International Mathematical Forum, Vol. 11, 2016, no. 12, 591 - 598 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6447

Necessary Conditions for a Generalized Absolutely

δ -Continuous of Real Valued Function

Manuharawati

Department of Mathematics, Faculty of Mathematics and Natural Sciences Universitas Negeri Surabaya, Surabaya-East Java-Indonesia

Copyright © 2016 Manuharawati. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let δ be a positive function on $[a,b] \subset \mathbb{R}$. By referring to system of fundamental δ –interval, the basic δ –calculus properties, and the concept of absolutely continuous, generalized absolutely continuous of a real valued function, this paper will explain about the properties of weakly (and strongly) absolutely δ –continuous and weakly (and strongly) generalized absolutely δ –continuous of a real valued function on a cell $[a,b] \subset \mathbb{R}$ with respect to the Lebesgue measure. Several studies on sufficient conditions for function $F: [a,b] \to \mathbb{R}$ are generalized strongly absolute δ – continuous among others are: (i) a δ –derivative of F exists at every $x \in [a,b]$; (ii) a δ –derivative of F exists nearly everywhere on [a,b] and F is δ –continuous on [a,b].

Keywords: absolute δ –continuous, strongly absolute δ –continuous, (strongly) generalized absolute δ –continuous, system of fundamental δ –interval

1 Introduction

Sufficient conditions for an absolutely continuous function with respect to Lebesgue measure of real valued function had been discussed (in [4], [5], [7,[8], [11], [12], [13], and [14]). The interval model that had been used in the concept of absolutely continuous was an elementary interval in \mathbb{R} which defined in [2], p.44-45.

In mathematical analysis: the concept of continuity, absolute continuity, and generalized absolute continuity of a function are widely used in developing the theory of descriptive integral, like Newton integral, Lebesgue integral, Dendjoy

integral ([2], [6]), and special Dendjoy integral ([3], [9], [15]). The properties of continuity, absolute continuity, and generalized absolute continuity of a real valued function which were used in the discussion of the above mentioned integral had been studied by mathematicians ([6], [15]).

Given a positive δ on a cell [a, b], a system of fundamental δ –interval at a point in \mathbb{R} which is a generalization of the elementary system interval in \mathbb{R} is constructed ([3]). Some basic properties of calculus on \mathbb{R} associated with the system of fundamental δ –interval are successfully studied ([6]). Referring to continuity, weakly and strongly absolute continuity, the weakly and strongly generalized absolute continuity used in defining descriptive integral mentioned above, the types of continuity relative to the fundamental δ – interval are constructed and successfully proved that constructed function is a linear space ([10]).

Considering the importance of the concept of continuity, srongly absolute continuity, strongly generalized absolute continuity of a function, and based on the results of the study conducted by Indrati (in [6]) and Manuharawati (in [10]), this paper will explain some properties of δ -continuous, strongly absolutely δ -continuous, strongly generalized absolutely δ -continuous of a real valued function on the set $X \subset \mathbb{R}$. Further, the necessary and sufficient conditions for a real valued function is having a strongly generalized absolutely δ -continuous is explained.

2 Basic Concept

2.1 The System of Fundamental δ –interval

Let δ be a positive function defined on an interval [a,b] and $x \in [a,b]$. An interval $x - \delta(x) \le u < x < v \le x + \delta(x)$ is called a fundamental δ -interval at x. A collection of all fundamental δ -interval at x is called a system of fundamental δ -interval at x and denoted by \mathcal{D}_x . It is easy to understand that $\mathcal{D}_x \neq \emptyset$ and has properties ([3], p.: 4):

A1. For every $D_x \in \mathcal{D}_x$ and s < x < t, $D_x' = D_x \cap (s, t) \in \mathcal{D}_x.$

$$D_x' = D_x \cap (s, t) \in \mathcal{D}_x$$

A2. If D'_x , ${D_x}'' \in \mathcal{D}_x$, then

$$D'_{x} \cap D''_{x} \in \mathcal{D}_{x}$$

A3. If
$$A$$
 is index set and $D_x^{\alpha} \in \mathcal{D}_x$ for every $\alpha \in A$, then
$$D_x = \bigcup_{\alpha \in A} D_x^{\alpha} \in \mathcal{D}_x.$$

A4. For every $D_x \in \mathcal{D}_x$, D_x contains x and there exist $s, t \in D_x$ such that s < x < t.

