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Abstract

We define and study a version of the classical Hurewicz covering
property by using cover by sets which are both open and closed. We call
this property mildly Hurewicz. Game-theoretic and Ramsey-theoretic
characterizations of this property are given. Basic topological properties
of mildly Hurewicz spaces are considered.
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1 Introduction

Clopen sets in a topological space are sets which are simultaneously open and
closed, and clopen covers of a space are those covers whose all elements are
clopen sets. The importance of clopen sets and clopen covers in topology is well
known. They are used in definitions or characterizations of many topological
concepts. For example, ultraparacompact and zero-dimensional spaces are
defined in terms of sets and clopen covers, the Banaschewski compactification
of a zero-dimensional space X is exactly the set of all ultrafilters on the Boolean
algebra of clopen subsets of X, a known characterization of strong Eberlein
compact spaces is given in terms of clopen covers (a space X is strong Eberlein
compact space if and only if X has a point-finite T0-separating clopen cover),
and so on. We use here clopen covers in the theory of selection principles and
define and study spaces that we call mildly Hurewicz.
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2 Preliminaries

We use the usual topological terminology and notation as in [2]. X and Y
denote topological spaces, Cl(A) and Int(A) are the closure and interior of a
subset A of a space X. N denotes the set of natural numbers, and R is the
set of real numbers.

Now, we mention a few facts about selection principles that we consider in
this article. More information about selection principles in topological spaces
the interested reader can find in the survey papers [4, 5, 10, 12]. In this paper
we deal mainly with a version of the classical Hurewicz property [3]: For each
sequence (Un)n∈N of open covers of a space X there is a sequence (Vn)n∈N
such that for each n, Vn is a finite subset of Un and each x ∈ X belongs to
∪Vn = ∪{V : V ∈ Vn} for all but finitely many n.

In [6] it was shown that this property is of the Menger-type property
Sfin(A,B) for suitable collections A and B. Here A and B are sets of fam-
ilies of subsets of a set X, and Sfin(A,B) is the following property: For each
sequence (An)n∈N of elements of A there is a sequence (Bn)n∈N of finite sets
such that for each n, Bn ⊆ An, and

⋃
n∈NBn ∈ B.

The prototype of this selection principle is the Menger property Sfin(O,O),
introduced in [9] in a different form, where O is the collection of all open covers
of a space X.

3 Definitions and Basic Results

A space X is mildly compact (mildly Lindelöf ) if every clopen cover of X has
a finite (countable) subcover [11]. These classes of spaces play an important
role in the theory of function spaces.

We consider a selective version of mildly compact (and mildly Lindelöf)
spaces which is related to the classical Hurewicz covering property.

Definition 3.1 A space X is a mildly Hurewicz if for each sequence (Un)n∈N
of clopen covers of X there are finite sets Vn ⊂ Un, n ∈ N, such that each x
belongs to

⋃Vn =
⋃ {V : V ∈ Vn} for all but finitely many n.

It is understood that each mildly compact space is mildly Hurewicz and
each mildly Hurewicz space is mildly Lindelöf. It is also evident that each
clopen subset of a mildly Hurewicz space is also mildly Hurewicz, and that
any continuous image of a mildly Hurewicz space is mildly Hurewicz. Every
Hurewicz space is mildly Hurewicz.

Recall that a space X is zero-dimensional (in the sense of small inductive
dimension) if it has a base consisting of clopen sets [2].
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Proposition 3.2 A zero-dimensional space X is mildly Hurewicz if and
only if it is Hurewicz.

Proof. Let X be a mildly Hurewicz space and let (Un)n∈N be a sequence
of open covers of X. As X is zero-dimensional each Un can be replaced by a
clopen cover Vn consisting of clopen basic sets. Then apply to the sequence
(Vn)n∈N the fact that X is mildly Hurewicz and find for each n a finite subset
Wn of Vn such that each x ∈ X is contained in

⋃Wn for all but finitely many
n. Then set Hn = {UW ∈ Un : UW ⊃ W,W ∈ Wn}, n ∈ N. Clearly, the
sequence (Hn)n∈N witnesses for (Un)n∈N that X is Hurewicz.

Example 3.3 (1) The space X = [0, 1] \ {1/n : n ∈ N} ⊂ R is a mildly
Hurewicz (being mildly compact), non-compact space.

