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Abstract

In the article, we prove that the inequality
A%(a,b)I'"%(a,b) < M(244)/3(a,b)

holds for all a,b > 0if a € [(3log2—2)/(1—log2),1) and the inequality
is reversed if a € (0, (3v/145—35)/10], where A(a,b), I(a,b) and Mpy(a,b)
are respectively the arithmetic, identric and pth power means of a and
b.
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1. Introduction

For p € R, the power mean M,(a,b) of order p and the identric mean I(a,b)
of two positive numbers a and b are defined by

Vab

(1.1)

and

1 /b 1/(b—a)
I(a,b) = ‘(5) azb (12)

respectively.

It is well-known that there are many practical problems in structural me-
chanics need to deal the power mean M,(a,b), identric mean I(a,b) and other
bivariate means. M,(a,b) is continuous and strictly increasing with respect to
p € R for fixed a,b > 0 with a # b. In the recent past, both mean values
have been the subject of intensive research. In particular, many remarkable
inequalities for M,(a,b) and I(a,b) can be found in literature [1-14].

Let A(a,b) = (a +b)/2, L(a,b) = (b — a)/(logb — loga) (a # b) and
L(a,a) = a, G(a,b) = Vab and H(a,b) = 2ab/(a + b) be the arithmetic mean,
logarithmic mean, geometric mean and harmonic mean of two positive numbers
a and b, respectively. Then

min{a,b} < H(a,b) = M_(a,b) < G(a,b) = My(a,b) < L(a,b)
< I(a,b) < A(a,b) = M;(a,b) < max{a, b}, (1.3)

and each inequality in (1.3) holds equality if and only if b = a.
In [15], Alzer and Janous established the following sharp double inequality
(see also [11, p. 350])

1
Mlog2/10g3(a‘7 b) S A<a7 b) + §G<a’7 b) S M2/3(a’7 b)

2
3
for all a,b > 0.

For any a € (0,1), Janous [16] found the greatest value p and the least
value g such that

M,(a,b) < aA(a,b) + (1 — a)G(a,b) < M,(a,b)

for all a,b > 0.
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In [17-19], the authors presented the bounds for L and [ in terms of A and
G as follows

G2/3(a, b AY3(a,b) < L(a, b) < %G(a, b) + %A(a, )

and . 5
gG(a, b) + gA(CL, b) < ](av b)

for all a,b > 0.
The following companion of (1.3) provides inequalities for the geometric
and arithmetic means of L and I, the proof can be found in [20].

G2(a,b)Az(a,b) < L2(a,b)I2(a,b) < %Lm, b) + %[(a, b)
1 1
< = Z
< 5G(a,0) + 5 A(a.b)

for all a,b > 0.
The following sharp bounds for L, I, (LI1)"/?, and (L + I)/2 in terms of

power means M,(a,b) are proved in [13, 20-25].
L((l, b) < Ml/3(a7 b)7 M2/3(a7 b) < I(a7 b) < MlogQ(aa b)v

My(a,b) < \/L(a,b)I(a,b) < Ms(a,b)

and )
5 (L(a,b) + I(a,b)) < My s(a,b)
for all a,b > 0.
Alzer and Qiu [26] proved

M.(a,b) < =L(a,b) + %I(a, b)

N | —

for all a, b > 0 with the best possible parameter ¢ = log2/(1 + log 2), and
aA(a,b) + (1 - 0)G(a, ) < I(a,b) < FA(a,b) + (1 — B)G(a, b

for « <2/3, >2/e=0.73575... and a,b > 0.
The main purpose of this paper is to give the sharp bounds for A*I'=% in
terms of power means for some a € (0,1).

2. Lemmas

In order to establish our main results, we need a lemma, which we present in
this section.
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Lemma 2.1. Let g(t) = (1 —r)(t"s
241

2rt™s

Lt b 1) logt + (25 — )75
+¢% 1 — 24 27t + 1 — 2r. Then the following statements are true:

() Ifre [SIng 2 1), then there exists A € (1, +oc), such that g(t) > 0 for
€ (1,A) and g(t ) < 0 for t € (A, 400).

(2) If r € (0, 3\/ﬁ SME=35] “then g(t) < 0 for t € (1, +00).

