International Mathematical Forum, Vol. 11, 2016, no. 9, 429 - 437 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6232

Gaps between Consecutive Perfect Powers

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina

Copyright © 2016 Rafael Jakimczuk. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let P_n be the *n*-th perfect power and $d_n = P_{n+1} - P_n$ the difference between the two consecutive perfect powers P_n and P_{n+1} . In a previous article of the author the following conjecture was established, $d_n \sim 2n$. In this article we prove that this conjecture is false, since we prove that

$$\limsup \frac{d_n}{2n} = 1, \qquad \liminf \frac{d_n}{2n} = 0.$$

Therefore there exist small gaps between consecutive perfect powers.

We also prove the stronger result

$$\lim \inf \frac{d_n}{(2n)^{(2/3)+\epsilon}} = 0,$$

where ϵ is a fixed but arbitrary positive real number.

Besides, using the ideas of this article, we obtain a shorter proof of a theorem proved in another article of the author.

Mathematics Subject Classification: 11A99, 11B99

Keywords: Perfect powers, consecutive perfect powers, gaps

1 Introduction

A natural number of the form m^n where m and $n \ge 2$ are positive integer is called a perfect power. The first few terms of the integer sequence of perfect powers are

 $1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, \dots$

Let A(n) be the number of perfect powers in the open interval $((n-1)^2, n^2)$, where $n \ge 1$ is a positive integer. It is well-known that A(n) = 0 for almost all intervals $((n-1)^2, n^2)$, since we have the theorem (see [3])

Theorem 1.1 Let us consider the n open intervals $(0, 1^2), (1^2, 2^2), \ldots, ((n-1)^2, n^2)$. Let S(n) be the number of these n open intervals that contain some perfect power. The following limit holds

$$\lim_{n \to \infty} \frac{S(n)}{n} = 0$$

Therefore, if $S_1(n)$ is the number of these n open intervals that do not contain perfect powers then the following limit holds

$$\lim_{n \to \infty} \frac{S_1(n)}{n} = 1 \tag{1}$$

since $S(n) + S_1(n) = n$. Clearly

$$A(n) \ge 1 \tag{2}$$

infinite times, since there are infinite perfect powers not a square.

Let P_n be the *n*-th perfect power and $d_n = P_{n+1} - P_n$ the difference between the two consecutive perfect powers P_n and P_{n+1} . We have the inequality (see [1])

$$d_n = P_{n+1} - P_n < 2n \qquad (n \ge 3). \tag{3}$$

Let P_n be the *n*-th perfect power. We have (see [4])

$$P_n \sim n^2 \tag{4}$$

Therefore

$$P_{n+1} \sim P_n \sim n^2$$

2 Main Results

In a previous article of the author [2] the following conjecture was established

$$d_n \sim 2n$$

Now, we give a proof that this conjecture is false.

Theorem 2.1 The conjecture $d_n \sim 2n$ is false

Proof. Let us consider the perfect powers P_n such that

$$k^2 < P_n < (k+1)^2 \tag{5}$$

The number of perfect powers in this interval is A(k+1)+1. Note that there is always a perfect power P_n that satisfies inequality (5), namely $P_n = k^2$. We denote the sum of the corresponding A(k+1)+1 differences d_n in the form

$$\sum d_n = (k+1)^2 - k^2 = 2k+1 \tag{6}$$

Inequality (5) gives

$$1 \le \frac{P_n}{k^2} < \frac{(k+1)^2}{k^2} \tag{7}$$

Therefore, since both sides in (7) have limit 1, we have

$$\lim_{n \to \infty} \frac{P_n}{k^2} = 1 \tag{8}$$

Now, equations (8) and (4) give

$$\lim_{n \to \infty} \frac{P_n}{k^2} = \lim_{n \to \infty} \frac{k(n)n^2}{k^2} = \lim_{n \to \infty} k(n) \left(\frac{n}{k}\right)^2 = 1 \tag{9}$$

where $k(n) \to 1$. Therefore equation (9) gives

$$\lim_{n \to \infty} \frac{n}{k} = 1$$

and consequently

$$\lim_{n \to \infty} \frac{2n}{2k+1} = 1 \tag{10}$$

Note that $2k + 1 = (k + 1)^2 - k^2$ (see (6)) Suppose that

$$\lim_{n \to \infty} \frac{d_n}{2n} = 1 \tag{11}$$

Therefore (see (10) and (11))

$$\lim_{n \to \infty} \frac{d_n}{2k+1} = \lim_{n \to \infty} \frac{d_n}{2n} \frac{2n}{2k+1} = 1.1 = 1$$

Consequently, from a certain value of n we have

$$\frac{d_n}{2k+1} > \frac{2}{3} \tag{12}$$

Since $A(k+1) \ge 1$ infinite times (see (2)) we have that the number of d_n in the sum $\sum d_n$ is at least 2 infinite times. Hence (see (6) and (12))

$$1 = \frac{\sum d_n}{2k+1} \ge \frac{d_n}{2k+1} + \frac{d_n}{2k+1} > \frac{2}{3} + \frac{2}{3} = \frac{4}{3} > 1$$

That is, an evident contradiction. The theorem is proved.

