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Abstract
We define and study a version of the classical Hurewicz covering
property by using cover by sets which are both open and closed. We call
this property mildly Hurewicz. Game-theoretic and Ramsey-theoretic
characterizations of this property are given. Basic topological properties
of mildly Hurewicz spaces are considered.
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1 Introduction

Clopen sets in a topological space are sets which are simultaneously open and
closed, and clopen covers of a space are those covers whose all elements are
clopen sets. The importance of clopen sets and clopen covers in topology is well
known. They are used in definitions or characterizations of many topological
concepts. For example, ultraparacompact and zero-dimensional spaces are
defined in terms of sets and clopen covers, the Banaschewski compactification
of a zero-dimensional space X is exactly the set of all ultrafilters on the Boolean
algebra of clopen subsets of X, a known characterization of strong Eberlein
compact spaces is given in terms of clopen covers (a space X is strong Eberlein
compact space if and only if X has a point-finite Ty-separating clopen cover),
and so on. We use here clopen covers in the theory of selection principles and
define and study spaces that we call mildly Hurewicz.
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2 Preliminaries

We use the usual topological terminology and notation as in [2]. X and Y
denote topological spaces, ClI(A) and Int(A) are the closure and interior of a
subset A of a space X. N denotes the set of natural numbers, and R is the
set of real numbers.

Now, we mention a few facts about selection principles that we consider in
this article. More information about selection principles in topological spaces
the interested reader can find in the survey papers [4, 5, 10, 12]. In this paper
we deal mainly with a version of the classical Hurewicz property [3]: For each
sequence (Uy,)nen of open covers of a space X there is a sequence (V,)nen
such that for each n, V, is a finite subset of U, and each x € X belongs to
UV, = U{V : V € V,} for all but finitely many n.

In [6] it was shown that this property is of the Menger-type property
Stn(A, B) for suitable collections A and B. Here A and B are sets of fam-
ilies of subsets of a set X, and Sg, (A, B) is the following property: For each
sequence (A, )nen of elements of A there is a sequence (B,,)nen of finite sets
such that for each n, B,, C A,,, and U,en B € B.

The prototype of this selection principle is the Menger property Sg, (O, O),
introduced in [9] in a different form, where O is the collection of all open covers
of a space X.

3 Definitions and Basic Results

A space X is mildly compact (mildly Lindeldf) if every clopen cover of X has
a finite (countable) subcover [11]. These classes of spaces play an important
role in the theory of function spaces.

We consider a selective version of mildly compact (and mildly Lindelof)
spaces which is related to the classical Hurewicz covering property.

Definition 3.1 A space X is a mildly Hurewicz if for each sequence (U, )nen
of clopen covers of X there are finite sets V,, C U,, n € N, such that each x
belongs to UV, = U{V : V € V,} for all but finitely many n.

It is understood that each mildly compact space is mildly Hurewicz and
each mildly Hurewicz space is mildly Lindelof. It is also evident that each
clopen subset of a mildly Hurewicz space is also mildly Hurewicz, and that
any continuous image of a mildly Hurewicz space is mildly Hurewicz. Every
Hurewicz space is mildly Hurewicz.

Recall that a space X is zero-dimensional (in the sense of small inductive
dimension) if it has a base consisting of clopen sets [2].
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Proposition 3.2 A zero-dimensional space X is mildly Hurewicz if and
only if it is Hurewicz.

Proof. Let X be a mildly Hurewicz space and let (U,),en be a sequence
of open covers of X. As X is zero-dimensional each U, can be replaced by a
clopen cover V, consisting of clopen basic sets. Then apply to the sequence
(Vin)nen the fact that X is mildly Hurewicz and find for each n a finite subset
W, of V, such that each x € X is contained in W, for all but finitely many
n. Then set H, = {Uy € U, : Uy D W, W € W,}, n € N. Clearly, the

sequence (H,)nen witnesses for (U, )nen that X is Hurewicz.

Example 3.3 (1) The space X = [0,1] \ {1/n : n € N} C R is a mildly
Hurewicz (being mildly compact), non-compact space.

(2) The Sorgenfrey line S and the space P od irrational numbers (with the
Euklidean topology inherited from the real line R) are not mildly Hurewicz
because they are zero-dimensional spaces which are not Hurewicz as it is well
known.

(3) The space [0,w;) of all countable ordinals is not mildly Hurewicz (be-
cause it is not mildly Lindelof).

We discuss now the behaviour of the mildly Hurewicz property under some
classes of mappings.

Recall that a mapping f : X — Y is contra-continuous [1] if the preimage
f (V) of an open set V' C X is closed in X, and precontinuous [8] if f< (V) C
Int(Cl(f<(V))) whenever V is open in Y.