(2) The Sorgenfrey line S and the space P od irrational numbers (with the
Euklidean topology inherited from the real line R) are not mildly Hurewicz
because they are zero-dimensional spaces which are not Hurewicz as it is well
known.

(3) The space [0, ω1) of all countable ordinals is not mildly Hurewicz (be-
cause it is not mildly Lindelöf).

We discuss now the behaviour of the mildly Hurewicz property under some
classes of mappings.

Recall that a mapping f : X → Y is contra-continuous [1] if the preimage
f←(V ) of an open set V ⊂ X is closed in X, and precontinuous [8] if f←(V ) ⊂
Int(Cl(f←(V ))) whenever V is open in Y .

Theorem 3.4 A contra-continuous and precontinuous image Y = f(X) of
a mildly Hurewicz space X is a Hurewicz space.

Proof. Let (Vn)n∈N be a sequence of open covers of Y . Since f is contra-
continuous for each n ∈ N and each V ∈ Vn the set f←(V ) is closed in X.
On the other hand, because f is precontinuous f←(V ) ⊂ Int(Cl(f←(V ))), so
that f←(V ) ⊂ Int(f←(V )), i.e. f←(V ) = Int(f←(V )). Therefore, for each n,
the set Un = {f←(V ) : V ∈ Vn} is a clopen cover of X. As X is a mildly
Hurewicz space there is a sequence (Gn)n∈N such that for each n, Gn is a finite
subset of Un and each x ∈ X belongs to

⋃Gn for all but finitely many n. Let
Wn = {f(G) : G ∈ Gn}. Then for each n, Wn is a finite subset of Vn. Let
y = f(x) ∈ Y . As x ∈ ⋃Gn for all but finitely many n, we have that y ∈ ⋃Wn

for all but finitely many n. This means that Y is a Hurewicz space.

Recall that a mapping f : X → Y is called weakly continuous [7] if for each
x ∈ X and each neighbourhood V of f(x) there is a neighbourhood U of x
such that f(U) ⊂ Cl(V ).
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Theorem 3.5 If f : X → Y is weakly continuous mapping from a Hurewicz
space X onto a space Y , then Y is mildly Hurewicz.

Proof. Let (Vn)n∈N be a sequence of clopen covers of Y . For each x ∈ X and
each n ∈ N there is Vn,x ∈ Vn containing f(x). Since f is weakly continuous
there is an open neighbourhood Un,x of x such that f(Un,x) ⊂ Cl(Vn,x), i.e.
f(Un,x) ⊂ Vn,x. Put Un = {Un,x : x ∈ X}, n ∈ N. Then (Un)n∈N is a sequence
of open covers of X. Since X is Hurewicz, there is a sequence (Hn)n∈N such
that for each n, Hn is a finite subset of Un and each x ∈ X belongs to

⋃Hn

for all but finitely many n. Set Wn = {Vn,x : f(H) ⊂ Vn,x, H ∈ Hn}. We get a
sequence (Wn)n∈N of finite sets such thatWn ⊂ Vn for each n ∈ N. Let y ∈ Y
and let x ∈ X be such that y = f(x). As x ∈ ⋃Hn for all but finitely many
n, we have

y = f(x) ∈ f(∪Hn) ⊂ ∪Wn

for all but finitely many n, i.e. Y is mildly Hurewicz.

Theorem 3.6 If f : X → Y is an open, perfect mapping from a space X
onto a Hurewicz space Y , then X is mildly Hurewicz.

Proof. Let (Un)n∈N be a sequence of clopen covers of X. For each y ∈ Y
the set Fy := f←(y) is compact so that for each n ∈ N there is a finite set
Vy,n ⊂ Un which covers Fy. Let Vy,n =

⋃Vy,n. As f is a closed mapping, for
each n ∈ N and each y ∈ Y there is an open set Wy,n ⊂ Y such that y ∈ Wy,n

and f←(Wy,n) ⊂ Vy,n. For each n ∈ N set Wn = {Wy,n : y ∈ Y }. Then each
Wn is an open cover of Y . Since Y is Hurewicz, there is a sequence (Hn)n∈N
such that Hn is a finite subset of Wn, n ∈ N, and each y ∈ Y belongs to all
but finitely many sets

⋃Hn. For each n and each H ∈ Hn there is a finite
UH,n ⊂ Un with f←(H) ⊂ ⋃UH,n. If Gn = {U ∈ Un : U ∈ UH,n, H ∈ Hn}, then
Gn is a finite subset of Un for each n. We prove that the sequence (Gn)n∈N
witnesses for the given sequence (Un)n∈N that X is mildly Hurewicz. Indeed,
let x ∈ X and y = f(x). Then y ∈ ⋃Hn for all but finitely many n, say for
all n ≥ n0. We have that for each n ≥ n0, x ∈ f←(

⋃Hn) ⊂ ⋃Gn.

