International Mathematical Forum, Vol. 11, 2016, no. 9, 409 - 427 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6228

OU-Operators and Identities between Holomorphic Vector Fields on $\Im(z_1) > |z_2|^2$

Hélène Airault

Lamfa, UMR 7352 CNRS, 33, rue Saint-Leu, 80039 Amiens, France

Copyright © 2016 Hélène Airault. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Consider the group $G = Aut_{Hol}\mathcal{D}$ of holomorphic automorphisms of the domain $\mathcal{D} = \{\Im(z_1) > |z_2|^2\}$. We give the expression of the Kähler Laplacian Δ^K in \mathcal{D} in terms of the holomorphic vector fields in the Lie algebra \mathcal{G} of G. We show how some identities between the holomorphic vector fields imply the invariance of the Kähler Laplacian with respect to the volume measure. On \mathcal{D} , we define operators of Ornstein-Uhlenbeck type and we calculate their invariant measure.

Mathematics Subject Classification: primary 58J65; secondary 53C17; 35J70; 60J35

Keywords: Siegel domain, Kähler Laplacian, Holomorphic automorphisms; Invariant measure

Introduction

Let

$$u(z_1, z_2) = \frac{z_1 - \overline{z_1}}{2i} - z_2 \overline{z_2}$$
 (0.1)

On the Siegel domain

$$\mathcal{D} = \{ (z_1, z_2) \in \mathbf{C}^2 \mid u(z_1, z_2) > 0 \}$$
(0.2)

we consider the Bergman metric,

$$ds^{2} = -\sum_{k,j} \frac{\partial^{2}}{\partial z_{k} \partial \overline{z_{j}}} \log u(z_{1}, z_{2}) dz_{k} d\overline{z_{j}}$$

$$(0.3)$$

$$ds^{2} = \frac{1}{4u^{2}(z_{1}, z_{2})} (dz_{1} - 2i\overline{z_{2}}dz_{2})(d\overline{z_{1}} + 2iz_{2}d\overline{z_{2}}) + \frac{1}{u(z_{1}, z_{2})} dz_{2}d\overline{z_{2}}$$

We denote dv the volume measure on \mathcal{D} ,

$$dv = u(z_1, z_2)^{-3} dz_1 d\overline{z_1} dz_2 d\overline{z_2}$$

$$(0.4)$$

The differential two-form

$$\Omega = i \sum_{j,k} \frac{\partial^2 \log u(z_1, z_2)}{\partial z_j \partial \overline{z_k}} dz_j \wedge d\overline{z_k}$$
 (0.5)

is exact $(d\Omega = 0)$. Let S^1 be the unit circle parametrized by $e^{i\theta}$. On $\mathcal{D} \times S^1$, we define the (1,0) differential forms

$$\sigma_1 = \frac{1}{2iu}(dz_1 - 2i\overline{z_2}dz_2)$$
 and $\sigma_2 = e^{-i\theta}\frac{dz_2}{\sqrt{u}}$ (0.6)

where $u = \Im z_1 - z_2 \overline{z_2}$. It is classical that $\Omega \wedge \Omega = dv$ where dv is the differential form associated to (0.4). Also $\sigma_1 = \partial \log(u)$ and $\overline{\partial} \sigma_1 = \sigma_1 \wedge \overline{\sigma_1} + \sigma_2 \wedge \overline{\sigma_2} = -i\Omega$. The Kähler Laplacian Δ^K on \mathcal{D} with the Bergman metric (0.3) is given by

$$\Delta^{K} = u(z_{1}, z_{2}) \times \left[2i(z_{1} - \overline{z_{1}}) \frac{\partial^{2}}{\partial z_{1} \partial \overline{z_{1}}} - 2i\overline{z_{2}} \frac{\partial^{2}}{\partial z_{1} \partial \overline{z_{2}}} + 2iz_{2} \frac{\partial^{2}}{\partial z_{2} \partial \overline{z_{1}}} - \frac{\partial^{2}}{\partial z_{2} \partial \overline{z_{2}}}\right] (0.7)$$

See for example [7], p.446 and see [4], [18]. We have

$$\Delta^{K} = -4 u^{2} \Delta_{1}^{K} + u \frac{1}{2i} (z_{1} - \overline{z_{1}} - 2iz_{2}\overline{z_{2}}) \Delta_{2}^{K} \quad \text{with} \quad \Delta_{1}^{K} = \frac{\partial^{2}}{\partial z_{1} \partial \overline{z_{1}}} \quad (0.8)$$

$$\Delta_{2}^{K} = -4z_{2}\overline{z_{2}}\frac{\partial^{2}}{\partial z_{1}\partial \overline{z_{1}}} - 2i\overline{z_{2}}\frac{\partial^{2}}{\partial z_{1}\partial \overline{z_{2}}} + 2iz_{2}\frac{\partial^{2}}{\partial z_{2}\partial \overline{z_{1}}} - \frac{\partial^{2}}{\partial z_{2}\partial \overline{z_{2}}}$$

$$= -\frac{1}{4}\left(\frac{\partial^{2}}{\partial x_{2}^{2}} + \frac{\partial^{2}}{\partial y_{2}^{2}}\right) - y_{2}\left(\frac{\partial^{2}}{\partial x_{1}\partial x_{2}} + \frac{\partial^{2}}{\partial y_{1}\partial y_{2}}\right)$$

$$+ x_{2}\left(\frac{\partial^{2}}{\partial x_{1}\partial y_{2}} - \frac{\partial^{2}}{\partial y_{1}\partial x_{2}}\right) - \left(x_{2}^{2} + y_{2}^{2}\right)\left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial y_{1}^{2}}\right)$$

Let $\epsilon = 1$ or -1 and consider the non holomorphic vector fields,

$$X_1 = u(z_1, z_2) \frac{\partial}{\partial z_1}$$
 and $X_2 = \sqrt{u(z_1, z_2)} (2i \epsilon \overline{z_2} \frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2})$ (0.10)

