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Abstract

Let Pn be the n-th perfect power and dn = Pn+1−Pn the difference
between the two consecutive perfect powers Pn and Pn+1. In a previous
article of the author the following conjecture was established, dn ∼ 2n.
In this article we prove that this conjecture is false, since we prove that

lim sup
dn
2n

= 1, lim inf
dn
2n

= 0.

Therefore there exist small gaps between consecutive perfect powers.
We also prove the stronger result

lim inf
dn

(2n)(2/3)+ε
= 0,

where ε is a fixed but arbitrary positive real number.
Besides, using the ideas of this article, we obtain a shorter proof of

a theorem proved in another article of the author.
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1 Introduction

A natural number of the form mn where m and n ≥ 2 are positive integer is
called a perfect power. The first few terms of the integer sequence of perfect
powers are

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, . . .
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Let A(n) be the number of perfect powers in the open interval ((n− 1)2, n2),
where n ≥ 1 is a positive integer. It is well-known that A(n) = 0 for almost
all intervals ((n− 1)2, n2), since we have the theorem (see [3])

Theorem 1.1 Let us consider the n open intervals (0, 12), (12, 22), . . . , ((n−
1)2, n2). Let S(n) be the number of these n open intervals that contain some
perfect power. The following limit holds

lim
n→∞

S(n)

n
= 0

Therefore, if S1(n) is the number of these n open intervals that do not
contain perfect powers then the following limit holds

lim
n→∞

S1(n)

n
= 1 (1)

since S(n) + S1(n) = n.
Clearly

A(n) ≥ 1 (2)

infinite times, since there are infinite perfect powers not a square.
Let Pn be the n-th perfect power and dn = Pn+1−Pn the difference between

the two consecutive perfect powers Pn and Pn+1. We have the inequality (see
[1])

dn = Pn+1 − Pn < 2n (n ≥ 3). (3)

Let Pn be the n-th perfect power. We have (see [4])

Pn ∼ n2 (4)

Therefore
Pn+1 ∼ Pn ∼ n2

2 Main Results

In a previous article of the author [2] the following conjecture was established

dn ∼ 2n

Now, we give a proof that this conjecture is false.

Theorem 2.1 The conjecture dn ∼ 2n is false
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Proof. Let us consider the perfect powers Pn such that

k2 ≤ Pn < (k + 1)2 (5)

The number of perfect powers in this interval is A(k+ 1) + 1. Note that there
is always a perfect power Pn that satisfies inequality (5), namely Pn = k2. We
denote the sum of the corresponding A(k + 1) + 1 differences dn in the form∑

dn = (k + 1)2 − k2 = 2k + 1 (6)

Inequality (5) gives

1 ≤ Pn
k2

<
(k + 1)2

k2
(7)

Therefore, since both sides in (7) have limit 1, we have

lim
n→∞

Pn
k2

= 1 (8)

Now, equations (8) and (4) give

lim
n→∞

Pn
k2

= lim
n→∞

k(n)n2

k2
= lim

n→∞
k(n)

(
n

k

)2

= 1 (9)

where k(n)→ 1. Therefore equation (9) gives

lim
n→∞

n

k
= 1

and consequently

lim
n→∞

2n

2k + 1
= 1 (10)

Note that 2k + 1 = (k + 1)2 − k2 (see (6))
Suppose that

lim
n→∞

dn
2n

= 1 (11)

Therefore (see (10) and (11))

lim
n→∞

dn
2k + 1

= lim
n→∞

dn
2n

2n

2k + 1
= 1.1 = 1

Consequently, from a certain value of n we have

dn
2k + 1

>
2

3
(12)
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Since A(k + 1) ≥ 1 infinite times (see (2)) we have that the number of dn in
the sum

∑
dn is at least 2 infinite times. Hence (see (6) and (12))

1 =

∑
dn

2k + 1
≥ dn

2k + 1
+

dn
2k + 1

>
2

3
+

2

3
=

4

3
> 1

That is, an evident contradiction. The theorem is proved.