4 Characterizing Mildly Hurewicz Spaces

In this section we characterize the mildly Hurewicz property game-theoretically
and Ramsey-theoretically.

The symbol Hm(X) denotes the following mildly Hurewicz game on X:
players ONE and TWO play a round for each n ∈ N. In the nth round
player ONE chooses a clopen cover U for X and then TWO chooses a finite
set Vn ⊂ Un. TWO wins a play U1,V1;U2,V2; · · · if each x ∈ X belongs to

⋃Vn
for all but finitely many n ∈ N; otherwise ONE wins.
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As we have already observed spaces X having the mildly Hurewicz prop-
erty satisfy: each clopen cover of X has a countable subcover, i.e. each mildly
Hurewicz space is mildly Lindelöf. Therefore, when we work with the mildly
Hurewicz property, we may assume that all clopen covers of a space are count-
able. Note also that a space X has the mildly Hurewicz property whenever
ONE does not have the winning strategy in the game Hm(X).

We use the following notation for a space X:

• Cclop is the family of all clopen covers of X;

• Ωclop denotes the collection of all clopen covers U of X such that each
finite subset of X is contained in a member of U and X /∈ U ;

• Cgp
clop denotes the collection of all groupable clopen covers of X; a clopen

cover U of X is groupable if it can be represented in the form U =⋃
n∈N Un, where Un’s are finite, pairwise disjoint and each x ∈ X belongs

to
⋃Un for all but finitely many n (compare with [6]).

Notice that any U ∈ Ωclop satisfies:

For each k and each partition U = U1 ∪ · · · Uk there is an i ≤ k
with Ui ∈ Ωclop.

A space X is called ω-mildly Lindelöf if each cover in Ωclop has a countable
subcover.

Recall the following notion in Ramsey theory, called the Baumgartner-
Taylor partition relation (see [4, 10]). For each positive integer k,

A → dBe2k

denotes the following statement:

For each A in A and for each function f : [A]2 → {1, · · · , k} there
are a set B ∈ B with B ⊂ A, a j ∈ {1, · · · , k}, and a partition
B =

⋃
n∈NBn of B into pairwise disjoint finite sets such that for

each {a, b} ∈ [B]2 for which a and b are not from the same Bn, we
have f({a, b}) = j.

(The set B is called nearly homogenous of colour j.) Here [A]2 denotes the set
of all two-element subsets of A.

Theorem 4.1 For an ω-mildly Lindelöf space X the following statements
are equivalent:

(1) X has the mildly Hurewicz property;
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(2) X satisfies Sfin(Ωclop, Cgp
clop).

(3) ONE does not have a winning strategy in the mildly Hurewicz game
Hm(X) on X;

(4) ONE has no winning strategy in the game Gfin(Ωclop, Cgp
clop);

(5) For each k ∈ N the partition relation Ωclop → dCgp
clope2k holds;

Proof. The proof will be given by showing (1) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (2) ⇒
(1).

(1)⇒ (3) Let ϕ be a strategy for ONE.
Round 1: In the first round ONE chooses a countable cover ϕ(∅) = U1 ∈

Cclop, say U1 = {Un : n ∈ N}. One may assume that TWO’s response is
{Ui : i < n1}, a finite initial part of U1.

Round 2: ONE chooses a countable clopen cover U2 = ϕ({Ui : i < n1}) =
{Un1,n : n ∈ N}. Suppose TWO’s response is {Un1,i : i < n2}, a finite subset
of U2 = {Un1,n : n ∈ N}.

Round 3: ONE takes another clopen cover U3 = ϕ({Ui : i < n1}, {Un1,j :
j < n2}) = {Un1,n2,n : n ∈ N} ∈ Cclop, and TWO chooses {Un1,n2,i : i < n3}, a
finite subset of U3.

