International Mathematical Forum, Vol. 11, 2016, no. 10, 485 - 494 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6336

Inequalities for Certain Means in Structural Mechanics¹

Hong-Hu Chu

School of Civil Engineering and Architecture Changsha University of Sciences & Technology Changsha, Hunan, 410014, P. R. China

Yu-Ming Chu²

School of Mathematics and Computation Sciences Hunan City University Yiyang, Hunan, 413000, P. R. China

Copyright © 2016 Hong-Hu Chu and Yu-Ming Chu. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the article, we prove that the inequality

$$A^{\alpha}(a,b)I^{1-\alpha}(a,b) \le M_{(2+\alpha)/3}(a,b)$$

holds for all a, b > 0 if $\alpha \in [(3 \log 2 - 2)/(1 - \log 2), 1)$ and the inequality is reversed if $\alpha \in (0, (3\sqrt{145} - 35)/10]$, where A(a, b), I(a, b) and $M_p(a, b)$ are respectively the arithmetic, identric and pth power means of a and b.

Mathematics Subject Classification: 26E60

Keywords: structural mechanics, power mean, identric mean, geometric mean, arithmetic mean

¹This research was supported by the Natural Science Foundation of China under Grant 61374086 and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.

²Corresponding author

1. Introduction

For $p \in \mathbb{R}$, the power mean $M_p(a, b)$ of order p and the identric mean I(a, b) of two positive numbers a and b are defined by

$$M_p(a,b) = \begin{cases} \left(\frac{a^p + b^p}{2}\right)^{1/p}, & p \neq 0, \\ \sqrt{ab}, & p = 0, \end{cases}$$
 (1.1)

and

$$I(a,b) = \begin{cases} \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{1/(b-a)}, & a \neq b, \\ a, & a = b, \end{cases}$$
 (1.2)

respectively.

It is well-known that there are many practical problems in structural mechanics need to deal the power mean $M_p(a,b)$, identric mean I(a,b) and other bivariate means. $M_p(a,b)$ is continuous and strictly increasing with respect to $p \in R$ for fixed a,b>0 with $a \neq b$. In the recent past, both mean values have been the subject of intensive research. In particular, many remarkable inequalities for $M_p(a,b)$ and I(a,b) can be found in literature [1-14].

Let A(a,b) = (a+b)/2, $L(a,b) = (b-a)/(\log b - \log a)$ $(a \neq b)$ and L(a,a) = a, $G(a,b) = \sqrt{ab}$ and H(a,b) = 2ab/(a+b) be the arithmetic mean, logarithmic mean, geometric mean and harmonic mean of two positive numbers a and b, respectively. Then

$$\min\{a,b\} \le H(a,b) = M_{-1}(a,b) \le G(a,b) = M_0(a,b) \le L(a,b)$$

$$\le I(a,b) \le A(a,b) = M_1(a,b) \le \max\{a,b\},$$
 (1.3)

and each inequality in (1.3) holds equality if and only if b = a.

In [15], Alzer and Janous established the following sharp double inequality (see also [11, p. 350])

$$M_{\log 2/\log 3}(a,b) \le \frac{2}{3}A(a,b) + \frac{1}{3}G(a,b) \le M_{2/3}(a,b)$$

for all a, b > 0.

For any $\alpha \in (0,1)$, Janous [16] found the greatest value p and the least value q such that

$$M_p(a,b) \le \alpha A(a,b) + (1-\alpha)G(a,b) \le M_q(a,b)$$

for all a, b > 0.

In [17-19], the authors presented the bounds for L and I in terms of A and G as follows

$$G^{2/3}(a,b)A^{1/3}(a,b) \le L(a,b) \le \frac{2}{3}G(a,b) + \frac{1}{3}A(a,b)$$

and

$$\frac{1}{3}G(a,b) + \frac{2}{3}A(a,b) \le I(a,b)$$

for all a, b > 0.

The following companion of (1.3) provides inequalities for the geometric and arithmetic means of L and I, the proof can be found in [20].

$$G^{\frac{1}{2}}(a,b)A^{\frac{1}{2}}(a,b) \le L^{\frac{1}{2}}(a,b)I^{\frac{1}{2}}(a,b) \le \frac{1}{2}L(a,b) + \frac{1}{2}I(a,b)$$
$$\le \frac{1}{2}G(a,b) + \frac{1}{2}A(a,b)$$

for all a, b > 0.

