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Abstract

Let P, be the n-th perfect power and d,, = P,41 — P, the difference
between the two consecutive perfect powers P, and P,11. In a previous
article of the author the following conjecture was established, d,, ~ 2n.
In this article we prove that this conjecture is false, since we prove that

d d
limsup — =1, liminf % = 0.
n 2n

Therefore there exist small gaps between consecutive perfect powers.
We also prove the stronger result

dn

lim inf W = 07

where € is a fixed but arbitrary positive real number.
Besides, using the ideas of this article, we obtain a shorter proof of
a theorem proved in another article of the author.
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1 Introduction

A natural number of the form m™ where m and n > 2 are positive integer is
called a perfect power. The first few terms of the integer sequence of perfect
powers are

1,4,8,9,16, 25,27, 32,36, 49, 64, 81, 100, 121, 125, 128, . ...



430 R. Jakimczuk

Let A(n) be the number of perfect powers in the open interval ((n — 1)% n?),
where n > 1 is a positive integer. It is well-known that A(n) = 0 for almost
all intervals ((n — 1)2,n?), since we have the theorem (see [3])

Theorem 1.1 Let us consider the n open intervals (0,12), (1%,2%),..., ((n—
1)%,n?). Let S(n) be the number of these n open intervals that contain some
perfect power. The following limit holds

S
lim ﬂ =0
n—00 n
Therefore, if S1(n) is the number of these n open intervals that do not
contain perfect powers then the following limit holds

lim S1(n)

n—o0 n

=1 (1)

since S(n) + Si(n) = n.
Clearly

An) >1 (2)

infinite times, since there are infinite perfect powers not a square.
Let P, be the n-th perfect power and d,, = P, 1 — P, the difference between
the two consecutive perfect powers P, and P, ;1. We have the inequality (see

1)
d, = P,1— P, <2n (n > 3). (3)

Let P, be the n-th perfect power. We have (see [4])

Therefore

2 Main Results

In a previous article of the author [2] the following conjecture was established
d, ~ 2n

Now, we give a proof that this conjecture is false.

Theorem 2.1 The conjecture d,, ~ 2n is false
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Proof. Let us consider the perfect powers P, such that

k> < P, < (k+1)

431

(5)

The number of perfect powers in this interval is A(k + 1) + 1. Note that there
is always a perfect power P, that satisfies inequality (5), namely P, = k%. We
denote the sum of the corresponding A(k + 1) + 1 differences d,, in the form

>dy=(k+1)?—k*=2k+1

Inequality (5) gives

where k(n) — 1. Therefore equation (9) gives

. n
g =1

and consequently

2n

I —1
ntho 2k 1 1

Note that 2k +1 = (k + 1) — k? (see (6))
Suppose that

Therefore (see (10) and (11))

d, . d, 2n

lim = lim — =11=1
n—oo 2k +1 nooo2n2k +1

Consequently, from a certain value of n we have

d, 2

>
2k+1 3

(6)

(7)

(11)

(12)
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Since A(k + 1) > 1 infinite times (see (2)) we have that the number of d,, in
the sum Y d,, is at least 2 infinite times. Hence (see (6) and (12))
> dn dr, dy 2 2 4
2k+1_2k5+1+2/{:+1>3+3 3>

1

That is, an evident contradiction. The theorem is proved.

Theorem 2.2 We have

dn . d,,
limsup%:hmsup 1 =1 (13)
d d
< liminf =~ = liminf — 1 14
0 < limin o — minf 5= < (14)

Proof. We have (see (3))

Therefore
0 <1 'fd"<1' d”<1 (15)
iminf — im sup —
- 2n P 2n

On the other hand, we have (see (6))

dn _ Sdn _2%k+1_

0< = —
—2k+1 " 2k+1 2k+1
Therefore
0§liminf2k:—1 Slimsukail <1 (16)
Now
%_ d, 2k+1 d,, _dl 2n (a7
2n  2k+1 2n 2k+1 2n2k+1
Equations (15), (16) and (17) imply
.. . dy .. n
liminf — = lim inf
2n 2k + 1

dn . n
lim sup on = lim sup Y]
n
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There are infinite values of k such that A(k + 1) = 0 (see (1)). Therefore in
the interval [k%, (k + 1)?) there is an unique perfect power P,, namely k?, and
consequently an unique difference d,,, namely (k + 1)? — k* = 2k + 1. Hence,

for these infinite values of k we have 2,?11 = % = 1. That is

dn n
limsupz— = lim sup Y] =1
n

Therefore (13) is proved.
On the other hand, suppose that

lim inf % = lim inf A =1
2n 2k +1
Then
lim d—n =1
n—o0 2n

This is impossible by Theorem 2.1. Consequently

n

<1

d, .. .
0< liminf% = lim inf Sy

and (14) is proved. The theorem is proved.
The following theorem was proved in [1, Theorem 3.1 and Corollaries 3.2 and

3.3]. We have obtained the following proof shorter using the ideas of this
article.

Theorem 2.3 Let e > 0 an arbitrary but fized real number. Let us consider
the first n consecutive differences

di = (Po— P)),do=(Ps— P),...,d, = (Puy1— P).

