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Abstract 

 

Let 𝛿  be a positive function on [𝑎, 𝑏] ⊂ ℝ . By referring to system of 

fundamental 𝛿 −interval, the  basic 𝛿 −calculus properties, and the concept of 

absolutely continuous, generalized absolutely continuous of a real valued function, 

this paper will explain about the properties of weakly (and strongly) absolutely 

𝛿 −continuous and weakly (and strongly) generalized absolutely 𝛿 −continuous 

of a real valued function on a cell [𝑎, 𝑏] ⊂ ℝ with respect to the Lebesgue 

measure. Several studies on sufficient conditions for function 𝐹: [𝑎, 𝑏] → ℝ are 

generalized strongly absolute 𝛿 − continuous among others are: (i) a 

𝛿 −derivative of 𝐹 exists at every 𝑥 ∈ [𝑎, 𝑏]; (ii) a 𝛿 −derivative of 𝐹 exists 

nearly everywhere on [𝑎, 𝑏] and 𝐹 is 𝛿 −continuous on [𝑎, 𝑏].  

 

Keywords: absolute 𝛿 −continuous, strongly absolute 𝛿 −continuous, (strongly) 

generalized absolute 𝛿 −continuous, system of fundamental 𝛿 −interval 

 

 

1 Introduction 
 

Sufficient conditions for an absolutely continuous function with respect to 

Lebesgue measure of real valued function had been discussed (in [4], [5], [7,[8], 

[11], [12], [13], and [14]). The interval model that had been used in the concept of 

absolutely continuous was an elementary interval in ℝ which defined in [2], 

p.44-45.  

In mathematical analysis: the concept of continuity, absolute continuity, 

and generalized absolute continuity of a function are widely used in developing 
the theory of descriptive integral, like Newton integral, Lebesgue integral, Dendjoy 
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integral ([2], [6]), and special Dendjoy integral ([3], [9], [15]). The properties of 

continuity, absolute continuity, and generalized absolute continuity of a real 

valued function which were used in the discussion of the above mentioned 

integral had been studied by mathematicians ([6], [15]).  

Given a positive 𝛿 on a cell [𝑎, 𝑏], a system of fundamental 𝛿 −interval 

at a point in ℝ which is a generalization of the elementary system interval in ℝ 

is constructed ([3]). Some basic properties of calculus on ℝ associated with the 

system of fundamental 𝛿 −interval are successfully studied ([6]). Referring to  

continuity, weakly and strongly absolute continuity, the weakly and strongly 

generalized absolute continuity used in defining descriptive integral mentioned 

above, the types of continuity relative to the fundamental 𝛿 − interval are 

constructed and successfully proved that constructed function is a linear space 

([10]).  

Considering the importance of the concept of continuity, srongly absolute 

continuity, strongly generalized absolute continuity of a function, and based on 

the results of the study conducted by Indrati (in [6]) and Manuharawati (in [10]), 

this paper will explain some properties of 𝛿 −continuous, strongly absolutely 

𝛿 −continuous, strongly generalized absolutely 𝛿 −continuous of a real valued 

function on the set 𝑋 ⊂ ℝ. Further, the necessary and sufficient conditions for a 

real valued function is having a strongly generalized absolutely 𝛿 −continuous is 

explained.  

 

2 Basic Concept  
 

2.1 The System of Fundamental 𝜹 −interval  

Let 𝛿 be a positive function defined on an interval [𝑎, 𝑏] and 𝑥 ∈ [𝑎, 𝑏]. 
An interval 𝑥 − 𝛿(𝑥) ≤ 𝑢 < 𝑥 < 𝑣 ≤ 𝑥 + 𝛿(𝑥)  is called a fundamental 

𝛿 −interval at 𝑥. A collection of all fundamental 𝛿 −interval at 𝑥 is called a 

system of fundamental 𝛿 −interval at 𝑥  and denoted by 𝒟𝑥 . It is easy to 

understand that 𝒟𝑥 ≠ ∅ and has properties ([3], p.: 4): 

A1. For every 𝐷𝑥 ∈ 𝒟𝑥 and 𝑠 < 𝑥 < 𝑡, 

𝐷𝑥
′ = 𝐷𝑥 ∩ (𝑠, 𝑡) ∈ 𝒟𝑥. 