The following sharp bounds for L, I, $(LI)^{1/2}$, and (L+I)/2 in terms of power means $M_p(a,b)$ are proved in [13, 20-25].

$$L(a,b) \le M_{1/3}(a,b), \quad M_{2/3}(a,b) \le I(a,b) \le M_{\log 2}(a,b),$$

 $M_0(a,b) \le \sqrt{L(a,b)I(a,b)} \le M_{1/2}(a,b)$

and

$$\frac{1}{2} \left(L(a,b) + I(a,b) \right) < M_{1/2}(a,b)$$

for all a, b > 0.

Alzer and Qiu [26] proved

$$M_c(a,b) \le \frac{1}{2}L(a,b) + \frac{1}{2}I(a,b)$$

for all a, b > 0 with the best possible parameter $c = \log 2/(1 + \log 2)$, and

$$\alpha A(a,b) + (1-\alpha)G(a,b) \le I(a,b) \le \beta A(a,b) + (1-\beta)G(a,b)$$

for $\alpha \le 2/3$, $\beta \ge 2/e = 0.73575...$ and a, b > 0.

The main purpose of this paper is to give the sharp bounds for $A^{\alpha}I^{1-\alpha}$ in terms of power means for some $\alpha \in (0,1)$.

2. Lemmas

In order to establish our main results, we need a lemma, which we present in this section. **Lemma 2.1.** Let $g(t) = (1-r)(t^{\frac{2+r}{3}+1} + t^{\frac{2+r}{3}} + t + 1)\log t + (2r-1)t^{\frac{2+r}{3}+1} - 2rt^{\frac{2+r}{3}} + t^{\frac{2+r}{3}-1} - t^2 + 2rt + 1 - 2r$. Then the following statements are true:

- (1) If $r \in \left[\frac{3 \log 2 2}{1 \log 2}, 1\right)$, then there exists $\lambda \in (1, +\infty)$, such that g(t) > 0 for $t \in (1, \lambda)$ and g(t) < 0 for $t \in (\lambda, +\infty)$.
 - (2) If $r \in (0, \frac{3\sqrt{145}-35}{10}]$, then g(t) < 0 for $t \in (1, +\infty)$.

Proof. Let $r \in (0,1)$, $p = \frac{2+r}{3}$, $g_1(t) = t^{1-p}g'(t)$, $g_2(t) = t^pg'_1(t)$, $g_3(t) = t^{1-p}g'_2(t)$, $g_4(t) = t^3g'_3(t)$, $g_5(t) = t^{p-2}g'_4(t)$, $g_6(t) = t^3g'_5(t)$, $g_7(t) = t^{1-p}g'_6(t)$, and $g_8(t) = t^pg'_7(t)$. Then simple computation leads to

$$g(1) = 0, (2.1)$$

$$\lim_{t \to +\infty} g(t) = -\infty,\tag{2.2}$$

$$g_1(t) = (1-r)[t^{1-p} + (1+p)t + p] \log t - 2t^{2-p} + (1+r)t^{1-p} + (1-r)t^{-p} + (2pr - p + r)t - (1-p)t^{-1} - 2pr - r + 1,$$

$$g_1(1) = 0, (2.3)$$

$$\lim_{t \to +\infty} g_1(t) = -\infty, \tag{2.4}$$

$$g_2(t) = (1-r)[(1+p)t^p + 1 - p]\log t + (pr+1)t^p + p(1-r)t^{p-1} + (1-p)t^{p-2} - 2(2-p)t - p(1-r)t^{-1} - pr - p + 2,$$

$$g_2(1) = 0, (2.5)$$

$$\lim_{t \to +\infty} g_2(t) = -\infty. \tag{2.6}$$

$$g_3(t) = p(1+p)(1-r)\log t - 2(2-p)t^{1-p} + (1+p)(1-r)t^{-p} + p(1-r)t^{-1-p} - p(1-p)(1-r)t^{-1} - (1-p)(2-p)t^{-2} + p^2r - pr + 2p - r + 1,$$