Theorem 2.2 We have

$$\limsup \frac{d_n}{2n} = \limsup \frac{d_n}{2k+1} = 1$$
(13)

$$0 \le \liminf \frac{d_n}{2n} = \liminf \frac{d_n}{2k+1} < 1 \tag{14}$$

Proof. We have (see (3))

$$0 \le \frac{d_n}{2n} \le 1$$

Therefore

$$0 \le \liminf \frac{d_n}{2n} \le \limsup \frac{d_n}{2n} \le 1 \tag{15}$$

On the other hand, we have (see (6))

$$0 \le \frac{d_n}{2k+1} \le \frac{\sum d_n}{2k+1} = \frac{2k+1}{2k+1} = 1$$

Therefore

$$0 \le \liminf \frac{d_n}{2k+1} \le \limsup \frac{d_n}{2k+1} \le 1 \tag{16}$$

Now

$$\frac{d_n}{2n} = \frac{d_n}{2k+1} \frac{2k+1}{2n} \qquad \frac{d_n}{2k+1} = \frac{d_n}{2n} \frac{2n}{2k+1}$$
 (17)

Equations (15), (16) and (17) imply

$$\lim \inf \frac{d_n}{2n} = \lim \inf \frac{d_n}{2k+1}$$

$$\lim \sup \frac{d_n}{2n} = \lim \sup \frac{d_n}{2k+1}$$

There are infinite values of k such that A(k+1)=0 (see (1)). Therefore in the interval $[k^2, (k+1)^2)$ there is an unique perfect power P_n , namely k^2 , and consequently an unique difference d_n , namely $(k+1)^2 - k^2 = 2k+1$. Hence, for these infinite values of k we have $\frac{d_n}{2k+1} = \frac{2k+1}{2k+1} = 1$. That is

$$\lim \sup \frac{d_n}{2n} = \lim \sup \frac{d_n}{2k+1} = 1$$

Therefore (13) is proved.

On the other hand, suppose that

$$\lim\inf\frac{d_n}{2n} = \lim\inf\frac{d_n}{2k+1} = 1$$

Then

$$\lim_{n \to \infty} \frac{d_n}{2n} = 1$$

This is impossible by Theorem 2.1. Consequently

$$0 \le \liminf \frac{d_n}{2n} = \liminf \frac{d_n}{2k+1} < 1$$

and (14) is proved. The theorem is proved.

The following theorem was proved in [1, Theorem 3.1 and Corollaries 3.2 and 3.3]. We have obtained the following proof shorter using the ideas of this article.

Theorem 2.3 Let $\epsilon > 0$ an arbitrary but fixed real number. Let us consider the first n consecutive differences

$$d_1 = (P_2 - P_1), d_2 = (P_3 - P_2), \dots, d_n = (P_{n+1} - P_n).$$

Let v(n) be the number of these differences such that $(2-2\epsilon)i < d_i < 2i$. We have the following limit

$$\lim_{n \to \infty} \frac{v(n)}{n} = 1.$$

Proof. There are infinite values of k such that A(k+1) = 0 (see (1)). In this proof we work as this sequence of values of k. Therefore in the interval $[k^2, (k+1)^2)$ there is an unique perfect power P_i , namely k^2 , and consequently an unique difference d_i , namely, $(k+1)^2 - k^2 = 2k+1$. Hence for these infinite values of k we have $\frac{d_i}{2k+1} = \frac{2k+1}{2k+1} = 1$, and therefore

$$\lim_{k \to \infty} \frac{d_i}{2k+1} = \lim_{k \to \infty} 1 = 1 \tag{18}$$

Now (see (18) and (10))

$$\lim_{k \to \infty} \frac{d_i}{2i} = \lim_{k \to \infty} \frac{d_i}{2k+1} \frac{2k+1}{2i} = 1.1 = 1 \tag{19}$$

Let $\epsilon > 0$ a fixed but arbitrary real number. There exists k_{ϵ} such that if $k \geq k_{\epsilon} + 1$ and A(k+1) = 0 we have (see (19) and (3))

$$1 - \epsilon < \frac{d_i}{2i} < 1$$

That is

$$(2 - 2\epsilon)i < d_i < 2i$$

The inequality $s^2 \leq P_{n+1}$ has the solutions $s = 1, 2, \dots, \lfloor \sqrt{P_{n+1}} \rfloor$ and consequently $\lfloor \sqrt{P_{n+1}} \rfloor$ solutions. Here (as usual) $\lfloor . \rfloor$ is the integer part function.