A5. If
$$D_x \in \mathcal{D}_x$$
, $u, v \in D_x$ and $u < x < v$, then there are $u_1, v_1 \in D_x$ with $u < u_1 < x < v_1 < v$.

Since for every $x \in [a, b]$, $\mathcal{D}_x \neq \emptyset$, then for every $x \in [a, b]$, we can take exactly one fundamental δ -interval $D_x \in \mathcal{D}_x$ and the collection of all D_x denoted by $\mathcal{G} = \{D_x\}.$

2.2 The δ –Continuity of a Function

Let [a, b] be an interval on \mathbb{R} with a < b and $\delta: [a, b] \to \mathbb{R}^+$. Based on the fundamental δ -interval, and the concept of absolute continuity of function ([6]), it was constructed some types of absolute continuity as follow ([10]).

Definition 2.2.1 ([10]): Given a positive function $\delta: [a,b] \to \mathbb{R}^+$, a set $X \subset \mathbb{R}$, and a function $F: [a, b] \to \mathbb{R}$.

(i) A function F is said to be weakly absolutely δ -continuous on X if for any real number $\varepsilon > 0$, there exist a real number $\gamma > 0$ such that for every sequence (x_i) on X there is a sequence of nonoverlapping fundamental δ – interval $(D_{x_i}), D_{x_i} \in \mathcal{D}_{x_i}$ such that if $u_i \in D_{x_i}$ with $\sum_i |x_i - u_i| < \gamma$ then $\sum_i |F(x_i) - F(u_i)| < \varepsilon.$

$$\sum_{i} |F(x_i) - F(u_i)| < \varepsilon.$$

The set of all weakly absolutely δ –continuous on X denoted by $AC_{\delta}(X)$.

- (ii) A function F is said to be generalized weakly absolutely δ -continuous on X if there is a sequence of sets (X_i) such that $X = \bigcup_i X_i$ and $F \in AC_{\delta}(X_i)$ for every i. The set of all generalized weakly absolutely δ -continuous on X denoted by $ACG_{\delta}(X)$.
- (iii) A function F is said to be strongly absolutely δ –continuous on X if for any real number $\varepsilon > 0$, there exist a real number $\gamma > 0$ such that for every sequence (x_i) on X there is a sequence of nonoverlapping fundamental δ -interval (D_{x_i}) , $D_{x_i} \in \mathcal{D}_{x_i} \text{ such that if } u_i \in D_{x_i} \text{ with } \sum_i |x_i - u_i| < \gamma \text{ then}$ $\sum_i \omega(F; [a_i, b_i]) < \varepsilon$

$$\sum_{i} \omega(F; [a_i, b_i]) < \varepsilon$$

with $a_i = min\{x_i, u_i\}$ and $b_i = max\{x_i, u_i\}$. The set of all strongly absolutely δ –continuous on a set $X \subset [a,b]$ denoted by $AC_{\delta}^*(X)$.

(iv) A function F is said to be generalized strongly absolutely δ –continuous on a set X if there exist a sequence of sets (X_i) such that $X = \bigcup_i X_i$ and $F \in AC^*_{\delta}(X_i)$ for every i. The set of all generalized strongly absolutely δ -continuous on X denoted by $ACG_{\delta}^{*}(X)$.

The following theorem will be used in discussion section.

Theorem 2.2.1 ([6]): Let δ be a positive real function on [a,b], $F:[a,b] \to \mathbb{R}$ be a function and $c \in [a, b]$. If $D_{\delta}F(c)$ exist, then F is δ –continuous at c.