Let v(n) be the number of these differences such that (2 — 2¢€)i < d; < 2i. We
have the following limit

lim v(n)
n—oo n

=1

Proof. There are infinite values of k such that A(k + 1) = 0 (see (1)). In
this proof we work as this sequence of values of k. Therefore in the interval
[k%, (k+1)?) there is an unique perfect power P;, namely k%, and consequently
an unique difference d;, namely, (k+1)? —k* = 2k + 1. Hence for these infinite

di 2kl _
values of k we have 55 = 575 = 1, and therefore

. d; .
Aoy am =l (18)
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Now (see (18) and (10))

d; di 2k +1
lim =% = lim A 11=1 1
Koo % ko 2k +1 % (19)

Let € > 0 a fixed but arbitrary real number. There exists k. such that if
k> k.41 and A(k+ 1) =0 we have (see (19) and (3))

d;
l—-e<—x<x1
Y

That is
(2—2¢)i < d; <2i

The inequality s> < P,,; has the solutions s = 1,2, ..., {‘/P"HJ and conse-

quently L\/ Pn+1J solutions. Here (as usual) |.] is the integer part function.
The number of k such that A(k + 1) = 0 and (k + 1) < P,4; will be (see
(1) and (4))

() <5 -t ()
= a(n)(b(n)n —a(n)) =c(n)n

where a(n) — 1, b(n) = 1, ¢(n) - 1 and 0 < a(n) < 1.

Now
c(n)n —qe = S ({\/THJ> —¢ <wv(n)<n

where g, is the number of k such that k < k. and A(k+ 1) = 0.
Consequently
v(n) ~n

The theorem is proved.

In the following theorem we prove that there exist small gaps in the sequence
of perfect powers.

Theorem 2.4 We have

lim inf % = lim inf

n — 2
2n 2k+1 0 (20)

Proof. We shall need the following Taylor’s formulae.

1_1$:1+I+f($)x (21)
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where lim, o f(z) = 0. This is the Taylor’s formula of the geometric power
series.

(v —1)

14+zx)*=14az+ - 5 2% + g(x)a? (22)

where lim, ,og(z) = 0. This is the Taylor’s formula of the binomial power
series.
Suppose that n is not a square. Consequently

{n3/2J <n’? < {n?’/QJ +1 (23)
That is
2

{n?’/QJQ <n?®< ({HS/QJ + 1) (24)

3

Therefore the perfect power n” is in the interval

K%, (k+1)%) = “n3/2J2 ([0 + 1)2) (25)

2
Let P; be the first perfect power greater than {ng/ 2J . Hence we have
P; < n3. The first difference d; in interval (25) will be

d; = P, — {ng/QJz <nd— {n‘g/ﬂz (26)

Equations (26) and (21) give

d, n3 — {”3/%2 3 {n:a/zJ
O<on[31= 2[mn] “alwn] 2
B n? (n3/2 - 5(”)) ot n3/?  €(n)
T 232 —¢€(n)) 2 2 1_;<;;g_ > T2
n3/? e(n e(n)\ en n3?  €(n
T2 (1 + n<3/3 +f (n(3/2)> n(3/z> 2 * (2) = ()
b (ER) S o) o)
That is
0 d e(n)+o(1)  (n— o) (27)

< —— <
2(n32]+1~
where €(n) is the fractional part

é(n) = n? — [n*?| (28)
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and therefore (see (23))
0<e(n) <l

Suppose that n is of the form n = 4s*> + 1. Consequently (see equation (22))

n3/? — (432 i 1)3/2 _ (452>3/2 (1 N 1 >3/2

452
= 85 (1 + 24132 + (3/2)((32/2) = (4312)2 +yg (4152) (4312)2)
= st (Baa (L) 4 2

Therefore (see (29) and (28))
LngﬂJ =8s"+3s  (s— o0)

and

e(n) = (2 +g (4182)) 213 “o(1) (5 o) (30)
Therefore (see (27) and (30)) if n = 4s? 4+ 1 then

d.

IS (81)

Equation (31) implies (20). The theorem is proved.
From the proof of this theorem we can deduce the following stronger result.

Theorem 2.5 Let € be a fized but arbitrary positive real number. We have

i = lim inf _ 0 (32)

lim inf (Qk + 1)(2/3)+e (Qn)(2/3)+e

Proof. We have (see the proof of theorem 2.1)

lim — = 1

n—oo
Therefore (see (10))

(2n)(2/3)+6

lim =1

n—00 (Qk + 1)(2/3)+5
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and consequently (see the proof of theorem 2.2)

d
- = lim inf L

lim inf (2k + 1)@/ (2n)@/3)+

If we consider the numbers of the form 4s% + 1, from the proof of theorem 2.4
we obtain the inequality

(8s® +35)? < (45* +1)* < (85 + 35 + 1)

Consequently (see the proof of theorem 2.4)

0 < d; < (452 4+ 1)3 — (853 + 35)?
(2(8s% + 3s) + 1)2/3)+e = (2(8s% + 3s) + 1)(2/3)+¢
352 +1
= S — —0 (s = o0)

§2+3e (16 +5+ S%>(2/3)

and hence

d.:
lim : =0
sl>oo (2(883 + 38) + 1)(2/3)+e

(33)

Limit (33) implies (32). The theorem is proved.
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