The vector fields $2X_1$ and X_2 are orthonormal with respect to the metric (0.3): Let $Y_1 = 2X_1$ and $Y_2 = X_2$ where X_1 , X_2 as in (0.10), then $\sigma_j(Y_k) = 0$ if $j \neq k$, $\sigma_1(Y_1) = -i$ and $\sigma_2(Y_2) = 1$. It holds $X_2u = 0$. It is classical that

$$\Delta^K = -4X_1\overline{X_1} - X_2\overline{X_2} \tag{0.11}$$

Consider a Kähler domain and the group G of holomorphic automorphisms of this domain. The Lie algebra \mathcal{G} of G is constituted of holomorphic vector fields. In [3], for the Siegel disk of complex symmetric matrices and in [1], for the n-dimensional complex ball, the Kähler Laplacian has been expressed in terms of a basis of \mathcal{G} . In the following, we extend to \mathcal{D} , the results obtained in [3]-[1]. By direct calculation, we write Δ^K in terms of the holomorphic vector fields of a basis in the algebra \mathcal{G} . This expression of Δ^K differs from those in [10], [6], p. 49 or [15], Chap. 4 for example and also from (0.8)-(0.11). The domain \mathcal{D} is bi-rationally equivalent to the hyperball, i.e. the unit ball in \mathbb{C}^2 , sse [14] or [15], Chap. 2. Identities similar to those in subsection 1.3 have been explicated in [1] for the unit ball in \mathbb{C}^n but their expressions in the case of the domain (0.2) is new. Since the change of variables from \mathcal{D} to the unit ball of C² is not trivial at all, it is interesting to consider the problems for the domain \mathcal{D} . In the present work, we are interested by expressions of the Laplacian Δ^K with vector fields in \mathcal{G} and by operators (OU-operators) which are adjoint of Δ^K with respect to the measure $d\mu = u^{3c} dv$ as explained in [1] for the unit ball of \mathbb{C}^n . Such investigations have not been carried out in [15] or [17]. The following is an attempt to construct OU-operators. It gives one more example for some of the problems raised in [3].

In Part I, let $G = Aut_{Hol}(\mathcal{D})$ be the group of holomorphic automorphisms of \mathcal{D} , see [13]-[15] Chap 2, for more details, we give a calculation of its Lie algebra \mathcal{G} . Then we state the holomorphic identities (1.28)-(1.29)-(1.30)-(1.31) between vector fields in \mathcal{G} . These are new.

In Part II, we verify (0.11). By analogy with [1], we relate Δ^K to \mathcal{G} by proving (2.3). We define a complex Laplacian $\Delta^K_{\mathbf{C}}$ such that $\Delta^K = \Re (\Delta^K_{\mathbf{C}})$ and we show how the invariance of dv for this complex operator ($\int \Delta^K_{\mathbf{C}} F \, dv = 0$) is a consequence of the (1.28)-(1.29). In Remark 2.7, we deduce from (2.6) that the Kohn Laplacian on the boundary of \mathcal{D} can be expressed with Lie algebra of the subgroup of affine holomorphic automorphisms of \mathcal{D} .

In Part III, let $\mathcal{D} \subset \mathbf{C}^n$ be a complex domain. We extend the Lie algebra of $Aut_{Hol}\mathcal{D}$: For a holomorphic vector field V, we define the inner contraction $\iota(V)$, see (3.1) and the operator $\rho(V) = V + c \iota(V)$ where c is a constant, see (3.4). This allows us to obtain on \mathcal{D} , Ornstein-Uhlenbeck type operators that we call OU-operators. We find these operators and their invariant measures for the domain (0.2).

1 The group $G = Aut_{Hol}\mathcal{D}$, its Lie algebra, identities between holomorphic vector fields.

Subsections 1.1 and 1.2 are known facts, see [14]- [13] for 1.1 and see [16], p. 215 - [8]- [9]- [11] for 1.2. We need them for our further investigations. The

identities in subsection 1.3 are new.

The domain \mathcal{D} is mapped to the hyperball $\mathcal{B}: 1 - w_1 \overline{w_1} - w_2 \overline{w_2} > 0$ with

$$w_1 = \frac{z_1 - i}{z_1 + i}, \quad w_2 = \frac{2z_2}{z_1 + i}$$
 (1.1)

since (1.1) implies $1 - w_1 \overline{w_1} - w_2 \overline{w_2} = \frac{4}{|z_1 + i|^2} (\frac{z_1 - \overline{z_1}}{2i} - z_2 \overline{z_2})$. The equivalent domain $z_1 + \overline{z_1} > |z_2|^2$ was introduced in [14] to study the hypersphere $w_1 \overline{w_1} + w_2 \overline{w_2} = 1$. Let

$$w_1 = \frac{z_1 - 1}{z_1 + 1}, \ w_2 = \frac{\sqrt{2} z_2}{z_1 + 1} \text{ then } 1 - w_1 \overline{w_1} - w_2 \overline{w_2} = 2 \frac{z_1 + \overline{z_1} - z_2 \overline{z_2}}{(z_1 + 1)(\overline{z_1} + 1)}$$
 (1.2)

The holomorphic transformation (1.2) leaves \mathcal{D} invariant since

$$\frac{w_1 - \overline{w_1}}{2i} - w_2 \overline{w_2} = \frac{2}{|z_1 + 1|^2} (\frac{z_1 - \overline{z_1}}{2i} - z_2 \overline{z_2})$$

1.1 The group of holomorphic automorphisms of \mathcal{D}

The group G is generated by $\Psi_{t,\xi}$, $(t,\xi) \in \mathbf{R} \times \mathbf{C}$, the dilations \mathcal{H}_c , $c \in \mathbf{C}$ and the involution \mathcal{I} ,

$$\Psi_{t,\xi} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} z_1 + 2i\overline{\xi}z_2 + t + i\,\xi\overline{\xi} \\ z_2 + \xi \end{pmatrix} = \begin{pmatrix} 1 & 2i\overline{\xi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} t + i\xi\overline{\xi} \\ \xi \end{pmatrix} \quad (1.3)$$

$$\mathcal{H}_c: (z_1, z_2) \to (c\overline{c}z_1, cz_2)$$
 and $\mathcal{I}(z_1, z_2) = (-\frac{1}{z_1}, -i\frac{z_2}{z_1})$ (1.4)