A2. If 𝐷𝑥
′ , 𝐷𝑥′′ ∈ 𝒟𝑥, then  

𝐷𝑥
′ ∩ 𝐷𝑥

′′ ∈ 𝒟𝑥. 
A3. If 𝐴 is index set and 𝐷𝑥

𝛼 ∈ 𝒟𝑥 for every 𝛼 ∈ 𝐴, then 

𝐷𝑥 = ⋃ 𝐷𝑥
𝛼 ∈ 𝒟𝑥.

𝛼∈𝐴
 

A4. For every 𝐷𝑥 ∈ 𝒟𝑥, 𝐷𝑥 contains 𝑥 and there exist 𝑠, 𝑡 ∈ 𝐷𝑥 such that 

𝑠 < 𝑥 < 𝑡. 
A5. If 𝐷𝑥 ∈ 𝒟𝑥, 𝑢, 𝑣 ∈ 𝐷𝑥 and 𝑢 < 𝑥 < 𝑣, then there are 𝑢1, 𝑣1 ∈ 𝐷𝑥 with 

𝑢 < 𝑢1 < 𝑥 < 𝑣1 < 𝑣. 

 

Since for every 𝑥 ∈ [𝑎, 𝑏], 𝒟𝑥 ≠ ∅, then for every 𝑥 ∈ [𝑎, 𝑏], we can take 

exactly one fundamental 𝛿 − interval 𝐷𝑥 ∈ 𝒟𝑥  and the collection of all 𝐷𝑥 

denoted by 𝒢 = {𝐷𝑥}. 
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2.2 The 𝜹 −Continuity of a Function  

Let [𝑎, 𝑏] be an interval on ℝ with 𝑎 < 𝑏 and 𝛿: [𝑎, 𝑏] → ℝ+. Based on 

the fundamental 𝛿 −interval, and the concept of absolute continuity of function 

([6]), it was constructed some types of absolute continuity as follow ([10]). 

 

Definition 2.2.1 ([10]): Given a positive function 𝛿: [𝑎, 𝑏] → ℝ+, a set 𝑋 ⊂ ℝ, 

and a function 𝐹: [𝑎, 𝑏] → ℝ.  

(i)  A function 𝐹 is said to be weakly absolutely 𝛿 −continuous on 𝑋 if  for any 

real number 𝜀 > 0, there exist a real number 𝛾 > 0 such that for every sequence 
(𝑥𝑖)   on 𝑋  there is a sequence of nonoverlapping fundamental 𝛿 − interval 

(𝐷𝑥𝑖
), 𝐷𝑥𝑖

∈ 𝒟𝑥𝑖
 such that if 𝑢𝑖 ∈ 𝐷𝑥𝑖

 with ∑ |𝑥𝑖 − 𝑢𝑖|𝑖  < 𝛾 then 

∑ |𝐹(𝑥𝑖) − 𝐹(𝑢𝑖)| < 𝜀.
𝑖

 

The set of all weakly absolutely 𝛿 −continuous on 𝑋 denoted by 𝐴𝐶𝛿(𝑋). 

(ii)  A function 𝐹 is said to be generalized weakly absolutely 𝛿 −continuous on 𝑋 

if there is a sequence of sets (𝑋𝑖) such that 𝑋 = ⋃ 𝑋𝑖𝑖  and 𝐹 ∈ 𝐴𝐶𝛿(𝑋𝑖) for every 

𝑖. The set of all generalized weakly absolutely 𝛿 −continuous on 𝑋 denoted by 

𝐴𝐶𝐺𝛿(𝑋).   