$$g_3(1) = 6p - 4 - 2r = 0, (2.7)$$

$$\lim_{t \to +\infty} g_3(t) = -\infty, \tag{2.8}$$

$$g_4(t) = p(1-r)[(1+p)t^2 + (1-p)t - (1-p)t^{2-p} - (1+p)t^{1-p}]$$

-2(1-p)(2-p)(t^{3-p} - 1),

$$g_4(1) = 0, (2.9)$$

$$\lim_{t \to +\infty} g_4(t) = -\infty,\tag{2.10}$$

$$g_5(t) = p(1-r)[2(1+p)t^{p-1} + (1-p)t^{p-2} - (1-p)(2-p)t^{-1} - (1-p)(1+p)t^{-2}] - 2(1-p)(2-p)(3-p),$$

$$g_5(1) = 4(1-r)p^2 - 2(1-p)(2-p)(3-p),$$

= $\frac{2}{27}(1-r)(5r^2 + 35r - 4),$ (2.11)

$$\lim_{t \to +\infty} g_5(t) = -2(1-p)(2-p)(3-p) < 0, \tag{2.12}$$

$$g_6(t) = p(1-r)[-2(1+p)(1-p)t^{p+1} - (1-p)(2-p)t^p + (1-p)(2-p)t + 2(1+p)(1-p)],$$

$$g_6(1) = 0, (2.13)$$

$$g_7(t) = p(1-p)(1-r)[(2-p)t^{1-p} - 2(1+p)^2t - p(2-p)],$$

$$g_7(1) = -p^2(1-p)(7+p)(1-r) < 0, (2.14)$$

$$g_8(t) = p(1-p)(1-r)[-2(1+p)^2t^p + (1-p)(2-p)], (2.15)$$

and

$$g_8(1) = -p^2(1-p)(7+p)(1-r) < 0.$$
 (2.16)

(1) If $r \in \left[\frac{3\log 2 - 2}{1 - \log 2}, 1\right)$, then from (2.11) and $\frac{3\log 2 - 2}{1 - \log 2} = 0.258891... > \frac{3\sqrt{145} - 35}{10} = 0.112478...$ we get

$$g_5(1) > 0. (2.17)$$

From (2.15) we clearly see that $g_8(t)$ is strictly decreasing in $[1, +\infty)$, then (2.16) implies that $g_8(t) < 0$ for $t \in [1, +\infty)$. Hence $g_7(t)$ is strictly decreasing in $[1, +\infty)$.

From (2.14) and the monotonicity of $g_7(t)$, we know that $g_7(t) < 0$ for $t \in [1, +\infty)$. Hence $g_6(t)$ is strictly decreasing in $[1, +\infty)$.

(2.13) and the monotonicity of $g_6(t)$ imply that $g_6(t) < 0$ for $t \in [1, +\infty)$. Hence that $g_5(t)$ is strictly decreasing in $[1, +\infty)$.

From (2.12) and (2.17) together with the monotonicity of $g_5(t)$, we know that there exists $t_0 \in (1, +\infty)$, such that $g_5(t) > 0$ for $t \in (1, t_0)$, and $g_5(t) < 0$ for $t \in (t_0, +\infty)$. Hence $g_4(t)$ is strictly increasing in $[1, t_0]$, and $g_4(t)$ is strictly decreasing in $[t_0, +\infty)$.

From (2.9), (2.10) and the monotonicity of $g_4(t)$, we obtain that there exists $t_1 \in (1, +\infty)$, such that $g_4(t) > 0$ for $t \in (1, t_1)$, and $g_4(t) < 0$ for $t \in [t_1, +\infty)$. Hence $g_3(t)$ is strictly increasing in $[1, t_1]$, and $g_3(t)$ is strictly decreasing in $[t_1, +\infty)$.

From (2.7) and (2.8) together with the monotonicity of $g_3(t)$ we clearly see that there exists $t_2 \in (1, +\infty)$, such that $g_3(t) > 0$ for $t \in (1, t_2)$, and $g_3(t) < 0$ for $t \in (t_2, +\infty)$. Hence $g_2(t)$ is strictly increasing in $[1, t_2]$, and $g_2(t)$ is strictly decreasing in $[t_2, +\infty)$.

From (2.5), (2.6) and the monotonicity of $g_2(t)$, we obtain that there exists $t_3 \in (1, +\infty)$, such that $g_2(t) > 0$ for $t \in (1, t_3)$, and $g_2(t) < 0$ for $t \in (t_3, +\infty)$. Hence $g_1(t)$ is strictly increasing in $[1, t_3]$, and $g_1(t)$ is strictly decreasing in $[t_3, +\infty)$.