The subgroup of affine holomorphic transformations of \mathcal{D} is generated by $\Psi_{t,\xi}$, \mathcal{H}_c . We have $\mathcal{I}(i,0)=(i,0)$ and (i,0) is the only point fixed under \mathcal{I} . The subgroup $G^+=\{\Psi_{t,\xi}, t\in \mathbf{R}, \xi\in \mathbf{C}\}$ of $Aut_{Hol}(\mathcal{D})$ is isomorphic to $\mathcal{D}_0=\{\Im(z_1)=|z_2|^2\}=\{(x_1+iz_2\overline{z_2},z_2)\}$ since $\Psi_{t,\xi}$ is determined by $\Psi_{t,\xi}(0,0)=(t+i\xi\overline{\xi},\xi)\in\mathcal{D}_0$. The composition $\Psi_{t_1,\xi_1}\circ\Psi_{t_2,\xi_2}=\Psi_{\tau,\xi_1+\xi_2}$ induces the Heisenberg group law on \mathcal{D}_0 , $(t_1,\xi_1)*(t_2,\xi_2)=(\tau,\xi_1+\xi_2)$ where τ is given by $\tau=t_1+t_2+i(\overline{\xi}_1\,\xi_2-\xi_1\overline{\xi_2})$.

Let
$$(u_1, u_2) = (\mathcal{I}o\Psi_{t,\xi}o\mathcal{I})(z_1, z_2)$$
. Then

$$(u_1, u_2) = (\frac{z_1}{Q}, \frac{i\xi z_1 + z_2}{Q})$$
 with $Q = Q(t, \xi) = 1 - 2\overline{\xi}z_2 - (t + i\xi\overline{\xi})z_1$ (1.5)

and $u_1 - \overline{u_1} - 2iu_2\overline{u_2} = \frac{1}{|Q|^2}(z_1 - \overline{z_1} - 2iz_2\overline{z_2})$. The Jacobian J of the map $\mathcal{I}o \Psi_{t,\xi} o \mathcal{I}$ and its determinant are

$$J = \frac{1}{Q^2} \times \begin{pmatrix} 1 - 2\overline{\xi}z_2 & 2\overline{\xi}z_1 \\ i\,\xi + z_2(t - i\xi\overline{\xi}) & 1 - z_1(t - i\xi\overline{\xi}) \end{pmatrix} \text{ and det } J = \frac{1}{Q^3}$$

Let $Q(t,\xi)$ as in (1.5). For a holomorphic function $f(z_1,z_2)$ and $g=(t,\xi)$, we define

$$T_g^p f(z_1, z_2) = Q(t, \xi)^p f(\frac{z_1}{Q}, \frac{z_2 + i\xi z_1}{Q})$$
 (1.6)

then

$$\int |T_g^p f(z_1, z_2)|^2 u^{-p} dv = \int |f(z_1, z_2)|^2 u^{-p} dv$$
 (1.7)

 $(T_g^p, u^{-p} dv)$ is a holomorphic unitary representation for the subgroup of transformations (1.5).

Proof of (1.7). Denote $T_g^p f(z_1, z_2) = Q(t, \xi)^p f(k_g(Z))$ with $Z = (z_1, z_2)$. The Jacobien determinant of $k_g(Z)$ is equal to J. Let $R(Z, \overline{Z})$ such that

$$\int |Q(Z)|^{2p} |f(k_g(Z))|^2 R(Z, \overline{Z}) dx_1 dy_1 dx_2 dy_2 = \int |f(Z)|^2 R(Z, \overline{Z}) dx_1 dy_1 dx_2 dy_2$$

We have $\int |Q(Z)|^{2p} |f(k_g(Z))|^2 R(Z, \overline{Z}) dx_1 dy_1 dx_2 dy_2$

$$= \int |Q(Z)|^{2p+6} |f(k_g(Z))|^2 R(Z,\overline{Z}) |J|^2 dx_1 dy_1 dx_2 dy_2$$

$$= \int |Q(k_g^{-1}(Z))|^{2p+6} |f(Z)|^2 R(k_g^{-1}(Z), \overline{k_g^{-1}(Z)}) dx_1 dy_1 dx_2 dy_2$$

Then (1.7) is a consequence of $|Q(Z)|^{2p+6} R(Z, \overline{Z}) = R(k_g(Z), \overline{k_g(Z)}).$

1.1.1 Some interesting holomorphic transformations of \mathcal{D} .

Holomorphic involutions of \mathcal{D} are $(z_1, z_2) \to (z_1, -z_2)$ and

$$\mathcal{I}_{\beta}(z_1, z_2) = \left(-\frac{\beta^2}{z_1}, i \beta \frac{z_2}{z_1}\right) = \mathcal{H}_{-\beta} \circ \mathcal{I} \qquad \text{for } \beta \in \mathbf{R}$$
 (1.8)

More generally, for $\beta \in \mathbf{R}$, $\theta \in \mathbf{R}$, let

$$\mathcal{I}_{\theta,\beta}(z_1, z_2) = \left(-\frac{\beta^2}{z_1}, i e^{i\theta} \beta \frac{z_2}{z_1}\right) \text{ then } \mathcal{I}_{\theta_1,\beta_1} \circ \mathcal{I}_{\theta_2,\beta_2} = \mathcal{H}_{e^{i(\theta_1+\theta_2)}(\beta_1/\beta_2)}$$

Consider (1.2),
$$\mathcal{T}(z_1, z_2) = (\frac{z_1 - 1}{z_1 + 1}, \frac{\sqrt{2}z_2}{z_1 + 1})$$

$$= [\mathcal{H}_{i\sqrt{2}} \circ \Psi_{1/2,0} \circ \mathcal{I} \circ \Psi_{1,0}](z_1, z_2) = [\Psi_{1,0} \circ \mathcal{I} \circ \Psi_{(1/2),0} \circ \mathcal{H}_{(i/\sqrt{2})}](z_1, z_2)$$
(1.9)

We have $\mathcal{T} \circ \mathcal{T} = \mathcal{H}_i \circ \mathcal{I}$ and $\mathcal{T}^4(z_1, z_2) = (z_1, -z_2)$ with $\mathcal{T}^4 = \mathcal{T} \circ \mathcal{T} \circ \mathcal{T} \circ \mathcal{T}$.