Round k: In the k-th round ONE chooses a clopen cover Uk = ϕ(({Ui : i <
n1}, {Un1,i : i < n2}, · · · , {Un1,n2,···,nk−1

}) = {Un1,n2,···,nk−1,n : n ∈ N}, and let
TWO’s response be {Un1,n2,···,nk−1,i : i < nk}. And so on.

By (1), for each finite sequence s of natural numbers there is an ns ∈ N
such that the finite sets

Vs = {Us_m : m ≤ ns}

satisfy that each x ∈ X belongs to all but finitely many sets
⋃Vs.

Define now inductively a sequence n1, n2, · · · in N so that nm+1 = nn1,···,nm ,
and take

Vn1 ,Vn1,n2 , · · · ,Vn1,n2,···,nm , · · · .

Then

X =
⋃

m∈N

⋂
k>m

⋃
Vn1,···,nk

,

i.e. ϕ is not a winning strategy for ONE.

(3) ⇒ (4) Let ϕ be a strategy for ONE in the game Gfin(Ωclop, Cgp
clop). We

can use ϕ to define a strategy ψ for ONE of the mildly Hurewicz game as
follows:

Round 1: ψ(∅) = ϕ(∅) = U1 ∈ Ωclop. Let TWO respond with V1, a finite
subset of U1, in the mildly Hurewicz game.
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Round 2: ONE computes ϕ(V1), and then plays U2 = ψ(V1) = ϕ(V1) \ V1.
Suppose that TWO responds in the mildly Hurewicz game with V2, a finite
subset of U2.

Round 3: ONE computes ϕ(V1,V2), and then responds with U3 = ψ(V1,V2) =
ϕ(V1,V2) \ (V1 ∪ V2).

And so on. Observe that ψ is really a strategy for ONE in the mildly
Hurewicz game Hm(X).

By (3) ψ is not a winning strategy for ONE of the game Hm(X). Consider
a ψ–play lost by ONE:

ψ(∅), V1; ψ(V1), V2; ψ(V1,V2), V3; · · · .

The definition of ψ, implies that the sets Vn are pairwise disjoint. Since TWO
wins, each element of X belongs to

⋃Vn for all but finitely many n. Therefore,
Consequently, the finite sets Vn, n ∈ N, ensure that

⋃
n∈N Vn belongs to Cgp

clop.
Since

ϕ(∅),V1;ϕ(V1),V2;ϕ(V1,V2),V3; · · ·

is a play of the game Gfin(Ωclop, Cgp
clop), we have that ϕ is not a winning strategy

for ONE in this game, i.e. (4) is true.

(4)⇒ (5) Let U = {U1, U2, · · ·} ∈ Ωclop and f : [U ]2 → {1, · · · , k} be given.
Let

Vj = {Ui : i > 1 and f({U1, Ui}) = j}, j = 1, 2, · · · , k.

We have a partition V1 ∪ V2 ∪ · · · ∪ Vk of U \ {U1} into k many pieces. There
exists a j such that Vj ∈ Ωclop. Fix such a j and put i1 = j and U1 = Vj. Now
define

Vj = {Ui : i > 2 and f({U2, Ui}) = j}.

We get a partition of U \ {U1, U2} into k many pieces. One of them, say Vm,
is in Ωclop. denote this m by i2 and put U2 = Vm. In a similar way we choose
Un ∈ Ωclop and in ∈ N, n ≥ 3, such that U1 ⊂ U2,⊂ · · · ⊂ Un ⊂ · · · and

Un+1 = {Ui ∈ Un : i > n+ 1 and f({Un+1, Ui}) = in+1}.
For each j ∈ {1, · · · , k} define

Vj = {Un : in = j}.

We have that for each n,

Un ∩ V1, · · · ,Un ∩ Vk

is a partition of Un into k many pieces. Thus there is a jn with Un∩Vjn ∈ Ωclop.
Since for each n we have Un ⊃ Un+1, we may assume that the same jn, denote
it again by j, works for all Un’s.