3. Result and Discussion

In this section $[a,b] \subset \mathbb{R}$ with a < b. Let $F: [a,b] \to \mathbb{R}$, $\delta: [a,b] \to \mathbb{R}^+$, and $A \subset [a, b]$, $B \subset [a, b]$. By the above concept and fundamental properties described in Section 2, we obtained some results that describe in theorems as follow.

Theorem 3.1 If $F \in AC_{\delta}^*(A)$ and $F \in AC_{\delta}^*(B)$ then $F \in AC_{\delta}^*(A \cup B)$.

Proof: W.l.o.g., it is sufficient to prove that $A \not\subset B$. Let $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$. Since $F \in AC^*_{\delta}(A)$, then there exists a real number $\gamma_1 > 0$ such that for any sequence (x_i) on A there is a a sequence of nonoverlapping fundamental δ —interval (D_{x_i}) , $D_{x_i} \in \mathcal{D}_{x_i}$ such that if $u_i \in D_{x_i} \cap A$ and $\sum_i |x_i - u_i| < \gamma_1$ we have

$$\sum_{i} \omega(F; [a_i, b_i]) < \frac{\varepsilon}{3}$$

with $a_i = min\{x_i, u_i\}$ and $b_i = max\{x_i, u_i\}$.

Since $F \in AC^*_{\delta}(B)$, then there exists a real number $\gamma_2 > 0$ such that for any sequence (x_i) on B there is a sequence of nonoverlapping fundamental δ -interval $(D_{x_i}^{"})$, $D_{x_i}^{"} \in \mathcal{D}_{x_i}$ such that if $u_i \in D_{x_i}^{"} \cap B$ and $\sum_i |x_i - u_i| < \gamma_2$ we have

$$\sum_{i} \omega(F; [a_i, b_i]) < \frac{\varepsilon}{3}$$

with $a_i = min\{x_i, u_i\}$ and $b_i = max\{x_i, u_i\}$.

If $\gamma = min\{\gamma_1, \gamma_2\}$, then $\gamma \in \mathbb{R}$ and $\gamma > 0$. Futher more, if (x_i) is a sequence on $A \cup B$, then there exists a sequence of nonoverlapping fundamental δ —interval (D_{x_i}) , $D_{x_i} \in \mathcal{D}_{x_i}$, i.e.:

$$D_{x_i} = \begin{cases} D'_{x_i} & \text{if } x_i \in A \\ D''_{x_i} & \text{if } x_i \in B \\ D'_{x_i} \cap D''_{x_i} & \text{if } x_i \in A \cap B \end{cases}.$$

If $u_i \in D_{x_i} \cap (A \cup B)$ with $\sum_i |x_i - u_i| < \gamma$, and $a_i = min\{x_i, u_i\}, b_i = max\{x_i, u_i\},$

then we have

$$\sum_{i} \omega(F; [a_i, b_i]) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon.$$

It means that $F \in AC_{\delta}^*(A \cup B)$.

Theorem 3.2 If $F \in AC_{\delta}$ and F is δ – continuous at $c \in [a,b]$ then $F \in AC_{\delta}(A \cup \{c\})$.

Proof: Let $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$. Since $F \in AC_{\delta}(A)$, then there exists a real number $\gamma > 0$ such that for any sequence (x_i) on A there exists a sequence of nonoverlapping fundamental δ –interval (D_{x_i}) , $D_{x_i} \in \mathcal{D}_{x_i}$ such that for any $u_i \in D_{x_i} \cap A$ with $\sum_i |x_i - u_i| < \gamma$ we have

$$\sum_{i} |F(x_i) - F(u_i)| < \frac{\varepsilon}{3}. \tag{1}$$

Since F is δ —continuous at c, then there exists fundamental δ —interval $D_c \in \mathcal{D}_c$ such that for any $u \in D_c \cap [a,b]$ satisfy

$$|F(c) - F(u)| < \frac{\varepsilon}{3}.$$
 (2)

Set

$$D'_c = D_c \cap (c - \delta, c + \delta).$$

Clearly, $D_c' \in \mathcal{D}_c$. So, (2) is hold if $u \in D'_c \cap [a, b]$. Let (x_i) be a sequence on $A \cup \{c\}$. There are two cases, i.e.: $x_i \in A$ for every i or $x_k = c$ for some k.