Let
$$\mathcal{T}_{\theta}(z_1, z_2) = \left(\frac{\cos \theta z_1 - \sin \theta}{\sin \theta z_1 + \cos \theta}, \frac{z_2}{\sin \theta z_1 + \cos \theta}\right)$$

$$= \left[\Psi_{-\tan \theta, 0} \circ \mathcal{H}_{1/\cos \theta} \circ \mathcal{I} \circ \Psi_{-\tan \theta, 0} \circ \mathcal{I}\right](z_1, z_2) \tag{1.10}$$

If $\theta = \pi/4$, (1.10) gives (1.9). We have $\mathcal{T}_{\theta_1+\theta_2} = \mathcal{T}_{\theta_1} \circ \mathcal{T}_{\theta_2}$.

Let
$$S(z_1, z_2) = (\frac{z_1 - 1}{z_1 + 1}, \frac{\sqrt{2} e^{-i(\pi/4)} z_2}{z_1 + 1})$$
, then $S \circ S = \mathcal{I}$ and

$$S^{-1}(u_1, u_2) = \left(\frac{1+u_1}{1-u_1}, \frac{\sqrt{2}e^{i(\pi/4)}u_2}{1-u_1}\right)$$
(1.11)

1.1.2 The non holomorphic vector fields (0.10)

Let X_1 and X_2 as in (0.10).

$$X_1 \overline{X_1} = u^2 \Delta_1^K + \frac{u}{2i} \frac{\partial}{\partial \overline{z_1}}$$
 (1.12)

$$X_{2}\overline{X_{2}} = u\left(2i\epsilon \,\overline{z_{2}}\,\frac{\partial}{\partial z_{1}} + \frac{\partial}{\partial z_{2}}\right)\left(-2iz_{2}\,\frac{\partial}{\partial \overline{z_{1}}} + \frac{\partial}{\partial \overline{z_{2}}}\right)$$

$$= -u\Delta_{2}^{K} - 2i\,u\,\frac{\partial}{\partial \overline{z_{1}}} \tag{1.13}$$

Adding (1.12) and (1.13) and comparing with (0.8), we obtain (0.11). Let F be a holomorphic function on \mathcal{D} . We have

$$(X_k F)(z_1, z_2) = \frac{d}{dz'_{k|z'_1 = i, z'_2 = 0}} F([\Psi_{\Re z_1, z_2} \circ \mathcal{H}_{\sqrt{u}}](z'_1, z'_2)), \quad k = 1, 2 \quad (1.14)$$

We denote $u = \Im z_1 - z_2 \overline{z_2}$ and $\Re z_1 = (1/2)(z_1 + \overline{z_1})$. On $\mathcal{D} \times S^1$, we define the group law

$$(\mathcal{Z}_1, \mathcal{Z}_2, \Theta) = (z_1, z_2, \theta) * (z_1', z_2', \theta')$$
(1.15)

where $\Theta = \theta + \theta'$ and $(\mathcal{Z}_1, \mathcal{Z}_2) = (\Psi_{\Re z_1, z_2} \circ \mathcal{H}_{e^{i\theta} \sqrt{u}})(z_1', z_2')$. The neutral element is (i, 0, 0). In (1.15), we have

$$\mathcal{Z}_1 = z_1 + uz_1' + 2i e^{i\theta} \sqrt{u} \,\overline{z_2} \, z_2' - i \, u$$

$$\mathcal{Z}_2 = z_2 + e^{i\theta} \sqrt{u} z_2' \tag{1.16}$$

With (0.11), we verify that the Laplacian Δ^K is left invariant with respect to this group operation. Moreover in (1.16), we have

$$\Im Z_1 - Z_2 \overline{Z_2} = u u' = U \quad \text{where} \quad u' = \Im z_1' - z_2' \overline{z_2'}$$

$$\Re Z_1 = \Re z_1 + u \Re z_1' + i \sqrt{u} (e^{i\theta} \overline{z_2} z_2' - e^{-i\theta} z_2 \overline{z_2'}) \tag{1.17}$$

1.2 The Lie algebra \mathcal{G} of $Aut_{Hol}(\mathcal{D})$

Let ϕ_{ϵ} be a parametrized curve in $Aut_{Hol}(\mathcal{D})$ such that $\phi_0 = Identity$ and let F be a holomorphic function. We consider $VF = \frac{d}{d\epsilon} (F \circ \phi_{\epsilon})$. In the following, $t \in \mathbf{R}$ and $\xi = \alpha + i\beta \in \mathbf{C}$. The real vector space \mathcal{G}_{-1} is generated by

$$L_{-1} = \frac{\partial}{\partial z_1} \tag{1.18}$$

where $(L_{-1}F)(z_1, z_2) = \frac{\partial}{\partial t}_{|t=0,\xi=0} F(\Psi_{t,\xi}(z_1, z_2)) = \frac{\partial}{\partial z_1} F$. On the other hand,

$$V_1 F = \frac{\partial}{\partial \alpha|_{t=0,\xi=0}} F(\Psi_{t,\xi}(z_1, z_2)) = (2 i z_2 \frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2}) F$$

$$V_i F = \frac{\partial}{\partial \beta}_{|t=0,\xi=0} F(\Psi_{t,\xi}(z_1, z_2)) = (2 z_2 \frac{\partial}{\partial z_1} + i \frac{\partial}{\partial z_2}) F$$

If $\gamma = a + ib$, we denote $V_{\gamma} = a \frac{\partial}{\partial \alpha} + b \frac{\partial}{\partial \beta}$. The two dimensional real vector space $\mathcal{G}_{-1/2}$ is the set of vectors

$$V_{\gamma} = 2i z_2 \overline{\gamma} \frac{\partial}{\partial z_1} + \gamma \frac{\partial}{\partial z_2} = L_{-(1/2)}$$
 (1.19)

It holds

$$W_{i}F = \frac{\partial}{\partial \alpha|_{t=0,\xi=0}} F(\mathcal{I} \circ \Psi_{t,\xi} \circ \mathcal{I}(z_{1}, z_{2})) = (2 z_{1} z_{2} \frac{\partial}{\partial z_{1}} + i z_{1} \frac{\partial}{\partial z_{2}} + 2 z_{2}^{2} \frac{\partial}{\partial z_{2}}) F$$

$$W_{-1}F = \frac{\partial}{\partial \beta}_{|t=0,\xi=0} F(\mathcal{I} \circ \Psi_{t,\xi} \circ \mathcal{I}(z_1,z_2)) = (-2iz_1z_2\frac{\partial}{\partial z_1} - z_1\frac{\partial}{\partial z_2} - 2iz_2^2\frac{\partial}{\partial z_2})F$$