(iii) A function 𝐹 is said to be strongly absolutely 𝛿 −continuous on 𝑋 if  for any 

real number 𝜀 > 0, there exist a real number 𝛾 > 0 such that for every sequence 

(𝑥𝑖) on 𝑋 there is a sequence of nonoverlapping fundamental 𝛿 −interval (𝐷𝑥𝑖
), 

𝐷𝑥𝑖
∈ 𝒟𝑥𝑖

 such that if 𝑢𝑖 ∈ 𝐷𝑥𝑖
 with ∑ |𝑥𝑖 − 𝑢𝑖|𝑖  < 𝛾 then 

∑ 𝜔(𝐹; [𝑎𝑖, 𝑏𝑖]) < 𝜀
𝑖

 

with 𝑎𝑖 = 𝑚𝑖𝑛{𝑥𝑖 , 𝑢𝑖} and 𝑏𝑖 = 𝑚𝑎𝑥{𝑥𝑖, 𝑢𝑖}. The set of all strongly absolutely 

𝛿 −continuous on a set 𝑋 ⊂ [𝑎, 𝑏] denoted by 𝐴𝐶𝛿
∗(𝑋). 

(iv) A function 𝐹 is said to be generalized strongly absolutely 𝛿 −continuous on a 

set 𝑋 if there exist a sequence of sets (𝑋𝑖) such that 𝑋 = ⋃ 𝑋𝑖𝑖  and 𝐹 ∈ 𝐴𝐶𝛿
∗(𝑋𝑖) 

for every 𝑖. The set of all generalized strongly absolutely 𝛿 −continuous on 𝑋 

denoted by 𝐴𝐶𝐺𝛿
∗(𝑋). 

 

 The following theorem will be used in discussion section. 

 

Theorem 2.2.1 ([6]):  Let 𝛿 be a positive real function on [𝑎, 𝑏], 𝐹: [𝑎, 𝑏]  →  ℝ 

be a function and 𝑐 ∈ [𝑎, 𝑏]. If 𝐷𝛿𝐹(𝑐) exist, then 𝐹 is 𝛿 −continuous at 𝑐. 

 

3. Result and Discussion 
 

In this section [𝑎, 𝑏] ⊂ ℝ with 𝑎 < 𝑏 . Let 𝐹: [𝑎, 𝑏] → ℝ, 𝛿: [𝑎, 𝑏] → ℝ+ , 

and 𝐴 ⊂ [𝑎, 𝑏], 𝐵 ⊂ [𝑎, 𝑏]. By the above concept and fundamental properties 

described in Section 2, we obtained some results that describe in theorems as 

follow.  

 

Theorem 3.1  If 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴) and 𝐹 ∈ 𝐴𝐶𝛿

∗(𝐵) then 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴 ∪ 𝐵). 
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Proof: W.l.o.g., it is sufficient to prove that 𝐴 ⊄ 𝐵. Let 𝜀 ∈ ℝ, 𝜀 > 0. Since 

𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴), then there exists a real number 𝛾1 > 0 such that for any sequence 

(𝑥𝑖) on 𝐴 there is a a sequence of nonoverlapping fundamental 𝛿 −interval 

(𝐷𝑥𝑖

′), 𝐷𝑥𝑖

′ ∈ 𝒟𝑥𝑖
 such that if 𝑢𝑖 ∈ 𝐷𝑥𝑖

′ ∩ 𝐴 and ∑ |𝑥𝑖 − 𝑢𝑖| < 𝛾1𝑖  we have 

∑ 𝜔(𝐹; [𝑎𝑖, 𝑏𝑖]) <
𝜀

3𝑖
 

 

with 𝑎𝑖 = 𝑚𝑖𝑛{𝑥𝑖, 𝑢𝑖} and 𝑏𝑖 = 𝑚𝑎𝑥{𝑥𝑖, 𝑢𝑖}. 

Since 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐵), then there exists a real number 𝛾2 > 0 such that for any 

sequence (𝑥𝑖)  on 𝐵  there is a a sequence of nonoverlapping fundamental 

𝛿 −interval (𝐷𝑥𝑖

′′), 𝐷𝑥𝑖

′′ ∈ 𝒟𝑥𝑖
 such that if 𝑢𝑖 ∈ 𝐷𝑥𝑖

′ ∩ 𝐵 and ∑ |𝑥𝑖 − 𝑢𝑖| <𝑖

𝛾2 we have 

∑ 𝜔(𝐹; [𝑎𝑖, 𝑏𝑖]) <
𝜀

3𝑖
 

 

with 𝑎𝑖 = 𝑚𝑖𝑛{𝑥𝑖, 𝑢𝑖} and 𝑏𝑖 = 𝑚𝑎𝑥{𝑥𝑖, 𝑢𝑖}. 