Define a strategy ϕ for ONE in the game Gfin(Ωclop, Cgp
clop) as follows:
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One first play ϕ(∅) = U1 ∩ Vj. If TWO responds by choosing the finite
set H1 ⊂ σ(∅), then ONE finds n1 = max{n : Un ∈ V1}, and plays ϕ(H1) =
Un1 ∩ Vj. If TWO responds selecting the finite set H2 ⊂ ϕ(H1), then ONE
computes n2 = max{n : Un ∈ H2} and plays ϕ(H1,H2) = Un2 ∩Vj, and so on.

Notice that by the definition of the Uj’s, during any ϕ-play we will have
n1 < n2 < · · ·, and that Hm’s are pairwise disjoint.

Use now the fact that ONE has no winning strategy in Gfin(Ωclop, Cgp
clop).

There is a ϕ-play

ϕ(∅),H1;ϕ(H1),H2;ϕ(H1,H2),H3; · · ·

lost by ONE. It is not easy to prove that moves by TWO give the required
nearly homogeneous set of colour j for f which is in Cgp

clop.

(5) ⇒ (2) Let (Un)n∈N be a sequence of (as we can assume) countable
elements of Ωclop. Let Un = {Un,k : k ∈ N}. Define V to be the collection of
nonempty sets of the form U1,n ∩ Un,k. It is clear that V ∈ Ωclop. For each
V ∈ V choose a representation of the form V = U1,n ∩ Un,k. The define the
function f : [V ]2 → {1, 2} as follows:

f({U1,n1 ∩ Un1,k, U1,n2 ∩ Un2,j}) =

{
1 if n1 = n2,
2 otherwise.

By (5), choose a nearly homogeneous of color j set W ⊂ V with W ∈ Cgp
clop.

Assume W =
⋃

k∈NWk is a sequence of finite, pairwise disjoint sets such that
for A and B from distinctWk’s we have f({A,B}) = j. We have the following
two possibilities.

Case 1 : j = 1. There is an n such that for all A ∈ W we have A ⊂ U1,n.
This implies that W does not belong to Cgp

clop. Thus, this case does not hold.

Case 2 : j = 2. For each n > 1 define

Hn = {Un,i : Un,i is the second coordinate in the representation of an W ∈ W}

and set H =
⋃

n∈NHn. Then H is the union of finite subsets of Un, n ∈ N.
It is easily checked that H ∈ Cgp

clop. If for some n, Hn was not defined, we
set Hn = ∅. So we get the sequence (Hn)n∈N witnessing for (Un)n∈N that (2)
holds.

(2) ⇒ (1) Let (Un)n∈N be a sequence of clopen covers of X. We again
assume that all these covers are countable, and else that none contains a finite
subcover of X.

For each n define the set Vn to be the set of finite unions of elements of Un.
Of course, each Vn is in Ωclop and is countable, say Vn = {Vn,k : k ∈ N}. From
covers Vn, n ∈ N, we define new covers Wn ∈ Ωclop in the following way:

n = 1: W1 = V1;
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n > 1: Wn = {V1,m1∩V2,m2∩· · ·∩Vn,mn : n < m1 < m2 < · · · < mn}\{∅}.
For each element of Wn choose a representation of the form V1,m1 ∩ V2,m2 ∩
· · · ∩ Vn,mn with n < m1 < m2 < · · · < mn.

Apply (2) to the sequence (Wn)n∈N to find for each n a finite set Gn ⊂ Wn

such that
⋃

n∈N Gn ∈ Cgp
clop. Thus we can choose finite, pairwise disjoint sets

Hn, n ∈ N, such that
⋃

n∈N Gn =
⋃

n∈NHn, and each x ∈ X belongs to
⋃Hn

for all but finitely many n.

Let n1 > 1 be large enough so that Hn1 ⊂
⋃

j>1 Gj, and let F1 be the set of
V1,k that occurs in the chosen representations of elements of Hn1 . Then choose
n2 > n1 so large that Hn2 ⊂

⋃
j>2 Gj. Denote by F2 the set of V2,k that appear

in the chosen representations of elements of Vn2 . Continuing in this way we
obtain finite sets Fn ⊂ Vn such that each element of X belongs to

⋃Fn for all
but finitely many n.

For each element G of Gn choose finitely many elements of Un whose union
is G and let Ln denote the finite set of elements of Un chosen in this way. Then
the sequence (Ln)n∈N witnesses for (Un)n∈N the mildly Hurewicz property of
X.
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