From (2.3) and (2.4) together with the monotonicity of $g_1(t)$ we know that there exists $t_4 \in (1, +\infty)$, such that $g_1(t) > 0$ for $t \in (1, t_4)$, and $g_1(t) < 0$ for $t \in (t_4, +\infty)$. Hence g(t) is strictly increasing in $[1, t_4]$, and g(t) is decreasing in $[t_4, +\infty)$.

Therefore, Lemma 2.1 (1) follows from (2.1) and (2.2) together with the monotonicity of g(t).

(2) If
$$r \in (0, \frac{3\sqrt{145}-35}{10}]$$
, then from (2.11) we clearly see that $g_5(1) \le 0$. (2.18)

From (2.15) we know that $g_8(t)$ is strictly decreasing. Therefore, Lemma 2.1 (2) follows from the monotonicity of $g_8(t)$, (2.16), (2.14), (2.13), (2.18), (2.9), (2.7), (2.5), (2.3) and (2.1). \square

3. Main Results

Theorem 3.1. For all a, b > 0, we have

$$A^{\alpha}(a,b)I^{1-\alpha}(a,b) \le M_{\frac{2+\alpha}{2}}(a,b)$$
 (3.1)

for $\alpha \in \left[\frac{3 \log 2 - 2}{1 - \log 2}, 1\right)$, and

$$M_{\frac{2+\alpha}{3}}(a,b) \le A^{\alpha}(a,b)I^{1-\alpha}(a,b)$$
 (3.2)

for $\alpha \in (0, \frac{3\sqrt{145}-35}{10}]$. Inequality (3.1) or (3.2) holds equality if and only if a=b, and the parameter $\frac{2+\alpha}{3}$ in inequalities (3.1) and (3.2) cannot be improved.

Proof. If a = b, then from (1.1) and (1.2) we clearly see that $A^{\alpha}(a,b)I^{1-\alpha}(a,b) = M_{2+\alpha}(a,b) = a$ for any $\alpha \in (0,1)$.

If $a \neq b$, without loss of generality, we assume that a > b. Let $t = \frac{a}{b} > 1$ and $p = \frac{2+\alpha}{3}$, then (1.1) and (1.2) leads to

$$M_p(a,b) - A^{\alpha}(a,b)I^{1-\alpha}(a,b)$$

$$= b \left[\left(\frac{t^p + 1}{2} \right)^{\frac{1}{p}} - \left(\frac{t+1}{2} \right)^{\alpha} \left(\frac{1}{e} \cdot t^{\frac{t}{t-1}} \right)^{1-\alpha} \right]. \tag{3.3}$$

Let

$$f(t) = \frac{1}{p} \log \frac{1+t^p}{2} - \alpha \log \frac{t+1}{2} - (1-\alpha) \frac{t}{t-1} \log t + (1-\alpha),$$

then

$$\lim_{t \to 1} f(t) = 0, (3.4)$$

$$\lim_{t \to \infty} f(t) = (1 - \alpha) + (\alpha - \frac{1}{p})\log 2 \tag{3.5}$$

and

$$f'(t) = \frac{g(t)}{(t+1)(t-1)^2(t^p+1)},$$
(3.6)

where

$$g(t) = (1 - \alpha)(t^{p+1} + t^p + t + 1)\log t + (2\alpha - 1)t^{p+1} - 2\alpha t^p + t^{p-1} - t^2 + 2\alpha t + 1 - 2\alpha.$$

If $\alpha \in \left[\frac{3\log 2 - 2}{1 - \log 2}, 1\right)$, then (3.5) leads to

$$\lim_{t \to \infty} f(t) = \frac{(1-\alpha)(\alpha+3)}{\alpha+2} \left(\frac{\alpha+2}{\alpha+3} - \log 2\right) \ge 0. \tag{3.7}$$

Therefore, $A^{\alpha}(a,b)I^{1-\alpha}(a,b) < M_{\frac{2+\alpha}{3}}(a,b)$ for $a \neq b$ follows from (3.3), (3.4), (3.6), (3.7) and Lemma 2.1 (1).

If $\alpha \in (0, \frac{3\sqrt{145}-35}{10}]$, then $A^{\alpha}(a,b)I^{1-\alpha}(a,b) > M_{\frac{2+\alpha}{3}}(a,b)$ for $a \neq b$ follows from (3.3), (3.4), (3.6) and Lemma 2.1 (2).