If 𝛾 = 𝑚𝑖𝑛{𝛾1, 𝛾2}, then 𝛾 ∈ ℝ and 𝛾 > 0. Futher more, if (𝑥𝑖) is a sequence on 

𝐴 ∪ 𝐵, then there exists a sequence of nonoverlapping fundamental 𝛿 −interval  

(𝐷𝑥𝑖
), 𝐷𝑥𝑖

∈ 𝒟𝑥𝑖
, i.e.: 

𝐷𝑥𝑖
= {

𝐷𝑥𝑖

′   𝑖𝑓  𝑥𝑖 ∈ 𝐴

𝐷𝑥𝑖

′′  𝑖𝑓  𝑥𝑖 ∈ 𝐵

𝐷𝑥𝑖

′ ∩ 𝐷𝑥𝑖

′′ 𝑖𝑓𝑥𝑖 ∈ 𝐴 ∩ 𝐵

. 

 

If 𝑢𝑖 ∈ 𝐷𝑥𝑖
∩ (𝐴 ∪ 𝐵) with ∑ |𝑥𝑖 − 𝑢𝑖| < 𝛾𝑖 , and 

𝑎𝑖 = 𝑚𝑖𝑛{𝑥𝑖, 𝑢𝑖},  𝑏𝑖 = 𝑚𝑎𝑥{𝑥𝑖 , 𝑢𝑖}, 

 then we have 

∑ 𝜔(𝐹; [𝑎𝑖, 𝑏𝑖]) <
𝜀

3
+

𝜀

3
< 𝜀.

𝑖
 

It means that 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴 ∪ 𝐵).   ∎ 

 

 

Theorem 3.2 If 𝐹 ∈ 𝐴𝐶𝛿  and 𝐹  is 𝛿 − continuous at 𝑐 ∈ [𝑎, 𝑏]  then 𝐹 ∈
𝐴𝐶𝛿(𝐴 ∪ {𝑐}). 

 

Proof: Let 𝜀 ∈ ℝ, 𝜀 > 0. Since 𝐹 ∈ 𝐴𝐶𝛿(𝐴), then there exists a real number 𝛾 >
0 such that for any sequence (𝑥𝑖) on 𝐴 there exists a sequence of nonoverlapping 

fundamental 𝛿 −interval (𝐷𝑥𝑖
), 𝐷𝑥𝑖

∈ 𝒟𝑥𝑖
 such that for any 𝑢𝑖 ∈ 𝐷𝑥𝑖

∩ 𝐴 with 

∑ |𝑥𝑖 − 𝑢𝑖| < 𝛾𝑖  we have 

∑ |𝐹(𝑥𝑖) − 𝐹(𝑢𝑖)| <
𝜀

3
.𝑖       (1)  

Since 𝐹 is 𝛿 −continuous at 𝑐, then there exists fundamental 𝛿 −interval 𝐷𝑐 ∈
𝒟𝑐 such that for any 𝑢 ∈ 𝐷𝑐 ∩ [𝑎, 𝑏] satisfy 

 

      |𝐹(𝑐) − 𝐹(𝑢)| <
𝜀

3
.      (2) 
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Set 

𝐷𝑐
′ = 𝐷𝑐 ∩ (𝑐 − 𝛿, 𝑐 + 𝛿). 

 

Clearly, 𝐷𝑐′ ∈ 𝒟𝑐. So, (2) is hold if 𝑢 ∈ 𝐷𝑐
′ ∩ [𝑎, 𝑏]. Let (𝑥𝑖) be a sequence on 

𝐴 ∪ {𝑐}. There are two cases, i.e.: 𝑥𝑖 ∈ 𝐴 for every 𝑖 or 𝑥𝑘 = 𝑐 for some 𝑘. 

(i) If  𝑥𝑖 ∈ 𝐴 for every 𝑖, then (1) holds. 

(ii) If 𝑥𝑘 = 𝑐 for some 𝑘, take 𝐷𝑥𝑘
′ = 𝐷𝑐′. 