Theorem 3.4 A contra-continuous and precontinuous image Y = f(X) of
a mildly Hurewicz space X is a Hurewicz space.

Proof. Let (V,).en be a sequence of open covers of Y. Since f is contra-
continuous for each n € N and each V' € V, the set f< (V) is closed in X.
On the other hand, because f is precontinuous f< (V) C Int(Cl(f<(V))), so
that f< (V) C Int(f<(V)), i.e. f<(V) =1Int(f<(V)). Therefore, for each n,
the set U, = {fT(V) : V € V,} is a clopen cover of X. As X is a mildly
Hurewicz space there is a sequence (G, )nen such that for each n, G, is a finite
subset of U,, and each z € X belongs to UG, for all but finitely many n. Let
W, = {f(G) : G € G,}. Then for each n, W, is a finite subset of V,. Let
y=f(z) €Y. Asz € UG, for all but finitely many n, we have that y € UW,
for all but finitely many n. This means that Y is a Hurewicz space.

Recall that a mapping f : X — Y is called weakly continuous [7] if for each
x € X and each neighbourhood V' of f(z) there is a neighbourhood U of z
such that f(U) C CL(V).
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Theorem 3.5 If f : X — Y is weakly continuous mapping from a Hurewicz
space X onto a space Y, then'Y is mildly Hurewicz.

Proof. Let (V,).en be a sequence of clopen covers of Y. For each x € X and
each n € N there is V,,, € V,, containing f(x). Since f is weakly continuous
there is an open neighbourhood U, , of x such that f(U,.) C Cl(V,.), ie.
f(Unz) C Voo Put Uy, = {U, . : x € X}, n € N. Then (U,)nen is a sequence
of open covers of X. Since X is Hurewicz, there is a sequence (H,,)nen such
that for each n, H, is a finite subset of U,, and each = € X belongs to UH,
for all but finitely many n. Set W,, = {V,,. : f(H) C Vo, H € H, }. We get a
sequence (W, )nen of finite sets such that W, C V, for eachn € N. Let y € Y
and let © € X be such that y = f(x). As x € UH, for all but finitely many
n, we have

y= f(x) € f(UH,) C UW,

for all but finitely many n, i.e. Y is mildly Hurewicz.

Theorem 3.6 If f : X — Y is an open, perfect mapping from a space X
onto a Hurewicz space Y, then X is mildly Hurewicz.

Proof. Let (U,),en be a sequence of clopen covers of X. For each y € Y
the set F, := f(y) is compact so that for each n € N there is a finite set
Vyn C U, which covers F,. Let V,,, = UV,,. As f is a closed mapping, for
each n € N and each y € Y there is an open set W, ,, C Y such that y € W,
and f<(W,,) C V,,. For each n € N set W, = {W,,, : y € Y}. Then each
W, is an open cover of Y. Since Y is Hurewicz, there is a sequence (H,)nen
such that H,, is a finite subset of W,,, n € N, and each y € Y belongs to all
but finitely many sets |JH,. For each n and each H € H,, there is a finite
U, CU, with fC(H) CUUy,. UG, ={U €U, :U €Uy,, H € H,}, then
G, is a finite subset of U, for each n. We prove that the sequence (G,)nen
witnesses for the given sequence (U, )nen that X is mildly Hurewicz. Indeed,
let x € X and y = f(z). Then y € UH, for all but finitely many n, say for
all n > ng. We have that for each n > ng, z € f<(UH,) CUGx.

4 Characterizing Mildly Hurewicz Spaces

In this section we characterize the mildly Hurewicz property game-theoretically
and Ramsey-theoretically.

The symbol Hy,(X) denotes the following mildly Hurewicz game on X:
players ONE and TWO play a round for each n € N. In the nth round
player ONE chooses a clopen cover U for X and then TWO chooses a finite
set V, C U,,. TWO wins a play Uy, Vi;Us, Vs; - - - if each x € X belongs to UV,
for all but finitely many n € IN; otherwise ONE wins.
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As we have already observed spaces X having the mildly Hurewicz prop-
erty satisfy: each clopen cover of X has a countable subcover, i.e. each mildly
Hurewicz space is mildly Lindelof. Therefore, when we work with the mildly
Hurewicz property, we may assume that all clopen covers of a space are count-
able. Note also that a space X has the mildly Hurewicz property whenever
ONE does not have the winning strategy in the game H,(X).

We use the following notation for a space X:

® Cgop is the family of all clopen covers of X;

e (op denotes the collection of all clopen covers U of X such that each
finite subset of X is contained in a member of U and X ¢ U;

e C, denotes the collection of all groupable clopen covers of X; a clopen

cover U of X is groupable if it can be represented in the form U =
Unen Un, where U,,’s are finite, pairwise disjoint and each x € X belongs
to UU,, for all but finitely many n (compare with [6]).

