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Abstract

Let § be a positive function on [a,b] € R. By referring to system of
fundamental § —interval, the basic § —calculus properties, and the concept of
absolutely continuous, generalized absolutely continuous of a real valued function,
this paper will explain about the properties of weakly (and strongly) absolutely
6 —continuous and weakly (and strongly) generalized absolutely & —continuous
of a real valued function on a cell [a,b] € R with respect to the Lebesgue
measure. Several studies on sufficient conditions for function F:[a,b] —» R are
generalized strongly absolute & — continuous among others are: (i) a
& —derivative of F exists at every x € [a, b]; (ii) a § —derivative of F exists
nearly everywhere on [a,b] and F is § —continuous on [a, b].

Keywords: absolute & —continuous, strongly absolute § —continuous, (strongly)
generalized absolute & —continuous, system of fundamental § —interval

1 Introduction

Sufficient conditions for an absolutely continuous function with respect to
Lebesgue measure of real valued function had been discussed (in [4], [5], [7,[8],
[11], [12], [13], and [14]). The interval model that had been used in the concept of
absolutely continuous was an elementary interval in R which defined in [2],
p.44-45.

In mathematical analysis: the concept of continuity, absolute continuity,
and generalized absolute continuity of a function are widely used in developing
the theory of descriptive integral, like Newton integral, Lebesgue integral, Dendjoy
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integral ([2], [6]), and special Dendjoy integral ([3], [9], [15]). The properties of
continuity, absolute continuity, and generalized absolute continuity of a real
valued function which were used in the discussion of the above mentioned
integral had been studied by mathematicians ([6], [15]).

Given a positive § on a cell [a, b], a system of fundamental & —interval
at a point in R which is a generalization of the elementary system interval in R
is constructed ([3]). Some basic properties of calculus on R associated with the
system of fundamental & —interval are successfully studied ([6]). Referring to
continuity, weakly and strongly absolute continuity, the weakly and strongly
generalized absolute continuity used in defining descriptive integral mentioned
above, the types of continuity relative to the fundamental &6 —interval are
constructed and successfully proved that constructed function is a linear space

([10D).

Considering the importance of the concept of continuity, srongly absolute
continuity, strongly generalized absolute continuity of a function, and based on
the results of the study conducted by Indrati (in [6]) and Manuharawati (in [10]),
this paper will explain some properties of § —continuous, strongly absolutely
& —continuous, strongly generalized absolutely & —continuous of a real valued
function on the set X < R. Further, the necessary and sufficient conditions for a
real valued function is having a strongly generalized absolutely § —continuous is
explained.

2 Basic Concept

2.1 The System of Fundamental § —interval

Let & be a positive function defined on an interval [a,b] and x € [a, b].
An interval x—-6(x) Su<x<v<x+d6(x) is called a fundamental
6 —interval at x. A collection of all fundamental § —interval at x is called a
system of fundamental & —interval at x and denoted by D,. It is easy to
understand that D, # @ and has properties ([3], p.: 4):
Al. Forevery D, €D, and s < x < t,

D, =D, N (s,t) €D,
A2.If D, D," € D,, then
D, n D, € D,.

A3. If A isindexsetand D,* € D, forevery a € A4, then

D, = D,“ €D,
. a€A .
A4. Forevery D, € D,, D, contains x and there exist s,t € D, such that
s<x<t.

A5.If D, € D,,u,v €D, and u < x < v, then there are u,,v; € D, with
u<uy <x<v<v.

Since for every x € [a,b], D, # @, then for every x € [a,b], we can take
exactly one fundamental § —interval D, € D, and the collection of all D,
denoted by G = {D, }.
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2.2 The & —Continuity of a Function

Let [a,b] be an interval on R with a < b and &:[a,b] » R*. Based on
the fundamental § —interval, and the concept of absolute continuity of function
([6]), it was constructed some types of absolute continuity as follow ([10]).

Definition 2.2.1 ([10]): Given a positive function §:[a,b] - R*, a set X c R,
and a function F:[a,b] = R.

(i) A function F is said to be weakly absolutely § —continuous on X if for any
real number & > 0, there exist a real number y > 0 such that for every sequence
(x;) on X there is a sequence of nonoverlapping fundamental § —interval
(Dy,), Dy, € Dy, suchthatif u; € D, with ¥;|x; —u;| <y then

Y IR - Fupl <e.

The set of all weakly absolutely § —continuous on X denoted by ACs(X).

