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Abstract

In the article, we prove that the inequality

Aα(a, b)I1−α(a, b) ≤M(2+α)/3(a, b)

holds for all a, b > 0 if α ∈ [(3 log 2−2)/(1− log 2), 1) and the inequality

is reversed if α ∈ (0, (3
√
145−35)/10], where A(a, b), I(a, b) andMp(a, b)

are respectively the arithmetic, identric and pth power means of a and

b.
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1. Introduction

For p ∈ R, the power mean Mp(a, b) of order p and the identric mean I(a, b)
of two positive numbers a and b are defined by

Mp(a, b) =


(
ap + bp

2

)1/p

, p 6= 0,
√
ab, p = 0,

(1.1)

and

I(a, b) =

 1

e

(
bb

aa

)1/(b−a)

, a 6= b,

a, a = b,

(1.2)

respectively.

It is well-known that there are many practical problems in structural me-
chanics need to deal the power mean Mp(a, b), identric mean I(a, b) and other
bivariate means. Mp(a, b) is continuous and strictly increasing with respect to
p ∈ R for fixed a, b > 0 with a 6= b. In the recent past, both mean values
have been the subject of intensive research. In particular, many remarkable
inequalities for Mp(a, b) and I(a, b) can be found in literature [1-14].

Let A(a, b) = (a + b)/2, L(a, b) = (b − a)/(log b − log a) (a 6= b) and
L(a, a) = a, G(a, b) =

√
ab and H(a, b) = 2ab/(a+ b) be the arithmetic mean,

logarithmic mean, geometric mean and harmonic mean of two positive numbers
a and b, respectively. Then

min{a, b} ≤ H(a, b) = M−1(a, b) ≤ G(a, b) = M0(a, b) ≤ L(a, b)

≤ I(a, b) ≤ A(a, b) = M1(a, b) ≤ max{a, b}, (1.3)

and each inequality in (1.3) holds equality if and only if b = a.

In [15], Alzer and Janous established the following sharp double inequality
(see also [11, p. 350])

Mlog 2/ log 3(a, b) ≤
2

3
A(a, b) +

1

3
G(a, b) ≤M2/3(a, b)

for all a, b > 0.

For any α ∈ (0, 1), Janous [16] found the greatest value p and the least
value q such that

Mp(a, b) ≤ αA(a, b) + (1− α)G(a, b) ≤Mq(a, b)

for all a, b > 0.
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In [17-19], the authors presented the bounds for L and I in terms of A and
G as follows

G2/3(a, b)A1/3(a, b) ≤ L(a, b) ≤ 2

3
G(a, b) +

1

3
A(a, b)

and
1

3
G(a, b) +

2

3
A(a, b) ≤ I(a, b)

for all a, b > 0.
The following companion of (1.3) provides inequalities for the geometric

and arithmetic means of L and I, the proof can be found in [20].

G
1
2 (a, b)A

1
2 (a, b) ≤ L

1
2 (a, b)I

1
2 (a, b) ≤ 1

2
L(a, b) +

1

2
I(a, b)

≤ 1

2
G(a, b) +

1

2
A(a, b)

for all a, b > 0.
The following sharp bounds for L, I, (LI)1/2, and (L + I)/2 in terms of

power means Mp(a, b) are proved in [13, 20-25].

L(a, b) ≤M1/3(a, b), M2/3(a, b) ≤ I(a, b) ≤Mlog 2(a, b),

M0(a, b) ≤
√
L(a, b)I(a, b) ≤M1/2(a, b)

and
1

2
(L(a, b) + I(a, b)) < M1/2(a, b)

for all a, b > 0.
Alzer and Qiu [26] proved

Mc(a, b) ≤
1

2
L(a, b) +

1

2
I(a, b)

for all a, b > 0 with the best possible parameter c = log 2/(1 + log 2), and

αA(a, b) + (1− α)G(a, b) ≤ I(a, b) ≤ βA(a, b) + (1− β)G(a, b)

for α ≤ 2/3, β ≥ 2/e = 0.73575... and a, b > 0.
The main purpose of this paper is to give the sharp bounds for AαI1−α in

terms of power means for some α ∈ (0, 1).

2. Lemmas

In order to establish our main results, we need a lemma, which we present in
this section.
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Lemma 2.1. Let g(t) = (1− r)(t 2+r3 +1 + t
2+r
3 + t+ 1) log t+ (2r− 1)t

2+r
3

+1 −
2rt

2+r
3 + t

2+r
3
−1 − t2 + 2rt+ 1− 2r. Then the following statements are true:

(1) If r ∈ [3 log 2−2
1−log 2 , 1), then there exists λ ∈ (1,+∞), such that g(t) > 0 for

t ∈ (1, λ) and g(t) < 0 for t ∈ (λ,+∞).

(2) If r ∈ (0, 3
√
145−35
10

], then g(t) < 0 for t ∈ (1,+∞).