If 𝑢𝑖 ∈ 𝐷𝑥𝑖
∩ (𝐴 ∪ {𝑐}) with ∑ |𝑥𝑖 − 𝑢𝑖| < 𝛾𝑖 , then by (1) and (2) we have 

∑ |𝐹(𝑥𝑖) − 𝐹(𝑢𝑖)| = ∑ |𝐹(𝑥𝑖) − 𝐹(𝑢𝑖)| + |𝐹(𝑐) − 𝐹(𝑢𝑘)|
𝑖,𝑖≠𝑘𝑖

< 𝜀. 

From (i) and (ii), we have 𝐹 ∈ 𝐴𝐶𝛿(𝐴 ∪ {𝑐}).    ∎  

 

Theorem 3.3  If 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴) and 𝐹  is 𝛿 −continuous at 𝑐 ∈ [𝑎, 𝑏] then 𝐹 ∈

𝐴𝐶𝛿
∗(𝐴 ∪ [𝑐]). 

 

Proof: Let 𝜀 be a positive real number. Since 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴), then there exists a real 

number 𝛾 > 0, such that for any sequence (𝑥𝑖) on 𝐴 there exists a sequence of 

nonoverlapping fundamental 𝛿 −interval(𝐷𝑥𝑖
), 𝐷𝑥𝑖

∈ 𝒟𝑥𝑖
 such that for any 𝑢𝑖 ∈

𝐷𝑥𝑖
∩ 𝐴 with ∑ |𝑥𝑖 − 𝑢𝑖| < 𝛾𝑖  satisfy  

      ∑ 𝜔(𝐹; [𝑎𝑖, 𝑏𝑖]) <
𝜀

3
.𝑖          (3) 

 

with min {𝑥𝑖, 𝑢𝑖} and 𝑏𝑖 = max {𝑥𝑖, 𝑏𝑖}. Since 𝐹 is 𝛿 −continuous at 𝑐 ∈ [𝑎, 𝑏], 

then there exists a fundamental 𝛿 −interval 𝐷𝑐 ∈ 𝒟𝑐 such that for any 𝑢 ∈ 𝐷𝑐 ∩
[𝑎, 𝑏], with |𝑢 − 𝑐| < 𝛾 we have 

|𝐹(𝑐) − 𝐹(𝑢)| <
𝜀

3
.        (4)   

 

Set 𝐷𝑐
′ = 𝐷𝑐 ∩ (𝑐 − 𝛿, 𝑐 + 𝛿). Then 𝐷𝑐′ ∈ 𝒟𝑐. So, if 𝑢 ∈ 𝐷𝑐

′ ∩ [𝑎, 𝑏], (2) holds. 

Consequently, we have   

  𝜔(𝐹; [𝑠, 𝑡]) <
𝜀

3
       (5)   

with 𝑠 = min {𝑐, 𝑢} and 𝑡 = max {𝑐, 𝑢}. 

Let (𝑥𝑖) be any sequence on 𝐴 ∪ {𝑐}. There exists two cases for such 𝑋𝑖, i. e.: 

for every 𝑖, 𝑥𝑖 ∈ 𝐴 or there exists 𝑘 such that 𝑥𝑘 = 𝑐. 

(i) If for every 𝑖, 𝑥𝑖 ∈ 𝐴, then (3) holds. 

(ii) If there exists 𝑘 such that 𝑥𝑘 = 𝑐, take 𝐷𝑥𝑘
′ = 𝐷𝑐′. If 𝑢𝑖 ∈ 𝐷𝑥𝑖

∩ (𝐴 ∪ {𝑐}) 

with ∑ |𝑥𝑖 − 𝑢𝑖| < 𝛾𝑖 , then by (3) and (5) we have 

 

∑ 𝜔(𝐹; [𝑎𝑖 , 𝑏𝑖) ≤ ∑ 𝜔
𝑖,𝑖≠𝑘

(𝐹; [𝑎𝑖, 𝑏𝑖]) + 𝜔(𝐹; [𝑠, 𝑡])
𝑖

<
𝜀

3
+

𝜀

3
< 𝜀 

with 𝑎𝑖 = min {𝑥𝑖, 𝑢𝑖} ; 𝑏𝑖 = max {𝑥𝑖,, 𝑢𝑖} ; 𝑠 = min {𝑐, 𝑢} ; 𝑡 = max {𝑡, 𝑢} .  