(i) A function F is said to be generalized weakly absolutely § —continuous on X
if there is a sequence of sets (X;) suchthat X = U; X; and F € ACs(X;) for every
i. The set of all generalized weakly absolutely § —continuous on X denoted by
ACGs(X).

(iii) A function F is said to be strongly absolutely § —continuous on X if for any
real number & > 0, there exist a real number y > 0 such that for every sequence
(x;) on X there is a sequence of nonoverlapping fundamental & —interval (Dxl.),

Dxi € Dxi such that if u; € Dxi with Zilxi — uil <y then

> o labiD <&

with a; = min{x;, u;} and b; = max{x;, u;}. The set of all strongly absolutely
& —continuous on a set X c [a, b] denoted by ACs(X).

(iv) Afunction F is said to be generalized strongly absolutely § —continuous on a
set X if there exist a sequence of sets (X;) suchthat X = U; X; and F € AC5(X;)
for every i. The set of all generalized strongly absolutely & —continuous on X
denoted by ACGs(X).

The following theorem will be used in discussion section.

Theorem 2.2.1 ([6]): Let & be a positive real function on [a,b], F:[a,b] - R
be a function and ¢ € [a, b]. If DsF(c) exist, then F is § —continuous at c.

3. Result and Discussion

In this section [a,b] € R with a <b. Let F:[a,b] » R, &:[a,b] » R",
and A c [a,b], B c [a,b]. By the above concept and fundamental properties
described in Section 2, we obtained some results that describe in theorems as
follow.

Theorem 3.1 If F € AC5(A) and F € AC5(B) then F € AC5(AU B).
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Proof: W.l.o.g., it is sufficient to prove that A ¢ B. Let € € R, € > 0. Since
F € AC5(A), then there exists a real number y; > 0 such that for any sequence
(x;) on A there is a a sequence of nonoverlapping fundamental § —interval
(Dy,'), Dy, € Dy, suchthatif u; € D, NA and Y;lx; —u;| <y; we have

};www%mn<§

with a; = min{x;, w;} and b; = max{x;, u;}.

Since F € AC5(B), then there exists a real number y, > 0 such that for any
sequence (x;) on B there is a a sequence of nonoverlapping fundamental
& —interval (Dy,"), Dy, € Dy, such that if u; € D' N B and Y;lx; —u| <
¥, We have

};www%mp<§

with a; = min{x;, u;} and b; = max{x;, u;}.
If y = min{y,,v.}, then y € R and y > 0. Futher more, if (x;) is a sequence on
A U B, then there exists a sequence of nonoverlapping fundamental & —interval
(Dy,), Dy, € Dy, e
D;Ci lf X; EA
Dy, = D) if x;€B
D, NDYifx; € ANB

If u; € Dxi N (A V) B) with Zilxi — ul-l <V, and
a; = min{x; w;}, b; = max{x;u;},
then we have
e €
z w(F;[a,b]) <z +z<e
i
It means that F € AC5(AUB). =

Theorem 3.2 If F € ACs and F is § —continuous at c € [a,b] then F €
ACs(A U {c}).

Proof: Let € € R, € > 0. Since F € ACs(A), then there exists a real number y >
0 such that for any sequence (x;) on A there exists a sequence of nonoverlapping
fundamental § —interval (Dy,), Dy, € D, such that for any u; € D, N A with
Yilxi —u;] <y we have

il F(x) — F(wy)| <§- @
Since F is § —continuous at c, then there exists fundamental § —interval D, €
D. such that for any u € D, N [a, b] satisfy

IF(c) = F)| < 2)
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Set
D.=D.n(c—6,c+59).

Clearly, D." € D.. So, (2) is hold if u € D, n [a,b]. Let (x;) be a sequence on
A U {c}. There are two cases, i.e.: x; € A forevery i or x;, = ¢ for some k.
(i) If x; € A forevery i, then (1) holds.
(i) If x, = c for some k, take D,," = D,'.
If u; € D, N (AU {c}) with ¥;|x; —u;| <y, then by (1) and (2) we have

DG =Fl= ) IFG) = Fu)l +1F(e) = Ful <.
From (i) and (ii), we have F € AC5(Au {c}). m

Theorem 3.3 If F € AC5(4) and F is § —continuous at c¢ € [a, b] then F €
ACA(A U [c]).