Proof. Let r ∈ (0, 1), p = 2+r
3

, g1(t) = t1−pg′(t), g2(t) = tpg′1(t), g3(t) =
t1−pg′2(t), g4(t) = t3g′3(t), g5(t) = tp−2g′4(t), g6(t) = t3g′5(t), g7(t) = t1−pg′6(t),
and g8(t) = tpg′7(t). Then simple computation leads to

g(1) = 0, (2.1)

lim
t→+∞

g(t) = −∞, (2.2)

g1(t) = (1− r)[t1−p + (1 + p)t+ p] log t− 2t2−p + (1 + r)t1−p

+(1− r)t−p + (2pr − p+ r)t− (1− p)t−1 − 2pr − r + 1,

g1(1) = 0, (2.3)

lim
t→+∞

g1(t) = −∞, (2.4)

g2(t) = (1− r)[(1 + p)tp + 1− p] log t+ (pr + 1)tp + p(1− r)tp−1

+(1− p)tp−2 − 2(2− p)t− p(1− r)t−1 − pr − p+ 2,

g2(1) = 0, (2.5)

lim
t→+∞

g2(t) = −∞. (2.6)

g3(t) = p(1 + p)(1− r) log t− 2(2− p)t1−p + (1 + p)(1− r)t−p

+p(1− r)t−1−p − p(1− p)(1− r)t−1 − (1− p)(2− p)t−2

+p2r − pr + 2p− r + 1,

g3(1) = 6p− 4− 2r = 0, (2.7)

lim
t→+∞

g3(t) = −∞, (2.8)

g4(t) = p(1− r)[(1 + p)t2 + (1− p)t− (1− p)t2−p − (1 + p)t1−p]

−2(1− p)(2− p)(t3−p − 1),
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g4(1) = 0, (2.9)

lim
t→+∞

g4(t) = −∞, (2.10)

g5(t) = p(1− r)[2(1 + p)tp−1 + (1− p)tp−2 − (1− p)(2− p)t−1

−(1− p)(1 + p)t−2]− 2(1− p)(2− p)(3− p),
g5(1) = 4(1− r)p2 − 2(1− p)(2− p)(3− p),

=
2

27
(1− r)(5r2 + 35r − 4), (2.11)

lim
t→+∞

g5(t) = −2(1− p)(2− p)(3− p) < 0, (2.12)

g6(t) = p(1− r)[−2(1 + p)(1− p)tp+1 − (1− p)(2− p)tp

+(1− p)(2− p)t+ 2(1 + p)(1− p)],
g6(1) = 0, (2.13)

g7(t) = p(1− p)(1− r)[(2− p)t1−p − 2(1 + p)2t− p(2− p)],
g7(1) = −p2(1− p)(7 + p)(1− r) < 0, (2.14)

g8(t) = p(1− p)(1− r)[−2(1 + p)2tp + (1− p)(2− p)], (2.15)

and

g8(1) = −p2(1− p)(7 + p)(1− r) < 0. (2.16)

(1) If r ∈ [3 log 2−2
1−log 2 , 1), then from (2.11) and 3 log 2−2

1−log 2 = 0.258891... >
3
√
145−35
10

= 0.112478... we get

g5(1) > 0. (2.17)

From (2.15) we clearly see that g8(t) is strictly decreasing in [1,+∞), then
(2.16) implies that g8(t) < 0 for t ∈ [1,+∞). Hence g7(t) is strictly decreasing
in [1,+∞).

From (2.14) and the monotonicity of g7(t), we know that g7(t) < 0 for
t ∈ [1,+∞). Hence g6(t) is strictly decreasing in [1,+∞).

(2.13) and the monotonicity of g6(t) imply that g6(t) < 0 for t ∈ [1,+∞).
Hence that g5(t) is strictly decreasing in [1,+∞).

From (2.12) and (2.17) together with the monotonicity of g5(t), we know
that there exists t0 ∈ (1,+∞), such that g5(t) > 0 for t ∈ (1, t0), and g5(t) < 0
for t ∈ (t0,+∞). Hence g4(t) is strictly increasing in [1, t0], and g4(t) is strictly
decreasing in [t0,+∞).

From (2.9), (2.10) and the monotonicity of g4(t), we obtain that there exists
t1 ∈ (1,+∞), such that g4(t) > 0 for t ∈ (1, t1), and g4(t) < 0 for t ∈ [t1,+∞).
Hence g3(t) is strictly increasing in [1, t1], and g3(t) is strictly decreasing in
[t1,+∞).
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From (2.7) and (2.8) together with the monotonicity of g3(t) we clearly see
that there exists t2 ∈ (1,+∞), such that g3(t) > 0 for t ∈ (1, t2), and g3(t) < 0
for t ∈ (t2,+∞). Hence g2(t) is strictly increasing in [1, t2], and g2(t) is strictly
decreasing in [t2,+∞).

From (2.5), (2.6) and the monotonicity of g2(t), we obtain that there exists
t3 ∈ (1,+∞), such that g2(t) > 0 for t ∈ (1, t3), and g2(t) < 0 for t ∈ (t3,+∞).
Hence g1(t) is strictly increasing in [1, t3], and g1(t) is strictly decreasing in
[t3,+∞).