Next, we prove that the parameter $\frac{2+\alpha}{3}$ in inequalities (3.1) and (3.2) cannot be improved.

Case 1. If $\alpha \in \left[\frac{3 \log 2 - 2}{1 - \log 2}, 1\right)$, then for any $0 < \varepsilon < \frac{2 + \alpha}{3}$, let 0 < x < 1 and $x \to 0$, making use of the Taylor expansion, we have

$$\log \left[A^{\alpha}(1, 1+x)I^{1-\alpha}(1, 1+x) \right] - \log M_{\frac{2+\alpha}{3}-\varepsilon}(1, 1+x)$$

$$= \alpha \log(1+\frac{x}{2}) + \frac{(1-\alpha)(1+x)}{x} \log(1+x) - (1-\alpha)$$

$$-\frac{3}{2+\alpha-3\varepsilon} \log \frac{1+(1+x)^{\frac{2+\alpha-3\varepsilon}{3}}}{2}$$

$$= \frac{\varepsilon}{8}x^2 + o(x^2). \tag{3.8}$$

Equation (3.8) implies that for any $\alpha \in \left[\frac{3\log 2-2}{1-\log 2},1\right)$ and $0 < \varepsilon < \frac{2+\alpha}{3}$, there exists $0 < \delta_1 = \delta_1(\varepsilon,\alpha) < 1$, such that

$$A^{\alpha}(1,1+x)I^{1-\alpha}(1,1+x) > M_{\frac{2+\alpha}{3}-\varepsilon}(1,1+x)$$

for $x \in (0, \delta_1)$.

Case 2. If $\alpha \in (0, \frac{3\sqrt{145}-35}{10}]$, then for any $0 < \varepsilon < \frac{2+\alpha}{3}$, let 0 < x < 1 and $x \to 0$, making use of the Taylor expansion, we have

$$\log \left[A^{\alpha}(1, 1+x)I^{1-\alpha}(1, 1+x) \right] - \log M_{\frac{2+\alpha}{3}+\varepsilon}(1, 1+x)$$

$$= \alpha \log(1+\frac{x}{2}) + \frac{(1-\alpha)(1+x)}{x} \log(1+x) - (1-\alpha)$$

$$-\frac{3}{2+\alpha+3\varepsilon} \log \frac{1+(1+x)^{\frac{2+\alpha+3\varepsilon}{3}}}{2}$$

$$= -\frac{\varepsilon}{8}x^2 + o(x^2). \tag{3.9}$$

Equation (3.9) implies that for any $\alpha \in (0, \frac{3\sqrt{145}-35}{10}]$ and $0 < \varepsilon < \frac{2+\alpha}{3}$, there exists $0 < \delta_2 = \delta_2(\varepsilon, \alpha) < 1$, such that

$$A^{\alpha}(1, 1+x)I^{1-\alpha}(1, 1+x) < M_{\frac{2+\alpha}{3}+\varepsilon}(1, 1+x)$$

for $x \in (0, \delta_2)$. \square

References

- [1] Z.-H. Yang, Y.-M. Chu and Y.-Q. Song, Sharp bounds for Toader-Qi mean in terms of logarithmic and identric means, *Mathematical Inequalities and Applications*, **19** (2016), no. 2, 721-723.
- [2] G.-D. Wang, X.-H. Zhang and Y.-M. Chu, A power mean inequality involving the complete elliptic integrals, *Rocky Mountain J. Math.*, 44 (2014), no. 5, 1661-1667. http://dx.doi.org/10.1216/rmj-2014-44-5-1661
- [3] Y.-M. Li, M.-K. Wang and Y.-M. Chu, Sharp power mean bounds for Seiffert mean, Appl. Math. J. Chinese Univ., 29 (2014), no. 1, 101-107. http://dx.doi.org/10.1007/s11766-014-3008-6
- [4] Y.-M. Chu, S.-L. Qiu and M.-K. Wang, Sharp inequalities involving the power mean and complete elliptic integral of the first kind, *Rocky Mountain J. Math.*, **43** (2013), no. 5, 1489-1496. http://dx.doi.org/10.1216/rmj-2013-43-5-1489