Proof: Let € be a positive real number. Since F € AC5(A), then there exists a real
number y > 0, such that for any sequence (x;) on A there exists a sequence of
nonoverlapping fundamental & —intervaI(Dxi), Dy, € D,, such that for any u; €
Dy, N A with ¥;[x; —u;| <y satisfy

Yiw(F;[a;,b]) < 2 3)

with min{x;, u;} and b; = max{x;, b;}. Since F is § —continuous at c € [a, b],
then there exists a fundamental § —interval D, € D, such that for any u € D, n
[a, b], with |u — ¢| <y we have

IF(e) = Fw)l <=. (4)

Set D, =D, N (c —6,c+6). Then D, € D.. So, if u € D, N [a,b], (2) holds.
Consequently, we have
w(F;[s,t]) <% (5)

with s = min{c,u} and t = max{c, u}.

Let (x;) be any sequence on A U {c}. There exists two cases for such X;, i. e.:

forevery i, x; € A orthere exists k such that x; = c.

(i) If forevery i,x; € A, then (3) holds.

(i) If there exists k such that x; = c, take D,," = D.". If u; € D,, N (AU {c})
with Y;|x; — u;| <y, then by (3) and (5) we have

Z,‘U(Fi [a;, b)) < Z"ikw (F;[a;, b;]) + w(F; [s,t]) <§+§ <e

with a; = min{x;,w;}; b; = max{x;,u;}; s =min{c,u}; t = max{t,u}.
From (i) and (i), we have F € AC5(AU{c}). =
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Corollary 3.4: If F € ACGs(A) and Fis continuous at c € [a,b], then F €
ACGs(A U {c}).

Proof: Since F € ACGs(A) then there exists a sequence of sets (A4;) such that
A = U;A; and for avery i, F € ACs(4;). Since F is continuous at c, then by
Theorem 3.2, F € ACs(A; U {c}). Consequently, F € ACGs(U;(4; U {c})) or
F € ACGs(AU{c}). m

Corollary 3.5: If F € ACG5(A) and F is continuous at c € [a,b] then F €
ACG5(A U {c}).

Proof: Since F € ACGz(A), then there exists a sequence of sets (4;) such that
A=U;4; and F € AC5(4;). By Theorem 3.3, F € AC5(4; U {c}), for every i.
So, F € ACG5(AU{c}). m

Theorem 3.6: If DgF(x) exists for every x € [a, b], then F € ACGg[a, b].

Proof: Let € be a positive real number. Since DgsF(x) exists for every x €
[a, b], then for any x € [a, b] there exists a fundamental § —interval D, € D,
such that for any u € D, N [a, b], u # x satisfies

F(x) — F(u)

— DsF
— sF(x)

<¢g

or
|F(x) = F(u)| < [IDsF (x)] + €]lx — ul.
Forevery n,i € N, set

S, ={x € [a,b]: [IDsF(x) <n|} and X,; =S, N [a +i_71,a +i] :
It is easy to understand that [a,b] = U, ; X,;. If x € [a,b] and
, L .
Dy =D nla+Za+],
then for any u € D,, u # x, we have
|F(x) —F(w)| < (n+ &)|x —ul.

Let n and i be certain the positive integer number. If (xj) be a sequence on
Xni, then there exists a sequence of fundamental & —interval (Dx]_) on Dy,
Take any u; € Dy; N Xy, and

aj = min{xj,ui}, and b; = max{xj,ui}.

Since DgF(x) exists for every x € [a,b], then by Theorem 2.2.1, F is
& —continuous on [a, b]. Since [a;, b;] < [a, b], then for every j, F € Cs[a;, b;].
So, there are a;, B; € [aj, b;] such that

w(F; [a;,b]) = |F(a;) = F(8)-
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Since aj,ﬁj € [aj, b]], then
|F(a) = F(B))| < [n+ el|x; — .

Consequently,

Do [ayb]) = Y F(a) =F(B)] < In+el ) |y —u| < e

j J J
if Yilxi—w| <y= ——  It’s meant that F € ACG;[a,b]. m

n+e

Theorem 3.7: If DgF(x) exist nearly everywhere on [a,b], then F €
ACGgla, b].

Proof: Let € be a positive real number. Since DgF(x) nearly everywhere on
[a, b], there exist a countable set A c [a, b] such that DgF(x) exist for every
x € [a,b] —A. By Theorem 2.2.1, F is § —continuous on [a,b]—A. By
Theorem 3.6, F € ACGs([a,b] — A). Since A is a countable set, then by
Theorem 3.5, F € ACGg([a,b] — A) U A. Since ([a,b] — A) U A = [a,b], then
F € ACGj[a,b]. n
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