- (i) If $x_i \in A$ for every i, then (1) holds.
- (ii) If $x_k = c$ for some k, take $D_{x_k}' = D_c'$. If $u_i \in D_{x_i} \cap (A \cup \{c\})$ with $\sum_i |x_i - u_i| < \gamma$, then by (1) and (2) we have $\sum_i |F(x_i) - F(u_i)| = \sum_{i,i \neq k} |F(x_i) - F(u_i)| + |F(c) - F(u_k)| < \varepsilon.$

From (i) and (ii), we have $F \in AC_{\delta}(A \cup \{c\})$.

Theorem 3.3 If $F \in AC_{\delta}^*(A)$ and F is δ –continuous at $c \in [a,b]$ then $F \in AC_{\delta}^*(A \cup [c])$.

Proof: Let ε be a positive real number. Since $F \in AC^*_{\delta}(A)$, then there exists a real number $\gamma > 0$, such that for any sequence (x_i) on A there exists a sequence of nonoverlapping fundamental δ –interval (D_{x_i}) , $D_{x_i} \in \mathcal{D}_{x_i}$ such that for any $u_i \in D_{x_i} \cap A$ with $\sum_i |x_i - u_i| < \gamma$ satisfy

$$\sum_{i} \omega(F; [a_i, b_i]) < \frac{\varepsilon}{3}. \tag{3}$$

with $\min\{x_i, u_i\}$ and $b_i = \max\{x_i, b_i\}$. Since F is δ —continuous at $c \in [a, b]$, then there exists a fundamental δ —interval $D_c \in \mathcal{D}_c$ such that for any $u \in D_c \cap [a, b]$, with $|u - c| < \gamma$ we have

$$|F(c) - F(u)| < \frac{\varepsilon}{3}.\tag{4}$$

Set $D'_c = D_c \cap (c - \delta, c + \delta)$. Then $D_c' \in \mathcal{D}_c$. So, if $u \in D'_c \cap [a, b]$, (2) holds. Consequently, we have

$$\omega(F;[s,t]) < \frac{\varepsilon}{3} \tag{5}$$

with $s = \min\{c, u\}$ and $t = \max\{c, u\}$.

Let (x_i) be any sequence on $A \cup \{c\}$. There exists two cases for such X_i , i. e.: for every i, $x_i \in A$ or there exists k such that $x_k = c$.

- (i) If for every $i, x_i \in A$, then (3) holds.
- (ii) If there exists k such that $x_k = c$, take $D_{x_k}' = D_c'$. If $u_i \in D_{x_i} \cap (A \cup \{c\})$ with $\sum_i |x_i u_i| < \gamma$, then by (3) and (5) we have

$$\sum_{i} \omega(F; [a_i, b_i) \le \sum_{i, i \ne k} \omega(F; [a_i, b_i]) + \omega(F; [s, t]) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon$$

with $a_i = \min\{x_i, u_i\}$; $b_i = \max\{x_i, u_i\}$; $s = \min\{c, u\}$; $t = \max\{t, u\}$. From (i) and (ii), we have $F \in AC_{\delta}^*(A \cup \{c\})$.

Corollary 3.4: If $F \in ACG_{\delta}(A)$ and F is continuous at $c \in [a, b]$, then $F \in ACG_{\delta}(A \cup \{c\})$.