We denote $\mathcal{G}_{1/2}$, the 2-dimensional real vector space constituted of vectors

$$W_{\delta} = 2i \,\overline{\delta} \, z_2^2 \, \frac{\partial}{\partial z_2} + 2i \,\overline{\delta} \, z_1 z_2 \, \frac{\partial}{\partial z_1} + \delta \, z_1 \frac{\partial}{\partial z_2} = L_{1/2}$$
 (1.20)

where $\delta \in \mathbf{C}$ is a constant. The real vector space \mathcal{G}_1 is generated by

$$L_1 = z_1 z_2 \frac{\partial}{\partial z_2} + z_1^2 \frac{\partial}{\partial z_1} \tag{1.21}$$

where $L_1F = \frac{\partial}{\partial t}_{|t=0,\xi=0}F(\mathcal{I}\circ\Psi_{t,\xi}\circ\mathcal{I}(z_1,z_2))$. Let $H_{\alpha}F = \frac{\partial}{\partial\alpha}_{|\lambda=1}F(\mathcal{H}_{\lambda}(z_1,z_2))$ and $H_{\beta}F = \frac{\partial}{\partial\beta}_{|\beta=0}F((z_1,e^{i\beta}z_2))$ We denote \mathcal{G}_0 , the real vector space generated by the two vector fields

$$H_{\alpha} = 2z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} \quad and \quad H_{\beta} = iz_2 \frac{\partial}{\partial z_2}$$
 (1.22)

Equivalently \mathcal{G}_0 is the set of vectors $L_0(\gamma) = (\gamma + \overline{\gamma})z_1\frac{\partial}{\partial z_1} + \gamma z_2\frac{\partial}{\partial z_2}$ with $\gamma \in \mathbf{C}$. The Lie algebra \mathcal{G} of the group G is the direct sum of real vector spaces

$$\mathcal{G} = \mathcal{G}_{-1} \oplus \mathcal{G}_{-1/2} \oplus \mathcal{G}_0 \oplus \mathcal{G}_{1/2} \oplus \mathcal{G}_1 \tag{1.23}$$

We denote $\mathcal{G}_{aff} = \mathcal{G}_{-1} \oplus \mathcal{G}_{-1/2} \oplus \mathcal{G}_0$, the Lie algebra of $Affine_{Hol}(\mathcal{D})$. The Lie algebra structure on the real vector space \mathcal{G} is given by the Lie brackets

$$[V_{\delta}, V_{\gamma}] = 2i(\delta \overline{\gamma} - \gamma \overline{\delta}) L_{-1}, \quad [V_{\delta}, L_{-1}] = 0, \quad [L_{-1}, L_{1}] = H_{\alpha}$$

$$\begin{split} [V_{\gamma},H_{\beta}] &= V_{i\gamma}, \quad [L_{-1},H_{\beta}] = 0 \\ [L_{-1},H_{\alpha}] &= 2L_{-1}, \quad [W_{\delta},H_{\alpha}] = -W_{\delta}, \quad [L_{-1},W_{\delta}] = V_{\delta} \\ [L_{1},H_{\alpha}] &= -2L_{1}, \quad [L_{1},H_{\beta}] = 0, \quad [H_{\alpha},H_{\beta}] = 0 \quad [W_{\delta},L_{1}] = 0 \\ [W_{\delta},W_{\gamma}] &= 2i(\delta\overline{\gamma}-\gamma\overline{\delta})\,L_{1}, \quad [W_{\delta},V_{\gamma}] = i(\delta\overline{\gamma}-\gamma\overline{\delta})H_{\alpha} - 3\,(\delta\overline{\gamma}+\gamma\overline{\delta})H_{\beta} \quad (1.24) \end{split}$$

We have $[\mathcal{G}_{-(1/2)}, \mathcal{G}_{-(1/2)}] \subset \mathcal{G}_{-1}$, $[\mathcal{G}_{-(1/2)}, \mathcal{G}_{-1}] = 0$, $[\mathcal{G}_{-(1/2)}, \mathcal{G}_{0}] = \mathcal{G}_{-(1/2)}$ and $[\mathcal{G}_{j}, \mathcal{G}_{k}] \subset \mathcal{G}_{j+k}$. We assign weights to the variables z_{1} and z_{2} by saying that the constants have weight zero, z_{1} has weight 1 and z_{2} has weight 1/2. With this convention, $\frac{\partial}{\partial z_{1}}$ has weight -1 and $\frac{\partial}{\partial z_{2}}$ has weight -(1/2). The subspace \mathcal{G}_{k} is constituted of vector fields of weight k. The brachets in (1.24) show that

$$\mathcal{G}_{-1} \oplus \mathcal{G}_{-1/2}$$
 and $\mathcal{A}_0 = \mathcal{G}_{-1} \oplus \mathcal{G}_{-1/2} \oplus \mathbf{R}.H_\beta$ (1.25)

are subalgebras of \mathcal{G} . The direct sum \mathcal{A}_0 is the Lie algebra of the group A_0 of holomorphic affine automorphisms with Jacobian determinant equal to one.

1.2.1 The involution \mathcal{I}^* on the Lie algebra \mathcal{G} .

The involution \mathcal{I} induces an involution \mathcal{I}^* on \mathcal{G} , see for example [5],

$$\mathcal{I}^*(\mathcal{G}_k) = \mathcal{G}_{-k} \quad for \quad k \in \{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\}$$
 (1.26)

Let X be a vector field on \mathcal{D} , we define the vector field X^* as

$$(X^*F)(z_1, z_2) = X(F \circ \mathcal{I})(\mathcal{I}^{-1}(z_1, z_2))$$
(1.27)

where $F: \mathcal{D} \to \mathbf{C}$ is differentiable and $\mathcal{I} = \mathcal{I}^{-1}$ is the involution. It holds $X(F \circ \mathcal{I}) = (X^*(F)) \circ \mathcal{I}$. The map \mathcal{I}^* defined by $\mathcal{I}^*(X) = X^*$, is an involution on \mathcal{G} . We have $\mathcal{I}^*(L_{-1}) = L_1$, $\mathcal{I}^*(L_1) = L_{-1}$, $\mathcal{I}^*(V_{\gamma}) = W_{i\gamma}$, $\mathcal{I}^*(W_{\delta}) = V_{-i\delta}$ and $\mathcal{I}^*(H_{\alpha}) = -H_{\alpha}$, $\mathcal{I}^*(H_{\beta}) = H_{\beta}$, $\mathcal{I}^*(L_0(\gamma)) = -L_0(\overline{\gamma})$.