Proof. Let r € (0,1), p = 5F, gi(t) = t'77¢'(t), ga2(t) = tPgi(t), g5(t) =
£y (1), 9a(t) = 12g5(t), gs(t) = t"72g4(t), ge(t) = °g5(t), gr(t) = 1P g(0),
and gs(t) = tPg5(t). Then simple computation leads to

g(1) =0,
tlgi-noog( ) 0

gi(t) =1 =)t + (1 +p)t+pllogt — 2P + (14 r)t"?
+(1—=r)t P+ 2pr —p+r)t—(1—pt—t —2pr —r+1,

g:1(1) =0,
i gi(f) = —oo, (2.4)

g(t) =1 —=7)[(1+p)t? +1—p]logt+ (pr+ Dt? 4+ p(1 — r)t??
HL=p)t" 2 =22 —pt —p(l =)t —pr —p+2,

92(1) =0, (2.5)
i an(6) = =0

93(t) = p(1 + p)(1 —7)logt —2(2 — p)t" " + (L +p)(L = r)t™"
Ap(L =)t P —p(l = p)(1 =)t = (1 = p)(2 = p)t
+p*r — pr42p — 1+ 1,
g3(1) =6p—4—2r =0,
lim g3<t) —0Q,

t——+o0

gs(t) =p(1 = 7r)[(1+p)t® + (1 = p)t — (1 = p)t* P — (1 + p)t' 7]
—2(1—p)2—p)(t** - 1),
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94(1) =0, (2.9)
i g(t) = —oo, (2.10)

95(t) = p(1 = r)2(L+p)t" " + (1 = p)t' 2 — (1 = p)(2 = p)t "
~(1=p)L+pt7?] = 2(1 = p)(2-p)3 —p),
g95(1) = 4(1 —7)p* = 2(1 = p)(2 = p)(3 — p),
227<1 —)(5r% + 357 — 4), (2.11)
Jimgs(t) = =2(1=p)(2=p)3 —p) <0, (2.12)
96(t) = p(1 = r)[=2(1 +p)(1 = p)t"™' — (1 = p)(2 — p)t*
(1-

+(1—=p)2—-p)t+2(1+p)(1—p)l,

g96(1) =0, (2.13)

g7(t) = p(1 —p)(A = r)[(2 = p)t' P = 2(1 + p)*t — p(2 — p)],
97(1) = =p*(1 = p)(T+p)(1 —7) <0, (2.14)
gs(t) = p(1 — p)(1 —r)[-2(1 +p)*t* + (1 — p)(2 — p)], (2.15)

and

gs(1) = —p*(1 = p)(T+p)(1 —7r) <O0. (2.16)
(1) It r € [3%221), then from (2.11) and %22 — 0.258891... >

@% = 0.112478... we get
g5(1) > 0. (217)

From (2.15) we clearly see that gs(t) is strictly decreasing in [1, +00), then
(2.16) implies that gs(t) < 0 for ¢ € [1,+00). Hence g;(t) is strictly decreasing
n [1,+00).

From (2.14) and the monotonicity of g;(t), we know that g¢;(t) < 0 for
t € [1,400). Hence gg(t) is strictly decreasing in [1,+00).

(2.13) and the monotonicity of g¢(t) imply that gg(¢) < 0 for ¢t € [1,400).
Hence that gs(t) is strictly decreasing in [1, +00).

From (2.12) and (2.17) together with the monotonicity of gs5(t), we know
that there exists ty € (1,400), such that gs(¢) > 0 for t € (1,%y), and g5(t) <0
for t € (ty,+00). Hence g4(t) is strictly increasing in [1,to], and g4(¢) is strictly
decreasing in [tg, +00).

From (2.9), (2.10) and the monotonicity of g4(t), we obtain that there exists
t1 € (1,400), such that g4(t) > 0 for t € (1,1), and g4(t) < 0 for ¢ € [t1, +00).
Hence g5(t) is strictly increasing in [1,%;], and g3(¢) is strictly decreasing in
[tb +OO)
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From (2.7) and (2.8) together with the monotonicity of g3(t) we clearly see
that there exists ty € (1,400), such that gs(t) > 0 for ¢t € (1,t3), and g3(t) < 0
for t € (ty, +00). Hence go(t) is strictly increasing in [1, £5], and go(t) is strictly
decreasing in [t2, +00).

