x]a+ [T (a), x]ya = 0. Replacing x and y with a, we get

a[T (a), a]á+ [T (a), a]a2 + T (a)[a, a]a+ [T (a), a]a2 = 0 (5)

Now, [T (a), a]a2 +T (a)[a, a]a = (T (a)a+ áT (a))a2 +T (a)(a+ á)a2 = (T (a)a+
T (a)á + áT (a) + T (a)a)a2 = (T (a)a + áT (a))a2 = [T (a), a]a2. Thus from (5)
we obtain, a[T (a), a]á+ [T (a), a]a2 + [T (a), a]a2 = 0. But [T (x), x] = ax so we

have, a3́ + a3 + a3 = 0 or a3 = 0. Post-multiplying (2) by a2, we get axa2 = 0.
This gives a2 = 0. Again, from (2), we obtain a = 0. This proves that ψ is a
free action.

Theorem 2.6. Let S be a semiprime inverse semiring and d : S → S a
derivation then the mapping ϕ : S → S, defined by ϕ(x) = [d(x), x], x ∈ S, is
a free action.

Proof. Let a ∈ D(ϕ) then by definition

[d(x), x]a+ áx = 0, ∀x ∈ S (6)

By lemma 1.1. we get, [d(x), x]a = ax, x ∈ S. Linearizing (6),we have

[d(x), y]a+ [d(y), x]a = 0, x, y ∈ S (7)

Replacing y with xy in (7), we have x[d(x), y]a + x[d(y), x]a + 2[d(x), x]ya +
d(x)[y, x]a+[x, x]d(y)a = 0 or x[d(x), y]a+x[d(y), x]a+2[d(x), x]ya+d(x)[y, x]a+
x(x+ x́)d(y)a = 0 or x[d(x), y]a+x(d(y)x, x́d(y))a+2[d(x), x]ya+d(x)[y, x]a+
xd(y)(x + x́)a = 0 or x[d(x), y]a + x(d(y)x + x́d(y) + d(y)x + d(y)x́)a +
2[d(x), x]ya + d(x)[y, x]a = 0 or x{[d(x), y]a + [d(y), x]a} + 2[d(x), x]ya +
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d(x)[y, x]a = 0. From (7), we have 2[d(x), x]ya + d(x)[y, x]a = 0. Replacing
y with ya in last equation and then using it again, we get

d(x)y[a, x]a = 0 (8)

Replacing y by xy in above relation, we get

d(x)xy[a, x]a = 0 (9)

Multiplying (8) by x on the left, we have xd(x)y[a, x]a = 0. From this and (9),
we get [d(x), x]y[a, x]a = 0. Replacing y by ay we have,

axy[a, x]a = 0 (10)

Replacing y by a2y , we have

axa2y[a, x]a = 0 (11)

Multiplying (10) on the left by a and replacing y by ay , we have a2xay[a, x]a =
0. Adding pseudo inverse of last equation in (11) and then replacing y by ya,
we arrive at a[a, x]a = 0,∀x ∈ S. In particular, a[d(a), a]a = 0. Thus a3 = 0
which implies that a = 0 (see proof of last theorem). This shows that ϕ is a
free action on S.

Following [1], we canonically define (α, β) generalized derivation of inverse
semiring S. Let α and β be automorphisms of S then an additive mapping
G : S → S is called generalized (α, β) derivation with the associated (α, β)
derivation d, if there exists an (α, β) derivation d of S such that G(xy) =
α(x)G(y) + d(x)β(y),∀x, y ∈ S. For G = d, G is (α, β) derivation and for
d = 0 and α = I (identity map on S), G is right centralizer.

Theorem 2.7.Let τ : S → S be a generalized (α, β)-derivation with the
associated (α, β)-derivation d of S then a ∈ D(τ) implies a ∈ D(α + d).

Proof. Let a ∈ D(τ) then

τ(x)a+ áx = 0,∀x ∈ S (12)

By lemma 1.1 we have τ(x)a = ax, x ∈ S. Replacing x by xy in (12) and using
the last relation, we get

(τ(x)á+ α(x)a)y + d(x)β(y)a = 0 (13)

Multiplying (13) by z on the right and using Lemma 1.1., we have

(τ(x)á+ α(x)a)yz = d(x)β(y)áz (14)
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Replacing y with yz in (13), we have (τ(x)á + α(x)a)yz + d(x)β(yz)a = 0.
This together with (14), we get d(x)β(y)[β(z)a + áz] = 0. But β is onto, so
we have d(x)y[β(z)a + áz] = 0. Replacing y with [β(z)a + áz]yd(x) and us-
ing semiprimeness of S, we get d(x)[β(z)a + áz] = 0. By lemma 1.1, we have
d(x)β(z)a = d(x)az, x, z ∈ S. From (13) and semiprimeness of S , we have
τ(x)á+ (α+ d)(x)a = 0. Thus (α+ d)(x)a+ áx = 0 and hence, a ∈ D(α+ d).

Corollary 2.8. Every (α, β)-derivation of a semiprime inverse semiring is
a free action.

Proof. Put τ = d in above theorem then d is (α, β)-derivation so , we have
(α+ τ)(x)a+ áx = 0. This implies α(x)a+ τ(x)a+ áx = 0. From (12), we get
α(x)a = 0, x ∈ S. As α is onto, we have xa = 0,∀x ∈ S or a = 0. Thus τ is
free action.