The number of k such that A(k+1) = 0 and $(k+1)^2 \le P_{n+1}$ will be (see (1) and (4))

$$S_1\left(\left\lfloor\sqrt{P_{n+1}}\right\rfloor\right) = a(n)\left\lfloor\sqrt{P_{n+1}}\right\rfloor = a(n)\left(\sqrt{P_{n+1}} - \alpha(n)\right)$$
$$= a(n)(b(n)n - \alpha(n)) = c(n)n$$

where $a(n) \to 1$, $b(n) \to 1$, $c(n) \to 1$ and $0 \le \alpha(n) < 1$.

Now

$$c(n)n - q_{\epsilon} = S_1\left(\left\lfloor\sqrt{P_{n+1}}\right\rfloor\right) - q_{\epsilon} \le v(n) \le n$$

where q_{ϵ} is the number of k such that $k \leq k_{\epsilon}$ and A(k+1) = 0.

Consequently

$$v(n) \sim n$$

The theorem is proved.

In the following theorem we prove that there exist small gaps in the sequence of perfect powers.

Theorem 2.4 We have

$$\lim \inf \frac{d_n}{2n} = \lim \inf \frac{d_n}{2k+1} = 0$$
(20)

Proof. We shall need the following Taylor's formulae.

$$\frac{1}{1-x} = 1 + x + f(x)x\tag{21}$$

where $\lim_{x\to 0} f(x) = 0$. This is the Taylor's formula of the geometric power series.

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + g(x)x^2$$
 (22)

where $\lim_{x\to 0} g(x) = 0$. This is the Taylor's formula of the binomial power series.

Suppose that n is not a square. Consequently

$$\left[n^{3/2}\right] < n^{3/2} < \left[n^{3/2}\right] + 1$$
 (23)

That is

$$\left[n^{3/2}\right]^2 < n^3 < \left(\left[n^{3/2}\right] + 1\right)^2$$
 (24)

Therefore the perfect power n^3 is in the interval

$$[k^2, (k+1)^2] = [[n^{3/2}]^2, ([n^{3/2}] + 1)^2]$$
 (25)

Let P_i be the first perfect power greater than $\left\lfloor n^{3/2} \right\rfloor^2$. Hence we have $P_i \leq n^3$. The first difference d_i in interval (25) will be

$$d_i = P_i - \left| n^{3/2} \right|^2 \le n^3 - \left| n^{3/2} \right|^2 \tag{26}$$

Equations (26) and (21) give

$$0 < \frac{d_i}{2 \lfloor n^{3/2} \rfloor + 1} \le \frac{n^3 - \lfloor n^{3/2} \rfloor^2}{2 \lfloor n^{3/2} \rfloor} = \frac{n^3}{2 \lfloor n^{3/2} \rfloor} - \frac{\lfloor n^{3/2} \rfloor}{2}$$

$$= \frac{n^3}{2 (n^{3/2} - \epsilon(n))} - \frac{\left(n^{3/2} - \epsilon(n)\right)}{2} = \frac{n^{3/2}}{2} \frac{1}{1 - \frac{\epsilon(n)}{n^{3/2}}} - \frac{n^{3/2}}{2} + \frac{\epsilon(n)}{2}$$

$$= \frac{n^{3/2}}{2} \left(1 + \frac{\epsilon(n)}{n^{3/2}} + f\left(\frac{\epsilon(n)}{n^{3/2}}\right) \frac{\epsilon(n)}{n^{3/2}}\right) - \frac{n^{3/2}}{2} + \frac{\epsilon(n)}{2} = \epsilon(n)$$

$$+ f\left(\frac{\epsilon(n)}{n^{3/2}}\right) \frac{\epsilon(n)}{2} = \epsilon(n) + o(1) \qquad (n \to \infty)$$