Notice that any U € Qgp satisfies:

For each k£ and each partition U = U, U - - - U, there is an ¢ < k
with Z/{z S chop-

A space X is called w-mildly Lindeldf if each cover in g, has a countable
subcover.

Recall the following notion in Ramsey theory, called the Baumgartner-
Taylor partition relation (see [4, 10]). For each positive integer k,

A= [BIj
denotes the following statement:

For each A in A and for each function f : [A]* — {1,---,k} there
are a set B € Bwith B C A, aj € {1,---,k}, and a partition
B = U,en Bn of B into pairwise disjoint finite sets such that for
each {a,b} € [B]? for which a and b are not from the same B,,, we

have f({a,b}) = j.

(The set B is called nearly homogenous of colour j.) Here [A]? denotes the set
of all two-element subsets of A.

Theorem 4.1 For an w-mildly Lindelof space X the following statements
are equivalent:

(1) X has the mildly Hurewicz property;
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(2) X satisfies Sgn(Qetop; Coiop) -

(3) ONE does not have a winning strateqy in the mildly Hurewicz game
Hn(X) on X;

(4) ONE has no winning strategy in the game Ggn(Qciop, Coop)

(5) For each k € N the partition relation Qeop — [CE

clop

12 holds;

Proof. The proof will be given by showing (1) = (3) = (4) = (5) = (2) =
(1).

(1) = (3) Let ¢ be a strategy for ONE.

Round 1: In the first round ONE chooses a countable cover () = U; €
Celops say Uy = {U, : n € N}. One may assume that TWO’s response is
{U; : i < ny}, a finite initial part of U;.

Round 2: ONE chooses a countable clopen cover Uy = o({U; : i < ny}) =
{Upnyn : n € N}. Suppose TWO'’s response is {U,, ; : ¢ < ns2}, a finite subset
of Uy = {Up, n : n € N}

Round 3: ONE takes another clopen cover Us = p({U; : i < n1},{Up, j :
J <n2}) ={Unnon : n € N} € Caop, and TWO chooses {Uy, 1, 1 < ns}, a
finite subset of Us.

Round k: In the k-th round ONE chooses a clopen cover Uy, = p(({U; : i <
b AUni 00 < naky AUnmoiemet 1) = {Unimg,ome_im 2 0 € N}, and let
TWO'’s response be {Up, ny,omy_yi 0 @ < ny}. And so on.

By (1), for each finite sequence s of natural numbers there is an ny, € N
such that the finite sets

Vs = {Us~m : m < ng}

satisfy that each x € X belongs to all but finitely many sets J Vs.
Define now inductively a sequence n,ng, - - - in N so that n,41 = 1y oy
and take

an? Vnhnza e 7Vn17n2,“‘,nm7 T

Then

X = U ﬂ Uan,---,nk7

meN k>m
i.e. ¢ is not a winning strategy for ONE.

(3) = (4) Let ¢ be a strategy for ONE in the game Ggn(Qeiop, Coop)- We
can use @ to define a strategy v for ONE of the mildly Hurewicz game as
follows:

Round 1: (0) = ¢(0) = Us € Quiop. Let TWO respond with Vi, a finite

subset of U, in the mildly Hurewicz game.
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Round 2: ONE computes ¢(V;), and then plays Us = ¥(Vy) = (V1) \ V1.
Suppose that TWO responds in the mildly Hurewicz game with Vs, a finite
subset of Us.

Round 3: ONE computes ¢(V;, V,), and then responds with Us = ¢(Vy, V) =
QO(V1, Vz) \ (Vl U VQ)

And so on. Observe that 1 is really a strategy for ONE in the mildly
Hurewicz game Hy, (X).

By (3) v is not a winning strategy for ONE of the game H,,(X). Consider
a 1—play lost by ONE:

¢(®)a Vl; ?/)(Vl), VQ; ¢(V1,V2), V3; e

The definition of v, implies that the sets V,, are pairwise disjoint. Since TWO

wins, each element of X belongs to UV, for all but finitely many n. Therefore,

Consequently, the finite sets V,,, n € N, ensure that |, «n V. belongs to chf;p.
Since

80(0))» Vi @(V1)> Vo SO(Vl, V2)7 Vs;---

is a play of the game Ggy(Qelop, Con

top)» We have that ¢ is not a winning strategy
for ONE in this game, i.e. (4) is true.
(4) = (5) LetU = {Uy,Us, -} € Quop and f : [U]* — {1,---, k} be given.
Let
Vj = {Uz 7> 1 and f({UlaUz}) :]},] = 172’...’]{;_