From (2.5), (2.6) and the monotonicity of ga(t), we obtain that there exists
t3 € (1,400), such that ga(t) > 0 for ¢t € (1,t3), and g2(t) < 0 for ¢ € (t3,+00).
Hence gy (t) is strictly increasing in [1,t3], and g;(¢) is strictly decreasing in
[tg, +OO)

From (2.3) and (2.4) together with the monotonicity of ¢;(¢) we know that
there exists t4 € (1,400), such that ¢;(¢) > 0 for ¢ € (1,t4), and g¢,(t) < 0 for
t € (t4,+00). Hence g(t) is strictly increasing in [1, 4], and g(t) is decreasing
n [t4, +OO)

Therefore, Lemma 2.1 (1) follows from (2.1) and (2.2) together with the
monotonicity of g(t).

(2) If r € (0, @%}, then from (2.11) we clearly see that
g5(1) < 0. (2.18)

From (2.15) we know that gg(t) is strictly decreasing. Therefore, Lemma
2.1 (2) follows from the monotonicity of gs(t), (2.16), (2.14), (2.13), (2.18),
(2.9), (2.7), (2.5), (2.3) and (2.1). O

3. Main Results

Theorem 3.1. For all a,b > 0, we have
A%(a,b) ' "*(a,b) < MHTa(a,b) (3.1)

for a € [3llfglfg_22, 1), and
Ma (a,b) < A%(a,b)I'"*(a,b) (3.2)

for a € (0, @]. Inequality (3.1) or (3.2) holds equality if and only if a = b,

and the parameter 222 in inequalities (3.1) and (3.2) cannot be improved.

Proof. If a = b, then from (1.1) and (1.2) we clearly see that A%(a, b)I'=*(a,b) =
M2+Ta(a, b) = a for any « € (0, 1).

If a # b, without loss of generality, we assume that a > 0. Let t = 3 > 1
and p = 22, then (1.1) and (1.2) leads to

M,(a,b) — A%(a,b)I'"*(a,b)

SRCICORINE

= b
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Let
f(t)=%log1+tp —odogt_l_1 —(1—oz)t_1logt+(1—oz),
then
fim f(t) =0, (3-4)
Jim f(t) = (1 —a) + (a = ~)log2 (3.5)
and
: B g(t)
F = (t+1)(t —1)2(tp + 1)’ (36)
where

gt) = (1 — )" + 1 +t+ 1) logt
+(2a — NPT — 20t? + P71 — 12 + 20t + 1 — 20

If o € [21%62-2 1) then (3.5) leads to

1-log2 ?
, (1—a)(a+3) fa+2
= — > 0. .
tliglof(t) a+2 a+3 log2) 20 (3.7)

Therefore, A%(a,b)I'~*(a,b) < M%Ta(a,b) for a # b follows from (3.3),
(3.4), (3.6), (3.7) and Lemma 2.1 (1).

If a € (0, 2A8=35] " then A%(a,b)I'"(a,b) > Mz (a,b) for a # b follows

from (3.3), (3.4), (3.6) and Lemma 2.1 (2).

24«

Next, we prove that the parameter =3¢ in inequalities (3.1) and (3.2) cannot

be improved.
Case 1. If o € [3113%02—2271)’ then for any 0 < ¢ < %T“, let 0 < x <1 and
x — 0, making use of the Taylor expansion, we have

log [A*(1,1 4 z)I'"*(1,1 + z)] — log M%Ta_a(l, 1+ x)

1—a)(1+
= alog(l+ g) + (1=o)+) log(1+2z) — (1 — )
3 1+ (1+2)55
— log
2+ a— 3¢ 2
=S4 o(a?). (3.8)

8
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Equation (3.8) implies that for any a € [i@fgj, 1) and 0 < & < 22, there
exists 0 < 01 = d1(e, ) < 1, such that

AL, 1+ )11, 1+ 7) > Mzia_ (1,14 )

for z € (0, 01).
Case 2. If a € (O,@%‘%], then for any 0 < £ < QJFT‘”, let 0 <z <1 and
x — 0, making use of the Taylor expansion, we have

log [A*(1, 14 z)I'"*(1,1 + z)] — log Mzt (1,1 + )

1 - 1+
= alog(l+ g) + ( a)x( 2) log(1+2)— (1 —a)
3 1+ (1+2)55"
— log
2+ a+ 3¢ 2
- —gﬁ +o(a?). (3.9)

Equation (3.9) implies that for any a € (0, @#] and 0 < & < 22,
there exists 0 < do = da(e, ) < 1, such that

A1+ )71, 1+ ) < Mzia, (1,14 )

for z € (0,62). O
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