Theorem 2.2 We have

lim sup
dn
2n

= lim sup
dn

2k + 1
= 1 (13)

0 ≤ lim inf
dn
2n

= lim inf
dn

2k + 1
< 1 (14)

Proof. We have (see (3))

0 ≤ dn
2n
≤ 1

Therefore

0 ≤ lim inf
dn
2n
≤ lim sup

dn
2n
≤ 1 (15)

On the other hand, we have (see (6))

0 ≤ dn
2k + 1

≤
∑
dn

2k + 1
=

2k + 1

2k + 1
= 1

Therefore

0 ≤ lim inf
dn

2k + 1
≤ lim sup

dn
2k + 1

≤ 1 (16)

Now

dn
2n

=
dn

2k + 1

2k + 1

2n

dn
2k + 1

=
dn
2n

2n

2k + 1
(17)

Equations (15), (16) and (17) imply

lim inf
dn
2n

= lim inf
dn

2k + 1

lim sup
dn
2n

= lim sup
dn

2k + 1
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There are infinite values of k such that A(k + 1) = 0 (see (1)). Therefore in
the interval [k2, (k + 1)2) there is an unique perfect power Pn, namely k2, and
consequently an unique difference dn, namely (k + 1)2 − k2 = 2k + 1. Hence,
for these infinite values of k we have dn

2k+1
= 2k+1

2k+1
= 1. That is

lim sup
dn
2n

= lim sup
dn

2k + 1
= 1

Therefore (13) is proved.
On the other hand, suppose that

lim inf
dn
2n

= lim inf
dn

2k + 1
= 1

Then

lim
n→∞

dn
2n

= 1

This is impossible by Theorem 2.1. Consequently

0 ≤ lim inf
dn
2n

= lim inf
dn

2k + 1
< 1

and (14) is proved. The theorem is proved.

The following theorem was proved in [1, Theorem 3.1 and Corollaries 3.2 and
3.3]. We have obtained the following proof shorter using the ideas of this
article.

Theorem 2.3 Let ε > 0 an arbitrary but fixed real number. Let us consider
the first n consecutive differences

d1 = (P2 − P1), d2 = (P3 − P2), . . . , dn = (Pn+1 − Pn).

Let v(n) be the number of these differences such that (2− 2ε)i < di < 2i. We
have the following limit

lim
n→∞

v(n)

n
= 1.

Proof. There are infinite values of k such that A(k + 1) = 0 (see (1)). In
this proof we work as this sequence of values of k. Therefore in the interval
[k2, (k+ 1)2) there is an unique perfect power Pi, namely k2, and consequently
an unique difference di, namely, (k+1)2−k2 = 2k+1. Hence for these infinite
values of k we have di

2k+1
= 2k+1

2k+1
= 1, and therefore

lim
k→∞

di
2k + 1

= lim
k→∞

1 = 1 (18)
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Now (see (18) and (10))

lim
k→∞

di
2i

= lim
k→∞

di
2k + 1

2k + 1

2i
= 1.1 = 1 (19)

Let ε > 0 a fixed but arbitrary real number. There exists kε such that if
k ≥ kε + 1 and A(k + 1) = 0 we have (see (19) and (3))

1− ε < di
2i
< 1

That is

(2− 2ε)i < di < 2i

The inequality s2 ≤ Pn+1 has the solutions s = 1, 2, . . . ,
⌊√

Pn+1

⌋
and conse-

quently
⌊√

Pn+1

⌋
solutions. Here (as usual) b.c is the integer part function.

The number of k such that A(k + 1) = 0 and (k + 1)2 ≤ Pn+1 will be (see
(1) and (4))

S1

(⌊√
Pn+1

⌋)
= a(n)

⌊√
Pn+1

⌋
= a(n)

(√
Pn+1 − α(n)

)
= a(n)(b(n)n− α(n)) = c(n)n

where a(n)→ 1, b(n)→ 1, c(n)→ 1 and 0 ≤ α(n) < 1.
Now

c(n)n− qε = S1

(⌊√
Pn+1

⌋)
− qε ≤ v(n) ≤ n

where qε is the number of k such that k ≤ kε and A(k + 1) = 0.
Consequently

v(n) ∼ n

The theorem is proved.

In the following theorem we prove that there exist small gaps in the sequence
of perfect powers.

Theorem 2.4 We have

lim inf
dn
2n

= lim inf
dn

2k + 1
= 0 (20)

Proof. We shall need the following Taylor’s formulae.

1

1− x
= 1 + x+ f(x)x (21)
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where limx→0 f(x) = 0. This is the Taylor’s formula of the geometric power
series.

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 + g(x)x2 (22)

where limx→0 g(x) = 0. This is the Taylor’s formula of the binomial power
series.