We have a partition V; UV U --- UV of U \ {U;} into k many pieces. There
exists a j such that V; € Qgop. Fix such a j and put 4; = j and U; = V;. Now
define

Vj = {Uz 17> 2 and f({Ug, Uz}) = j}

We get a partition of U \ {U;, Uy} into k many pieces. One of them, say V,,,
is in Qgop. denote this m by 7o and put Us = V,,. In a similar way we choose
U, € Qaop and 7, € N, n > 3, such that Uy C Uy, C --- C U, C --- and

Up1 ={U, €Uy i >n+1and f({Uns1,Ui}) = ins1}-
For each j € {1,---,k} define
Vi =A{Un:in=j}.
We have that for each n,
U, N Vy, - U, NV

is a partition of U, into & many pieces. Thus there is a j, with ¢, NV, € Qciop.
Since for each n we have U,, D U,, 11, we may assume that the same j,,, denote
it again by 7, works for all U,,’s.

Define a strategy ¢ for ONE in the game Ggp(€erop, Cipp) as follows:
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One first play ¢(0) = Uy NV;. If TWO responds by choosing the finite
set Hy C o((), then ONE finds n; = max{n : U, € Vi}, and plays p(H;) =
Un, NV;. If TWO responds selecting the finite set Ho C ¢(H1), then ONE
computes ny = max{n : U, € Hs} and plays ¢(H1, H2) = Uy,, NV;, and so on.

Notice that by the definition of the U;’s, during any ¢-play we will have
ny < ng < ---, and that H,,’s are pairwise disjoint.

Use now the fact that ONE has no winning strategy in Ggn(Qeiop, Coiop)-
There is a p-play

0(0), Hy; p(H1), Ho; o(Ha, Ha), Hs; - -

lost by ONE. It is not easy to prove that moves by TWO give the required

nearly homogeneous set of colour j for f which is in CZ .

(5) = (2) Let (U,)nen be a sequence of (as we can assume) countable
elements of Qqp. Let Uy, = {U, 1 : k € N}. Define V to be the collection of
nonempty sets of the form Uy, N U, . It is clear that V € Qgp. For each
V € V choose a representation of the form V' = U, N U, . The define the
function f : [V]* = {1, 2} as follows:

. 1 lf ny = nao,
f({Ul,m N Um,ka U17n2 A U”2vj}) - { 2 otherwise.

By (5), choose a nearly homogeneous of color j set W C V with W € chf;p.
Assume W = Upen W is a sequence of finite, pairwise disjoint sets such that
for A and B from distinct Wj’s we have f({A, B}) = j. We have the following

two possibilities.

Case 1: j = 1. There is an n such that for all A € W we have A C Uy ,.
This implies that W does not belong to C& . Thus, this case does not hold.

clop*
Case 2: 7 = 2. For each n > 1 define
My = {Up,i : Uy is the second coordinate in the representation of an W € W}

and set H = U,eny Hn. Then H is the union of finite subsets of U,,, n € N.
It is easily checked that H € CZ . If for some n, H, was not defined, we
set H,, = (). So we get the sequence (H,)nen witnessing for (U, )en that (2)

holds.

(2) = (1) Let (Un)nen be a sequence of clopen covers of X. We again
assume that all these covers are countable, and else that none contains a finite
subcover of X.

For each n define the set V), to be the set of finite unions of elements of U,,.
Of course, each V), is in Qq,p and is countable, say V,, = {V,,; : k € N}. From
covers V,, n € N, we define new covers W, € (,p in the following way:

n=1 W, =V,
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n>1 Wy ={Vim MWam, NNV, in<mg <mg < -+ <my}\{0}.
For each element of W, choose a representation of the form Vj,,, NV, N
N Vom, Withn <m; <mg <--- < my,.

Apply (2) to the sequence (W), )nen to find for each n a finite set G, C W,
such that U,en Gn € C2,. Thus we can choose finite, pairwise disjoint sets
H,, n € N, such that U,en Gn = Upen Hn, and each x € X belongs to UH,
for all but finitely many n.

Let ny > 1 be large enough so that H,, C U;~G;, and let F; be the set of
V1 that occurs in the chosen representations of elements of H,,,. Then choose
ng > ny so large that H,, C U;>2G;. Denote by F, the set of V3, that appear
in the chosen representations of elements of V,,. Continuing in this way we
obtain finite sets JF,, C V), such that each element of X belongs to | .F,, for all
but finitely many n.

For each element G of G,, choose finitely many elements of i, whose union
is G and let £,, denote the finite set of elements of I, chosen in this way. Then

the sequence (L,)nen witnesses for (U, )nen the mildly Hurewicz property of
X.
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