Theorem 2.9. Let S be a semiprime inverse semiring and T be a centralizer
on S and d a derivation of S then µ = d ◦ T is a free action.
Proof. Let a ∈ D(µ) then by definition

(d ◦ T )(x)a+ áx = 0, x ∈ S (15)

Replacing x by xy in above equation, we get

d ◦ T (x)ya+ T (x)d(y)a+ áxy = 0 (16)

Multiplying (15) by y from right side and using Lemma 1.1., we get d◦T (x)ay =
axy,∀x, y ∈ S. From this and (16) we have, d ◦ T (x)[a, y] + T (x)d(y)á =
0, x, y ∈ S. Replacing y by ay we get, d◦T (x){[a, a]y+a[a, y]}+T (x)d(a)yá+
T (x)ad(y)á = 0. But (a+ á)ay + a(ay + yá) = (aay + áay + aay + ayá) =
a[a, y]. Therefore, d◦T (x)a[a, y]+T (x)d(a)yá+T (x)ad(y)á = 0. Using Lemma
1.1. in (15) and using it in last equation , we get

ax[a, y] + T (x)d(a)yá+ T (x)ad(y)á = 0 (17)

Multiplying left side of (17) by z, we get

zax[a, y] + zT (x)d(a)yá+ zT (x)ad(y)á = 0 (18)

Replacing x by zx in (17), we have azx[a, y]+T (zx)d(a)yá+T (zx)ad(y)á = 0.
Applying lemma 1.1, in last equation and using it in (18), we get [a, z]x[a, y] =
0, which implies that [a, z] = 0, z ∈ S. This implies that T (x)d(y)a = 0. Re-
placing y by T (y) in last equation, we get T (x)d ◦T (y)a = 0. Applying lemma
1.1 in (15) and using it in last equation, we get T (x)áy = 0 or T (x)a = 0, x ∈ S.
This shows that d(T (x))a + T (x)d(a) = 0. Multilying on left side of by a, we
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get d(T (x))a2 + T (x)d(a)a = 0, or d(T (x))a2 = 0. Applying lemma 1.1 in (15)
and using it in last equation, we have a = 0. Hence d ◦ T is a free action.

Theorem 2.10. Let T be a left centralizer of a semiprime inverse semir-
ing then η = T (x)x+ xT (x) is a free action on S.

Proof. Let a ∈ D(η) then by definition

(T (x)x+ xT (x))a+ áx = 0, x ∈ S (19)

From Lemma 1.1. we get, (T (x)x + xT (x))a = ax, x ∈ S. Linearizing (19) ,
we get

(T (x)y + T (y)x+ yT (x) + xT (y))a = 0 (20)

Replacing both x and y by a in last equation, we have a2 + a2 = 0.By Lemma
1.1. a2 = á2. Now replacing y by xa in (20), we get (T (x)x + xT (x)a +
xaT (x) + T (x)ax)a = 0. Thus axa + xaT (x)a + T (x)axa = 0. Replacing x

by a in last equation, we have a3 + a2T (a)a + T (a)a3 = 0, But a2 = a2́ so,

a3 + á2T (a)a + T (a)a3 = 0. Now, pre-multiplying (19) by a and replacing x
by a, we have

aT (a)a2 + a2T (a)a+ aá2 = 0 (21)

Multiplying (19) on right side by a, we get T (a)a3 + aT (a)a2 + aá2 = 0. This

together with (21) and Lemma 1.1. we get, T (a)a3 + á2T (a)a = 0. Thus a3 = 0
which implies that a = 0. Hence η is a free action.

References

[1] Muhammad Anwar Chaudary, M.S. Samman, Free actions on semirpime
rings, Mathematica Bohemica, 133 (2008), 197-208.

[2] H.J. Bandelt, M. Petrich, Subdirect products of rings and distrbutive lat-
tices, Proc. Edin. Math. Soc., 25 (1982), 155-171.
http://dx.doi.org/10.1017/s0013091500016643

[3] M. A. Javed, M. Aslam and M. Hussain, On condition (A2) of Bandlet
and Petrich for inverse semirings, International Mathematical Forum, 7
(2012), 2903-2914.

[4] M. A. Javed, M. Aslam, Some Commutativity conditions in Prime MA-
semirings, ARS Combinatoria, 114 (2014), 373-384.

[5] S. Ghosh, A characterization of Semirings which are Subdirect Products of
a Distributive Lattice and a Ring, Semigroup Forum, 59 (1999), 106-120.
http://dx.doi.org/10.1007/pl00005999



564 S. Sara, M. Aslam and M. A. Javed

[6] J.S. Golan, The Theory of Semirings with Applications in Mathematics
and Theoretical Computer Science, John Wiley and Sons. Inc., New York,
1992.

[7] P.H. Karvellas, Inversive semirings, J. Austral. Math. Soc., 18 (1974),
277-288. http://dx.doi.org/10.1017/s1446788700022850

[8] A. Laradji, A.B. Thaheem, On dependent elements in semiprime rings,
Math. Japonica, 47 (1998), 29-31.

[9] F.J. Murray, J. von Neumann, On rings of operators, Ann. Math., 37
(1936), 116-229. http://dx.doi.org/10.2307/1968693

[10] J. von Neumann, On rings of operators. III, Ann. Math., 41 (1940), 94-
161. http://dx.doi.org/10.2307/1968823

[11] S. Sara, M. Aslam and M.A. Javed, On Centralizer of semiprime inverse
semirings, Accepted in Discussiones Mathematicae - General Algebra and
Applications.

[12] J. Vukman, I. Kosi-Ulbl, On dependent elements in rings, Int. J. Math.
Math. Sci., 54 (2004), 2895-2906.
http://dx.doi.org/10.1155/s0161171204311221

[13] B. Zalar, On centralizer of semiprime rings, Comment. Math. Univ. Car-
olin., 32 (1991), 609-614.

Received: April 21, 2015; Published: June 10, 2016