From (i) and (ii), we have 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴 ∪ {𝑐}).   ∎ 
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Corollary 3.4: If 𝐹 ∈ 𝐴𝐶𝐺𝛿(𝐴) and 𝐹 is continuous at 𝑐 ∈ [𝑎, 𝑏], then 𝐹 ∈
𝐴𝐶𝐺𝛿(𝐴 ∪ {𝑐}). 

 

Proof: Since 𝐹 ∈ 𝐴𝐶𝐺𝛿(𝐴) then there exists a sequence of sets (𝐴𝑖) such that 

𝐴 = ⋃ 𝐴𝑖𝑖  and for avery 𝑖, 𝐹 ∈ 𝐴𝐶𝛿(𝐴𝑖). Since 𝐹 is continuous at 𝑐, then by 

Theorem 3.2, 𝐹 ∈ 𝐴𝐶𝛿(𝐴𝑖 ∪ {𝑐}) . Consequently, 𝐹 ∈ 𝐴𝐶𝐺𝛿(⋃ (𝐴𝑖 ∪ {𝑐})𝑖 )  or 

𝐹 ∈ 𝐴𝐶𝐺𝛿(𝐴 ∪ {𝑐}).   ∎  

 

Corollary 3.5: If 𝐹 ∈ 𝐴𝐶𝐺𝛿
∗(𝐴) and 𝐹  is continuous at 𝑐 ∈ [𝑎, 𝑏] then 𝐹 ∈

𝐴𝐶𝐺𝛿
∗(𝐴 ∪ {𝑐}). 

 

Proof: Since 𝐹 ∈ 𝐴𝐶𝐺𝛿
∗(𝐴), then there exists a sequence of sets (𝐴𝑖) such that 

𝐴 = ⋃ 𝐴𝑖𝑖  and 𝐹 ∈ 𝐴𝐶𝛿
∗(𝐴𝑖). By Theorem 3.3, 𝐹 ∈ 𝐴𝐶𝛿

∗(𝐴𝑖 ∪ {𝑐}), for every 𝑖. 
So, 𝐹 ∈ 𝐴𝐶𝐺𝛿

∗(𝐴 ∪ {𝑐}).   ∎  

 

Theorem 3.6: If 𝐷𝛿𝐹(𝑥) exists for every 𝑥 ∈ [𝑎, 𝑏], then 𝐹 ∈ 𝐴𝐶𝐺𝛿
∗[𝑎, 𝑏]. 

 

Proof: Let 𝜀 be a positive real number. Since 𝐷𝛿𝐹(𝑥) exists for every 𝑥 ∈
[𝑎, 𝑏], then for any 𝑥 ∈ [𝑎, 𝑏] there exists a fundamental 𝛿 −interval 𝐷𝑥′ ∈ 𝒟𝑥 

such that for any 𝑢 ∈ 𝐷𝑥
′ ∩ [𝑎, 𝑏], 𝑢 ≠ 𝑥 satisfies 

 

|
𝐹(𝑥) − 𝐹(𝑢)

𝑥 − 𝑢
− 𝐷𝛿𝐹(𝑥)| < 𝜀 

or 

|𝐹(𝑥) − 𝐹(𝑢)| < [|𝐷𝛿𝐹(𝑥)| + 𝜀]|𝑥 − 𝑢|. 
For every 𝑛, 𝑖 ∈ ℕ, set 

𝑆𝑛 = {𝑥 ∈ [𝑎, 𝑏]: |𝐷𝛿𝐹(𝑥) ≤ 𝑛|} and 𝑋𝑛,𝑖 = 𝑆𝑛 ∩ [𝑎 +
𝑖−1

𝑛
, 𝑎 +

𝑖

𝑛
] . 