1.2.2 The map S such that $S \circ S = I$.

Let $S(z_1, z_2) = (\frac{z_1 - 1}{z_1 + 1}, \frac{\sqrt{2} e^{-i(\pi/4)} z_2}{z_1 + 1})$ as in (1.11). The inverse map S^{-1} is given by $S^{-1} = S \circ \mathcal{I} = \mathcal{I} \circ S$. For a vector field X in \mathcal{G} and a differentiable function F, we put

$$\mathcal{S}^*(X)F = [X(F \circ \mathcal{S})](\mathcal{S}^{-1})$$

We have $\mathcal{S}^*(\mathcal{G}) \subset \mathcal{G}$ and $\mathcal{S}^* \circ \mathcal{S}^* = \mathcal{I}^*$, $\mathcal{S}^*(H_\alpha) = L_{-1} - L_1$, $\mathcal{S}^*(H_\beta) = H_\beta$

$$S^*(L_{-1}) = \frac{1}{2}(L_1 + L_{-1} - H_{\alpha}), \qquad S^*(L_1) = \frac{1}{2}(L_1 + L_{-1} + H_{\alpha})$$

$$\mathcal{S}^*(V_{\gamma}) = \frac{1}{2}(V_{\delta} - W_{\delta}) \quad \text{and} \quad \mathcal{S}^*(W_{\gamma}) = \frac{1}{2}(V_{\delta} + W_{\delta}) \quad , \qquad \delta = \sqrt{2}e^{-i(\pi/4)}\gamma$$

1.3 Identities between holomorphic vector fields

By direct calculation, we verify the holomorphic identities where the right hand side is a first order *holomorphic* operator,

(i)
$$4L_{-1}L_{1} - H_{\alpha}^{2} - H_{\beta}^{2} = 4(z_{1}\frac{\partial}{\partial z_{1}} + z_{2}\frac{\partial}{\partial z_{2}})$$
(ii)
$$4L_{1}L_{-1} - H_{\alpha}^{2} - H_{\beta}^{2} = -4z_{1}\frac{\partial}{\partial z_{1}}$$
(1.28)

Let $\gamma \in \mathbf{R}$, $\delta \in \mathbf{R}$ and $\epsilon \in \mathbf{R}$, then

(i)
$$\frac{1}{\gamma \delta} [V_{\gamma} W_{-\epsilon i \delta} + V_{\epsilon i \gamma} W_{\delta}] - 4\epsilon H_{\beta}^2 = -4 \epsilon z_1 \frac{\partial}{\partial z_1}$$

$$(ii) \qquad \frac{1}{\gamma \delta} [W_{-\epsilon i\delta} V_{\gamma} + W_{\delta} V_{\epsilon i\gamma}] - 4 \epsilon H_{\beta}^2 = 4 \epsilon \left(z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} \right) \qquad (1.29)$$

For γ , $\delta \in \mathbf{C}$,

(i)
$$V_{\delta} V_{\gamma} + V_{i\delta} V_{i\gamma} - 4(\overline{\gamma}\delta + \overline{\delta}\gamma)L_{-1}H_{\beta} = 4 i \delta \overline{\gamma}L_{-1}$$

(ii)
$$W_{\delta}W_{\gamma} + W_{i\delta}W_{i\gamma} - 4(\overline{\gamma}\delta + \overline{\delta}\gamma)L_1H_{\beta} = 4i\delta\overline{\gamma}L_1$$

(iii)
$$W_{\delta} V_{\gamma} + W_{i\gamma} V_{i\delta} = 2(\overline{\delta}\gamma + \overline{\gamma}\delta)[H_{\alpha}H_{\beta} + z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2}]$$

$$(iv) W_{\delta}V_{\gamma} - W_{\gamma}V_{\delta} = 2i(\overline{\delta}\gamma - \overline{\gamma}\delta) z_2^2 \frac{\partial^2}{\partial z_2^2} + 2i(\overline{\delta}\gamma - \overline{\gamma}\delta) z_1 \frac{\partial}{\partial z_1} (1.30)$$

In (1.29)-(1.30), we pass from (i) to (ii) with the involution \mathcal{I}^* , see (1.26). If $\bar{\delta}\gamma - \bar{\gamma}\delta = 0$, then $W_{\delta}V_{\gamma} - W_{\gamma}V_{\delta} = 0$. Moreover,

$$4[L_1, L_{-1}] + [V_1, W_i] + [V_{-i}, W_1] = 0 (1.31)$$

since $4[L_1, L_{-1}] = -4H_{\alpha}, \ [V_1, W_i] = 2H_{\alpha}, \ [V_{-i}, W_1] = 2H_{\alpha}.$

2 The Kähler Laplacian Δ^K on \mathcal{D}

2.1 Δ^K calculated with the Bergman metric.

Let $H(z_1, z_2) = \log u(z_1, z_2)$. We have

$$\frac{\partial^2}{\partial z_1 \partial \overline{z_1}} H = (z_1 - \overline{z_1} - 2iz_2 \overline{z_2})^{-2}, \qquad \frac{\partial^2}{\partial z_1 \partial \overline{z_2}} H = 2iz_2 \times (z_1 - \overline{z_1} - 2iz_2 \overline{z_2})^{-2}$$

$$\frac{\partial^2}{\partial z_2 \partial \overline{z_2}} H = -2i(z_1 - \overline{z_1}) \times (z_1 - \overline{z_1} - 2iz_2 \overline{z_2})^{-2}$$

We find for the Bergman metric (0.3),

$$ds^{2} = \frac{1}{4u^{2}} \left[dz_{1}d\overline{z_{1}} + 2iz_{2}dz_{1}d\overline{z_{2}} - 2i\overline{z_{2}}dz_{2}d\overline{z_{1}} + 4\left(\frac{z_{1} - \overline{z_{1}}}{2i}\right)dz_{2}d\overline{z_{2}} \right]$$
$$= \frac{1}{4u^{2}} \left[dz_{1}d\overline{z_{1}} + 2idz_{2}\left(\overline{z_{1}}d\overline{z_{2}} - \overline{z_{2}}d\overline{z_{1}}\right) + \left(z_{1}dz_{2} - z_{2}dz_{1}\right)\left(\overline{2i}d\overline{z_{2}}\right) \right]$$