Suppose that n is not a square. Consequently⌊
n3/2

⌋
< n3/2 <

⌊
n3/2

⌋
+ 1 (23)

That is ⌊
n3/2

⌋2
< n3 <

(⌊
n3/2

⌋
+ 1

)2
(24)

Therefore the perfect power n3 is in the interval[
k2, (k + 1)2

)
=
[⌊
n3/2

⌋2
,
(⌊
n3/2

⌋
+ 1

)2)
(25)

Let Pi be the first perfect power greater than
⌊
n3/2

⌋2
. Hence we have

Pi ≤ n3. The first difference di in interval (25) will be

di = Pi −
⌊
n3/2

⌋2
≤ n3 −

⌊
n3/2

⌋2
(26)

Equations (26) and (21) give

0 <
di

2 bn3/2c+ 1
≤
n3 −

⌊
n3/2

⌋2
2 bn3/2c

=
n3

2 bn3/2c
−

⌊
n3/2

⌋
2

=
n3

2 (n3/2 − ε(n))
−

(
n3/2 − ε(n)

)
2

=
n3/2

2

1

1− ε(n)

n3/2

− n3/2

2
+
ε(n)

2

=
n3/2

2

(
1 +

ε(n)

n3/2
+ f

(
ε(n)

n3/2

)
ε(n)

n3/2

)
− n3/2

2
+
ε(n)

2
= ε(n)

+ f

(
ε(n)

n3/2

)
ε(n)

2
= ε(n) + o(1) (n→∞)

That is

0 <
di

2 bn3/2c+ 1
≤ ε(n) + o(1) (n→∞) (27)

where ε(n) is the fractional part

ε(n) = n3/2 −
⌊
n3/2

⌋
(28)
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and therefore (see (23))

0 < ε(n) < 1

Suppose that n is of the form n = 4s2 + 1. Consequently (see equation (22))

n3/2 =
(
4s2 + 1

)3/2
=
(
4s2

)3/2 (
1 +

1

4s2

)3/2

= 8s3
(

1 +
3

2

1

4s2
+

(3/2)((3/2)− 1)

2

1

(4s2)2
+ g

(
1

4s2

)
1

(4s2)2

)

= 8s3 + 3s+
(

3

8
+ g

(
1

4s2

))
1

2s
(29)

Therefore (see (29) and (28))⌊
n3/2

⌋
= 8s3 + 3s (s→∞)

and

ε(n) =
(

3

8
+ g

(
1

4s2

))
1

2s
= o(1) (s→∞) (30)

Therefore (see (27) and (30)) if n = 4s2 + 1 then

lim
s→∞

di
2 bn3/2c+ 1

= 0 (31)

Equation (31) implies (20). The theorem is proved.

From the proof of this theorem we can deduce the following stronger result.

Theorem 2.5 Let ε be a fixed but arbitrary positive real number. We have

lim inf
dn

(2k + 1)(2/3)+ε
= lim inf

dn
(2n)(2/3)+ε

= 0 (32)

Proof. We have (see the proof of theorem 2.1)

lim
n→∞

n

k
= 1

Therefore (see (10))

lim
n→∞

(2n)(2/3)+ε

(2k + 1)(2/3)+ε
= 1
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and consequently (see the proof of theorem 2.2)

lim inf
dn

(2k + 1)(2/3)+ε
= lim inf

dn
(2n)(2/3)+ε

If we consider the numbers of the form 4s2 + 1, from the proof of theorem 2.4
we obtain the inequality

(8s3 + 3s)2 < (4s2 + 1)3 < (8s3 + 3s+ 1)2

Consequently (see the proof of theorem 2.4)

0 <
di

(2(8s3 + 3s) + 1)(2/3)+ε
≤ (4s2 + 1)3 − (8s3 + 3s)2

(2(8s3 + 3s) + 1)(2/3)+ε

=
3s2 + 1

s2+3ε
(
16 + 6

s2
+ 1

s3

)(2/3)+ε → 0 (s→∞)

and hence

lim
s→∞

di
(2(8s3 + 3s) + 1)(2/3)+ε

= 0 (33)

Limit (33) implies (32). The theorem is proved.

Acknowledgements. The author is very grateful to Universidad Nacional de
Luján.

References

[1] R. Jakimczuk, Some results on the difference between consecutive perfect
powers, Gulf Journal of Mathematics, 3 (2015), no. 3, 9 - 32.

[2] R. Jakimczuk, A conjecture on the difference between consecutive perfect
powers, International Journal of Contemporary Mathematical Sciences, 8
(2013), no. 17, 815 - 819. http://dx.doi.org/10.12988/ijcms.2013.3790

[3] R. Jakimczuk, On the distribution of perfect powers, Journal of Integer
Sequences, 14 (2011), Article 11.8.5.

[4] R. Jakimczuk, Asymptotic formulae for the n-th perfect power, Journal
of Integer Sequences, 15 (2012), article 12.5.5.

Received: March 12, 2016; Published: April 21, 2016