It is easy to understand that [𝑎, 𝑏] = ⋃ 𝑋𝑛,𝑖𝑛,𝑖 . If 𝑥 ∈ [𝑎, 𝑏] and  

𝐷𝑥 = 𝐷𝑥′ ∩ [𝑎 +
𝑖−1

𝑛
, 𝑎 +

𝑖

𝑛
], 

then for any 𝑢 ∈ 𝐷𝑥, 𝑢 ≠ 𝑥, we have 
|𝐹(𝑥) − 𝐹(𝑢)| < (𝑛 + 𝜀)|𝑥 − 𝑢|. 

 

Let 𝑛 and 𝑖 be certain the positive integer number. If (𝑥𝑗) be a sequence on 

𝑋𝑛,𝑖, then there exists a sequence of fundamental 𝛿 −interval (𝐷𝑥𝑗
) on 𝒟𝑥𝑗

. 

Take any 𝑢𝑗 ∈ 𝐷𝑥𝑗
∩ 𝑋𝑛,𝑖 and 

𝑎𝑗 = 𝑚𝑖𝑛{𝑥𝑗 , 𝑢𝑖}, and 𝑏𝑗 = 𝑚𝑎𝑥{𝑥𝑗 , 𝑢𝑖}. 

 

Since 𝐷𝛿𝐹(𝑥)  exists for every 𝑥 ∈ [𝑎, 𝑏] , then by Theorem 2.2.1, 𝐹  is 

𝛿 −continuous on [𝑎, 𝑏]. Since [𝑎𝑗 , 𝑏𝑗] ⊂ [𝑎, 𝑏], then for every 𝑗, 𝐹 ∈ 𝐶𝛿[𝑎𝑗 , 𝑏𝑗]. 

So, there are 𝛼𝑗 , 𝛽𝑗  ∈ [𝑎𝑗 , 𝑏𝑗] such that  

𝜔(𝐹; [𝑎𝑗, 𝑏𝑗]) =  |𝐹(𝛼𝑗) − 𝐹(𝛽𝑗)|. 
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Since 𝛼𝑗 , 𝛽𝑗  ∈ [𝑎𝑗, 𝑏𝑗], then  

|𝐹(𝛼𝑗) − 𝐹(𝛽𝑗)| < [𝑛 + 𝜀]|𝑥𝑗 − 𝑢𝑗|. 

 

Consequently, 

 

∑ 𝜔(𝐹; [𝑎𝑗 , 𝑏𝑗]) =  ∑|𝐹(𝛼𝑗) − 𝐹(𝛽𝑗)|  <  [𝑛 + 𝜀] ∑|𝑥𝑗 − 𝑢𝑗|  <  𝜀.

𝑗𝑗𝑗

 

if ∑ |𝑥𝑗 − 𝑢𝑗|  <  𝛾 =  
𝜀

𝑛+𝜀𝑖 .  It’s meant that 𝐹 ∈ 𝐴𝐶𝐺𝛿
∗[𝑎, 𝑏].  ∎ 

 

 

Theorem 3.7: If 𝐷𝛿𝐹(𝑥)  exist nearly everywhere on [𝑎, 𝑏] , then 𝐹 ∈
𝐴𝐶𝐺𝛿

∗[𝑎, 𝑏]. 
 

Proof: Let 𝜀 be a positive real number. Since 𝐷𝛿𝐹(𝑥) nearly everywhere on 

[𝑎, 𝑏], there exist a countable set 𝐴 ⊂ [𝑎, 𝑏] such that 𝐷𝛿𝐹(𝑥) exist for every 

𝑥 ∈ [𝑎, 𝑏] − 𝐴 . By Theorem 2.2.1, 𝐹  is 𝛿 − continuous on [𝑎, 𝑏] − 𝐴 . By 

Theorem 3.6, 𝐹 ∈ 𝐴𝐶𝐺𝛿
∗([𝑎, 𝑏] − 𝐴).  Since 𝐴  is a countable set, then by 

Theorem 3.5, 𝐹 ∈ 𝐴𝐶𝐺𝛿
∗([𝑎, 𝑏] − 𝐴) ∪ 𝐴. Since ([𝑎, 𝑏] − 𝐴) ∪ 𝐴 = [𝑎, 𝑏], then 

𝐹 ∈ 𝐴𝐶𝐺𝛿
∗[𝑎, 𝑏].       ∎ 
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