The inverse of $P=(2iu)^{-2}\times \begin{pmatrix} 1 & 2iz_2 \\ -2i\overline{z_2} & -2i\left(z_1-\overline{z_1}\right) \end{pmatrix}$ is

$$P^{-1} = (2iu) \times \begin{pmatrix} z_1 - \overline{z_1} & z_2 \\ -\overline{z_2} & -\frac{1}{2i} \end{pmatrix} = (2iu)^3 \times \begin{pmatrix} \frac{i}{2} \frac{\partial}{\partial y_1} \frac{1}{u} & -\frac{1}{4} \frac{\partial}{\partial \overline{z_2}} \frac{1}{u} \\ \frac{1}{4} \frac{\partial}{\partial z_2} \frac{1}{u} & -\frac{i}{8u^2} \end{pmatrix}$$

The determinant of the matrix P^{-1} is $(1/4)(u(z_1, z_2))^{-3}$. We find (0.7) since the Kähler Laplacian is $\Delta^K = \sum_{jk} m_{jk} \frac{\partial^2}{\partial z_j \partial \overline{z_k}}$ where the matrix $(m_{jk}) = \overline{P^{-1}}$.

Lemma 2.1 We have $\int \Delta^K F dv = 0$. The volume measure is invariant for Δ^K as well as for Δ_1^K and Δ_2^K .

Proof. We integrate by parts or we verify that $\sum_j \frac{\partial}{\partial z_j} m_{jk} (\Im(z_1) - z_2 \overline{z_2})^{-3} = 0$ for k = 1, 2, as in [3], Theor. 10.2. \bullet

In (2.14)-(2.16) of [3], the vector field

$$\mathcal{V}^K = \sum_{jk} m_{jk} \left[\frac{\partial}{\partial z_j} \log u \right] \frac{\partial}{\partial \overline{z_k}}$$
 (2.1)

is associated to $\Delta^K = \sum_{jk} m_{jk} \frac{\partial^2}{\partial z_j \partial \overline{z_k}}$. The operator $\Delta^K - c \mathcal{V}^K$ has the measure $\exp(-c \log u) dv$ as invariant measure. When m_{jk} is given by (0.7), this gives

$$\mathcal{V}^{K} = u \left[2i(z_{1} - \overline{z_{1}}) \left(\frac{\partial}{\partial z_{1}} \log u \right) \frac{\partial}{\partial \overline{z_{1}}} - 2i\overline{z_{2}} \left(\frac{\partial}{\partial z_{1}} \log u \right) \frac{\partial}{\partial \overline{z_{2}}} + 2i\overline{z_{2}} \left(\frac{\partial}{\partial z_{2}} \log u \right) \frac{\partial}{\partial \overline{z_{2}}} - \left(\frac{\partial}{\partial z_{2}} \log u \right) \frac{\partial}{\partial \overline{z_{2}}} \right]$$

We find

$$\mathcal{V}^K = 2i \, u \, \frac{\partial}{\partial \overline{z_1}} \quad and \quad \mathcal{V}^K + \overline{\mathcal{V}^K} = -2 \, u \, \frac{\partial}{\partial y_1}$$
 (2.2)

2.2 Δ^K in terms of the holomorphic vector fields in \mathcal{G} .

Theorem 2.2

$$4\Delta^K = B + \overline{B}$$
 with $B = B_1 + \overline{B_2}$
 $B_1 = 4L_1 \overline{L_{-1}} - H_{\alpha} \overline{H_{\alpha}} - H_{\beta} \overline{H_{\beta}}$

$$B_2 = \frac{1}{\gamma \delta} W_{i\delta} \overline{V_{\gamma}} + \frac{1}{\gamma' \delta'} W_{\delta'} \overline{V_{-i\gamma'}} + 4H_{\beta} \overline{H_{\beta}}$$
 (2.3)

where $\gamma,\ \gamma',\ \delta,\ \delta'$ are real, non zero constants. We have

$$2\Delta^K = \Re(B_1 + \overline{B_2})$$
$$= \Re(B_1 + B_2) \tag{2.4}$$

Proof. We have

$$B_{1} = 4(z_{1}z_{2}\frac{\partial}{\partial z_{2}} + z_{1}^{2}\frac{\partial}{\partial z_{1}})\frac{\partial}{\partial \overline{z_{1}}} - (2z_{1}\frac{\partial}{\partial z_{1}} + z_{2}\frac{\partial}{\partial z_{2}})(2\overline{z_{1}}\frac{\partial}{\partial \overline{z_{1}}} + \overline{z_{2}}\frac{\partial}{\partial \overline{z_{2}}}) - z_{2}\overline{z_{2}}\frac{\partial^{2}}{\partial z_{2}\partial \overline{z_{2}}}$$
and $\overline{B_{2}} = V_{1}\overline{W_{i}} + V_{-i}\overline{W_{1}} + 4H_{\beta}\overline{H_{\beta}} =$

$$8iz_2\overline{z_2}^2\frac{\partial^2}{\partial z_1\partial\overline{z_2}} + 8iz_2\overline{z_2}\overline{z_1}\frac{\partial^2}{\partial z_1\partial\overline{z_1}} + 4(\frac{\overline{z_1}}{2i} + z_2\overline{z_2})\frac{\partial^2}{\partial z_2\partial\overline{z_2}}$$

Then $B = B_1 + \overline{B_2}$

$$= 4u(z_1, z_2) \times (2i) z_1 \frac{\partial^2}{\partial z_1 \partial \overline{z_1}} + 8iz_2 \overline{z_2} (z_1 + \overline{z_1}) \frac{\partial^2}{\partial z_1 \partial \overline{z_1}} + (4z_1 z_2 - 2\overline{z_1} z_2) \frac{\partial^2}{\partial z_2 \partial \overline{z_1}}$$

$$+ (8iz_2 \overline{z_2}^2 - 2z_1 \overline{z_2}) \frac{\partial^2}{\partial z_1 \partial \overline{z_2}} + 4(\frac{\overline{z_1}}{2i} + \frac{1}{2} z_2 \overline{z_2}) \frac{\partial^2}{\partial z_2 \partial \overline{z_2}}$$