- [5] Y.-M. Chu, S.-W. Hou and W.-F. Xia, Optimal convex combinations bounds of centroidal and harmonic means for logarithmic and identric means, *Bull. Iranian Math. Soc.*, **39** (2013), no. 2, 259-269.
- [6] M.-K. Wang, Z.-K. Wang and Y.-M. Chu, An optimal double inequality between geometric and identric means, Appl. Math. Lett., 25 (2012), no. 3, 471-475. http://dx.doi.org/10.1016/j.aml.2011.09.038
- [7] G.-D. Wang, X.-H. Zhang and Y.-M. Chu, A power mean inequality for the Grötzsch ring function, *Math. Inequal. Appl.*, **14** (2011), no. 4, 833-837. http://dx.doi.org/10.7153/mia-14-69
- [8] Y.-F. Qiu, M.-K. Wang, Y.-M. Chu and G.-D. Wang, Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, *J. Math. Inequal.*, **5** (2011), no. 3, 301-306. http://dx.doi.org/10.7153/jmi-05-27
- [9] Y.-M. Chu, M.-Y. Shi and Y.-P. Jiang, Exact inequalities involving power mean, arithmetic mean and identric mean, Rev. Anal. Numér. Théor. Approx., 40 (2011), no. 2, 120-127.
- [10] M.-K. Wang, Y.-M. Chu, Y.-F. Qiu and S.-L. Qiu, An optimal power mean inequality for the complete elliptic integrals, *Appl. Math. Lett.*, **24** (2011), no. 6, 887-890. http://dx.doi.org/10.1016/j.aml.2010.12.044
- [11] P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and Their Inequalities, D. Reidel Publishing Co., Dordrecht, 1988. http://dx.doi.org/10.1007/978-94-017-2226-1
- [12] B.-Y. Long, W.-F. Xia and Y.-M. Chu, An optimal inequality for power mean, geometric mean and harmonic mean, *Int. J. Mod. Math.*, 5 (2010), no. 2, 149-155.
- [13] T. P. Lin, The power mean and the logarithmic mean, *Amer. Math. Monthly*, **81** (1974), 879-883. http://dx.doi.org/10.2307/2319447
- [14] Y.-M. Chu and X.-F. Xia, Two optimal double inequalities between power mean and logarithmic mean, *Comput. Math. Appl.*, **60** (2010), no. 1, 83-89. http://dx.doi.org/10.1016/j.camwa.2010.04.032
- [15] H. Alzer and W. Janous, Solution of problem 8*, Crux. Math., 13 (1987), 173-178.
- [16] W. Janous, A note on generalized Heronian means, Math. Inequal. Appl., 4 (2001), no. 3, 369-375. http://dx.doi.org/10.7153/mia-04-35

- [17] J. Sándor, A note on some inequalities for means, Arch. Math., 56 (1991),
 no. 5, 471-473. http://dx.doi.org/10.1007/bf01200091
- [18] E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl., 92 (1983), no. 1, 207-233. http://dx.doi.org/10.1016/0022-247x(83)90280-9
- [19] B. C. Carlson, The logarithmic mean, *The Amer. Math. Monthly*, **79** (1972), 615-618. http://dx.doi.org/10.2307/2317088
- [20] H. Alzer, Ungleichungen für Mittelwerte, Arch. Math., 47 (1986), no. 5, 422-426. http://dx.doi.org/10.1007/bf01189983
- [21] H. Alzer, Ungleichungen für $(e/a)^a(e/b)^b$, Elem. Math., **40** (1985), 120-123.
- [22] F. Burk, The geometric, logarithmic, and arithmetic mean inequalities, The Amer. Math. Monthly, 94 (1987), no. 6, 527-528. http://dx.doi.org/10.2307/2322844
- [23] A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beogard. Publ. Elecktrotehn. Fak. Ser. Mat. Fiz., 678-715 (1981), 15-18.
- [24] A. O. Pittenger, The symmetric, logarithmic and power means, *Univ. Beogard. Publ. Elecktrotehn. Fak. Ser. Mat. Fiz.*, **678-715** (1981), 19-23.
- [25] K. B. Stolarsky, The power and gerneralized logarithmic means, *The Amer. Math. Monthly*, **87** (1980), no. 7, 545-548. http://dx.doi.org/10.2307/2321420
- [26] H. Alzer and S.-I. Qiu, Inequalities for means in two variables, Arch. Math., 80 (2003), no. 2, 201-215. http://dx.doi.org/10.1007/s00013-003-0456-2

Received: March 28, 2016; Published: May 16, 2016