Proof: Since $F \in ACG_{\delta}(A)$ then there exists a sequence of sets (A_i) such that $A = \bigcup_i A_i$ and for avery $i, F \in AC_{\delta}(A_i)$. Since F is continuous at c, then by Theorem 3.2, $F \in AC_{\delta}(A_i \cup \{c\})$. Consequently, $F \in ACG_{\delta}(\bigcup_i (A_i \cup \{c\}))$ or $F \in ACG_{\delta}(A \cup \{c\})$.

Corollary 3.5: If $F \in ACG^*_{\delta}(A)$ and F is continuous at $c \in [a,b]$ then $F \in ACG^*_{\delta}(A \cup \{c\})$.

Proof: Since $F \in ACG_{\delta}^*(A)$, then there exists a sequence of sets (A_i) such that $A = \bigcup_i A_i$ and $F \in AC_{\delta}^*(A_i)$. By Theorem 3.3, $F \in AC_{\delta}^*(A_i \cup \{c\})$, for every i. So, $F \in ACG_{\delta}^*(A \cup \{c\})$.

Theorem 3.6: If $D_{\delta}F(x)$ exists for every $x \in [a,b]$, then $F \in ACG_{\delta}^*[a,b]$.

Proof: Let ε be a positive real number. Since $D_{\delta}F(x)$ exists for every $x \in [a,b]$, then for any $x \in [a,b]$ there exists a fundamental δ –interval $D_x' \in \mathcal{D}_x$ such that for any $u \in D_x' \cap [a,b]$, $u \neq x$ satisfies

$$\left| \frac{F(x) - F(u)}{x - u} - D_{\delta} F(x) \right| < \varepsilon$$

or

$$|F(x) - F(u)| < [|D_{\delta}F(x)| + \varepsilon]|x - u|.$$

For every $n, i \in \mathbb{N}$, set

$$S_n = \{x \in [a, b]: |D_{\delta}F(x) \le n|\} \text{ and } X_{n,i} = S_n \cap \left[a + \frac{i-1}{n}, a + \frac{i}{n}\right].$$

It is easy to understand that $[a, b] = \bigcup_{n,i} X_{n,i}$. If $x \in [a, b]$ and

$$D_x = D_x' \cap \left[a + \frac{i-1}{n}, a + \frac{i}{n}\right],$$

then for any $u \in D_x$, $u \neq x$, we have

$$|F(x) - F(u)| < (n + \varepsilon)|x - u|.$$

Let n and i be certain the positive integer number. If (x_j) be a sequence on $X_{n,i}$, then there exists a sequence of fundamental δ -interval (D_{x_j}) on \mathcal{D}_{x_j} . Take any $u_j \in D_{x_i} \cap X_{n,i}$ and

$$a_j = min\{x_j, u_i\}$$
, and $b_j = max\{x_j, u_i\}$.

Since $D_{\delta}F(x)$ exists for every $x \in [a,b]$, then by Theorem 2.2.1, F is δ —continuous on [a,b]. Since $[a_j,b_j] \subset [a,b]$, then for every $j, F \in C_{\delta}[a_j,b_j]$. So, there are $\alpha_j,\beta_j \in [a_j,b_j]$ such that

$$\omega(F; [a_i, b_i]) = |F(\alpha_i) - F(\beta_i)|.$$

Since
$$\alpha_j, \beta_j \in [a_j, b_j]$$
, then $|F(\alpha_j) - F(\beta_j)| < [n + \varepsilon]|x_j - u_j|$.

Consequently,

$$\sum_{j} \omega(F; [a_{j}, b_{j}]) = \sum_{j} |F(\alpha_{j}) - F(\beta_{j})| < [n + \varepsilon] \sum_{j} |x_{j} - u_{j}| < \varepsilon.$$
 if $\sum_{i} |x_{j} - u_{j}| < \gamma = \frac{\varepsilon}{n + \varepsilon}$. It's meant that $F \in ACG_{\delta}^{*}[a, b]$.

Theorem 3.7: If $D_{\delta}F(x)$ exist nearly everywhere on [a,b], then $F \in ACG_{\delta}^*[a,b]$.