From (2.3) and (2.4) together with the monotonicity of g1(t) we know that
there exists t4 ∈ (1,+∞), such that g1(t) > 0 for t ∈ (1, t4), and g1(t) < 0 for
t ∈ (t4,+∞). Hence g(t) is strictly increasing in [1, t4], and g(t) is decreasing
in [t4,+∞).

Therefore, Lemma 2.1 (1) follows from (2.1) and (2.2) together with the
monotonicity of g(t).

(2) If r ∈ (0, 3
√
145−35
10

], then from (2.11) we clearly see that

g5(1) ≤ 0. (2.18)

From (2.15) we know that g8(t) is strictly decreasing. Therefore, Lemma
2.1 (2) follows from the monotonicity of g8(t), (2.16), (2.14), (2.13), (2.18),
(2.9), (2.7), (2.5), (2.3) and (2.1). �

3. Main Results

Theorem 3.1. For all a, b > 0, we have

Aα(a, b)I1−α(a, b) ≤M 2+α
3

(a, b) (3.1)

for α ∈ [3 log 2−2
1−log 2 , 1), and

M 2+α
3

(a, b) ≤ Aα(a, b)I1−α(a, b) (3.2)

for α ∈ (0, 3
√
145−35
10

]. Inequality (3.1) or (3.2) holds equality if and only if a = b,
and the parameter 2+α

3
in inequalities (3.1) and (3.2) cannot be improved.

Proof. If a = b, then from (1.1) and (1.2) we clearly see thatAα(a, b)I1−α(a, b) =
M 2+α

3
(a, b) = a for any α ∈ (0, 1).

If a 6= b, without loss of generality, we assume that a > b. Let t = a
b
> 1

and p = 2+α
3

, then (1.1) and (1.2) leads to

Mp(a, b)− Aα(a, b)I1−α(a, b)

= b

[(
tp + 1

2

) 1
p

−
(
t+ 1

2

)α(
1

e
· t

t
t−1

)1−α
]
. (3.3)
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Let

f(t) =
1

p
log

1 + tp

2
− α log

t+ 1

2
− (1− α)

t

t− 1
log t+ (1− α),

then

lim
t→1

f(t) = 0, (3.4)

lim
t→∞

f(t) = (1− α) + (α− 1

p
) log 2 (3.5)

and

f ′(t) =
g(t)

(t+ 1)(t− 1)2(tp + 1)
, (3.6)

where

g(t) = (1− α)(tp+1 + tp + t+ 1) log t

+(2α− 1)tp+1 − 2αtp + tp−1 − t2 + 2αt+ 1− 2α.

If α ∈ [3 log 2−2
1−log 2 , 1), then (3.5) leads to

lim
t→∞

f(t) =
(1− α)(α + 3)

α + 2

(
α + 2

α + 3
− log 2

)
≥ 0. (3.7)

Therefore, Aα(a, b)I1−α(a, b) < M 2+α
3

(a, b) for a 6= b follows from (3.3),

(3.4), (3.6), (3.7) and Lemma 2.1 (1).

If α ∈ (0, 3
√
145−35
10

], then Aα(a, b)I1−α(a, b) > M 2+α
3

(a, b) for a 6= b follows

from (3.3), (3.4), (3.6) and Lemma 2.1 (2).

Next, we prove that the parameter 2+α
3

in inequalities (3.1) and (3.2) cannot
be improved.

Case 1. If α ∈ [3 log 2−2
1−log 2 , 1), then for any 0 < ε < 2+α

3
, let 0 < x < 1 and

x→ 0, making use of the Taylor expansion, we have

log
[
Aα(1, 1 + x)I1−α(1, 1 + x)

]
− logM 2+α

3
−ε(1, 1 + x)

= α log(1 +
x

2
) +

(1− α)(1 + x)

x
log(1 + x)− (1− α)

− 3

2 + α− 3ε
log

1 + (1 + x)
2+α−3ε

3

2

=
ε

8
x2 + o(x2). (3.8)
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Equation (3.8) implies that for any α ∈ [3 log 2−2
1−log 2 , 1) and 0 < ε < 2+α

3
, there

exists 0 < δ1 = δ1(ε, α) < 1, such that

Aα(1, 1 + x)I1−α(1, 1 + x) > M 2+α
3
−ε(1, 1 + x)

for x ∈ (0, δ1).

Case 2. If α ∈ (0, 3
√
145−35
10

], then for any 0 < ε < 2+α
3

, let 0 < x < 1 and
x→ 0, making use of the Taylor expansion, we have

log
[
Aα(1, 1 + x)I1−α(1, 1 + x)

]
− logM 2+α

3
+ε(1, 1 + x)

= α log(1 +
x

2
) +

(1− α)(1 + x)

x
log(1 + x)− (1− α)

− 3

2 + α + 3ε
log

1 + (1 + x)
2+α+3ε

3

2

= −ε
8
x2 + o(x2). (3.9)

Equation (3.9) implies that for any α ∈ (0, 3
√
145−35
10

] and 0 < ε < 2+α
3

,
there exists 0 < δ2 = δ2(ε, α) < 1, such that

Aα(1, 1 + x)I1−α(1, 1 + x) < M 2+α
3

+ε(1, 1 + x)

for x ∈ (0, δ2). �
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