That is

$$0 < \frac{d_i}{2|n^{3/2}| + 1} \le \epsilon(n) + o(1) \qquad (n \to \infty)$$
 (27)

where $\epsilon(n)$ is the fractional part

$$\epsilon(n) = n^{3/2} - \left\lfloor n^{3/2} \right\rfloor \tag{28}$$

and therefore (see (23))

$$0 < \epsilon(n) < 1$$

Suppose that n is of the form $n = 4s^2 + 1$. Consequently (see equation (22))

$$n^{3/2} = \left(4s^2 + 1\right)^{3/2} = \left(4s^2\right)^{3/2} \left(1 + \frac{1}{4s^2}\right)^{3/2}$$

$$= 8s^3 \left(1 + \frac{3}{2} \frac{1}{4s^2} + \frac{(3/2)((3/2) - 1)}{2} \frac{1}{(4s^2)^2} + g\left(\frac{1}{4s^2}\right) \frac{1}{(4s^2)^2}\right)$$

$$= 8s^3 + 3s + \left(\frac{3}{8} + g\left(\frac{1}{4s^2}\right)\right) \frac{1}{2s}$$
(29)

Therefore (see (29) and (28))

$$\left| n^{3/2} \right| = 8s^3 + 3s \qquad (s \to \infty)$$

and

$$\epsilon(n) = \left(\frac{3}{8} + g\left(\frac{1}{4s^2}\right)\right) \frac{1}{2s} = o(1) \qquad (s \to \infty)$$
 (30)

Therefore (see (27) and (30)) if $n = 4s^2 + 1$ then

$$\lim_{s \to \infty} \frac{d_i}{2 |n^{3/2}| + 1} = 0 \tag{31}$$

Equation (31) implies (20). The theorem is proved.

From the proof of this theorem we can deduce the following stronger result.

Theorem 2.5 Let ϵ be a fixed but arbitrary positive real number. We have

$$\lim \inf \frac{d_n}{(2k+1)^{(2/3)+\epsilon}} = \lim \inf \frac{d_n}{(2n)^{(2/3)+\epsilon}} = 0$$
 (32)

Proof. We have (see the proof of theorem 2.1)

$$\lim_{n\to\infty}\frac{n}{k}=1$$

Therefore (see (10))

$$\lim_{n \to \infty} \frac{(2n)^{(2/3)+\epsilon}}{(2k+1)^{(2/3)+\epsilon}} = 1$$

and consequently (see the proof of theorem 2.2)

$$\lim \inf \frac{d_n}{(2k+1)^{(2/3)+\epsilon}} = \lim \inf \frac{d_n}{(2n)^{(2/3)+\epsilon}}$$

If we consider the numbers of the form $4s^2 + 1$, from the proof of theorem 2.4 we obtain the inequality

$$(8s^3 + 3s)^2 < (4s^2 + 1)^3 < (8s^3 + 3s + 1)^2$$

Consequently (see the proof of theorem 2.4)

$$0 < \frac{d_i}{(2(8s^3 + 3s) + 1)^{(2/3) + \epsilon}} \le \frac{(4s^2 + 1)^3 - (8s^3 + 3s)^2}{(2(8s^3 + 3s) + 1)^{(2/3) + \epsilon}}$$

$$= \frac{3s^2 + 1}{s^{2+3\epsilon} \left(16 + \frac{6}{s^2} + \frac{1}{s^3}\right)^{(2/3) + \epsilon}} \to 0 \quad (s \to \infty)$$

and hence

$$\lim_{s \to \infty} \frac{d_i}{(2(8s^3 + 3s) + 1)^{(2/3) + \epsilon}} = 0 \tag{33}$$

Limit (33) implies (32). The theorem is proved.

Acknowledgements. The author is very grateful to Universidad Nacional de Luján.

References

- [1] R. Jakimczuk, Some results on the difference between consecutive perfect powers, *Gulf Journal of Mathematics*, **3** (2015), no. 3, 9 32.
- [2] R. Jakimczuk, A conjecture on the difference between consecutive perfect powers, *International Journal of Contemporary Mathematical Sciences*, 8 (2013), no. 17, 815 819. http://dx.doi.org/10.12988/ijcms.2013.3790
- [3] R. Jakimczuk, On the distribution of perfect powers, *Journal of Integer Sequences*, **14** (2011), Article 11.8.5.
- [4] R. Jakimczuk, Asymptotic formulae for the *n*-th perfect power, *Journal* of *Integer Sequences*, **15** (2012), article 12.5.5.

Received: March 12, 2016; Published: April 21, 2016