Proof: Let ε be a positive real number. Since $D_{\delta}F(x)$ nearly everywhere on [a,b], there exist a countable set $A \subset [a,b]$ such that $D_{\delta}F(x)$ exist for every $x \in [a,b]-A$. By Theorem 2.2.1, F is δ -continuous on [a,b]-A. By Theorem 3.6, $F \in ACG^*_{\delta}([a,b]-A)$. Since A is a countable set, then by Theorem 3.5, $F \in ACG^*_{\delta}([a,b]-A) \cup A$. Since $([a,b]-A) \cup A = [a,b]$, then $F \in ACG^*_{\delta}[a,b]$.

References

- [1] R.G. Bartle, *Introduction to Real Analysis*, Third edition, John Wiley and Sons, New York, 2000.
- [2] V.G. Celideze and A.G. Dzvareisvili, *The Theory of Denjoy Integral and Some Applications*, World Scientific Publishing Co. Pte. Ltd., Singapore, 1989.
- [3] S. Darmawijaya, *Integral Dasar Deskriptif*, Ph.D. Thesis, FMIPA- Universitas Gadjah Mada, Yogyakarta, 1991.
- [4] T.T. da Silva, M.D. Fragoso, Absolutely Continuous Measure for Jum-type Fleming-Viot Process, *Statistic & Probability Letters*, **82** (2012), 557-564. http://dx.doi.org/10.1016/j.spl.2011.11.024
- [5] S. Hencl, Notes on Absolutely Continuous Functions of Several Variables, *Real Analysis Exchange*, **30** (2004), no. 1, 59-74.
- [6] Ch.R. Indrati, *Pendekatan Baru Tentang Kalkulus*, Ph.D. Thesis, FMIPA Universitas Gadjah Mada, Yogyakarta, 1992.
- [7] M.V. Jakopson, Absolutely Continuous Invariant Measure for One-parameter

Families of One-dimensional Maps, *Communications in Mathematical in Physics*, **81** (1981), 39-88. http://dx.doi.org/10.1007/bf01941800

- [8] F. Ledrappier, Some Properties of Absolutely Continuous Invariant Measures on an Interval, *Ergodic Theory and Dynamiccal Systems*, **1** (1981), no. 1, 77-93. http://dx.doi.org/10.1017/s0143385700001176
- [9] P.Y. Lee, *Lanzhou Lectures on Henstock Integration*, World Scientific Publishing Co. Pte. Ltd., Singapore, 1989. http://dx.doi.org/10.1142/0845
- [10] Manuharawati, Kekontinuan Mutlak Suatu Fungsi Bernilai Real Dengan Pendekatan Selang- δ Dasar, *Prosiding Seminar Nasional Matematika dan Pendidikan Matematika 2013*, Unesa, Surabaya, (2013).
- [11] C. Remling, The Absolutely Continuous Spectrum of Jacobi Matrices, *Annals of Mathematics*, **174** (2011), no. 1, 125-171. http://dx.doi.org/10.4007/annals.2011.174.1.4
- [12] V.A. Rokhlin, On the Fundamental Ideas of Measure Theory, *Mathematicheskii Sbornik*, **67** (1949), no. 1, 107-150.
- [13] M. Shamis and S. Sodin, On the Measure of the Absolutely Continuous Spectrum for Jacobi Matrices, *Journal of Approximation Theory*, **163** (2011), 491-504. http://dx.doi.org/10.1016/j.jat.2010.12.003
- [14] B. Simon, Bounded Eigenfunctions and Absolutely Continuous Spectra for One-Dimentional Schrödinger Operators, *Proc. Amer. Math. Soc.*, **124** (1996), 3361-3369. http://dx.doi.org/10.1090/s0002-9939-96-03599-x
- [15] N.I. Wittaya, *Non Absolute Integration on the Real Line*, Master Thesis, University of the Philippines, Philippines, 1976.

Received: May 1, 2016; Published: June 16, 2016