By identification with (0.7), we find $B + \overline{B} = 4\Delta^K$

Theorem 2.3

$$2i\Im B = 4(L_1 \overline{L_{-1}} - L_{-1}\overline{L_1}) + (V_1 \overline{W_i} - W_i \overline{V_1}) + (V_{-i} \overline{W_1} - W_1 \overline{V_{-i}})$$

$$\Delta_2^K in (0.9) satisfies$$

$$(2.5)$$

$$\Delta_2^K = \frac{1}{2} \left[-V_1 \overline{V_1} - V_i \overline{V_i} + 4L_{-1} \overline{H_\beta} + 4H_\beta \overline{L_{-1}} \right]$$
 (2.6)

Proof.

$$\frac{1}{2i}(B - \overline{B}) = 4(\Im z_1 + z_2 \overline{z_2})(z_1 + \overline{z_1}) \frac{\partial^2}{\partial z_1 \partial \overline{z_1}} + 4z_2 (\frac{z_1}{2i} + z_2 \overline{z_2}) \frac{\partial^2}{\partial z_2 \partial \overline{z_1}} + 4\overline{z_2} (-\frac{\overline{z_1}}{2i} + z_2 \overline{z_2}) \frac{\partial^2}{\partial z_1 \partial \overline{z_2}} - (z_1 + \overline{z_1}) \frac{\partial^2}{\partial z_2 \partial \overline{z_2}}$$

We verify (2.5) since $\Im B = C_1 + C_2$ with

$$C_{1} = 4 (\Im z_{1})(z_{1} + \overline{z_{1}}) \frac{\partial^{2}}{\partial z_{1} \partial \overline{z_{1}}} + \frac{4z_{1}z_{2}}{2i} \frac{\partial^{2}}{\partial z_{2} \partial \overline{z_{1}}} - \frac{4\overline{z_{1}z_{2}}}{2i} \frac{\partial^{2}}{\partial z_{1} \partial \overline{z_{2}}}$$
$$= -2i(L_{1}\overline{L_{-1}} - \overline{L_{1}}L_{-1})$$

2.3 It results from (1.28)-(1.29), that the volume dv is invariant for the complex operator $B_1 + \overline{B_2}$

It is well known that the volume measure (0.4) is invariant with respect to Δ^K , see for example [7]. In this subsection, we prove this fact by using the identities (1.28)-(1.29). For $z=(z_1,z_2)\in\mathcal{D}$, we consider the measure $d\mu=k(z)dz_1d\overline{z_1}dz_2d\overline{z_2}$ where k is a differentiable real-valued function. Let $V=a_1(z)\frac{\partial}{\partial z_1}+a_2(z)\frac{\partial}{\partial z_2}$ be a holomorphic vector field, $(a_j(z),\ j=1,\ 2$ are holomorpic functions). We define

$$\iota(V)(z) = \frac{\partial}{\partial z_1} [a_1(z)] + \frac{\partial}{\partial z_2} [a_2(z)]$$
 (2.7)

By integration by parts, if F is a differentiable function

$$\int VF \ d\mu = -\int F(z) \times \left[\iota(V)(z) + V(\log k)(z)\right] d\mu \tag{2.8}$$

For the vector fields (1.18)-(1.19)-(1.20)-(1.21)-(1.22), we have

$$\iota(L_{-1})(z) = \iota(V_{\gamma})(z) = 0, \quad \iota(H_{\alpha})(z) = 3, \quad \iota(H_{\beta})(z) = i$$

$$\iota(W_{\delta})(z) = 6 i \, \overline{\delta} \, z_2, \quad \iota(L_1)(z) = 3z_1 \tag{2.9}$$

It is not difficult to verify the two following lemmas.

Lemma 2.4 We have

$$\Re[V(k)] = 0$$
 for $V = L_{-1}, V = V_{\gamma}, V = H_{\beta}$ (2.10)

if and only if

$$k(z) = \phi(\frac{z_1 - \overline{z_1}}{2i} - z_2 \overline{z_2}) \tag{2.11}$$

where $\phi: \mathbf{R} \to \mathbf{R}^+$ is a differentiable function. If (2.11) is verified and V is one of the vector fields in (2.10), then

$$\int (V + \overline{V})F \, d\mu = 0 \qquad for \quad d\mu = k(z)dz_1 d\overline{z_1}dz_2 d\overline{z_2}$$
 (2.12)

Lemma 2.5 Assume that $d\mu = \phi(\frac{z_1 - \overline{z_1}}{2i} - z_2 \overline{z_2}) dz_1 d\overline{z_1} dz_2 d\overline{z_2}$. Then

$$\int (V + \overline{V})F \, d\mu = 0 \qquad for \quad V = H_{\alpha}$$
 (2.13)

if and only if $\phi(u) = u^{-3}$. Moreover, in that case, we have

$$\int (V + \overline{V})F \, d\mu = 0 \qquad \text{for any} \quad V \in \mathcal{G}$$
 (2.14)

Theorem 2.6 Let $B = B_1 + \overline{B_2}$ as in (2.3), then B has dv for invariant measure. In particular Δ^K and $\Im B$ have dv as invariant measure.

Proof. Let

$$B_1 = 4L_1\overline{L_{-1}} - H_{\alpha}\overline{H_{\alpha}} - H_{\beta}\overline{H_{\beta}}$$
$$\overline{B_2} = V_1\overline{W_i} + V_{-i}\overline{W_1} + 4H_{\beta}\overline{H_{\beta}}$$

then with (1.28)-(ii),

$$4(L_1 + \overline{L_1})\overline{L_{-1}} - (H_\alpha + \overline{H_\alpha})\overline{H_\alpha} - (H_\beta + \overline{H_\beta})\overline{H_\beta} = B_1 - 4\overline{z_1}\frac{\partial}{\partial \overline{z_1}}$$
 (2.15)

and with (1.29)-(i),

$$(V_1 + \overline{V_1})\overline{W_i} + (V_{-i} + \overline{V_{-i}})\overline{W_1} + 4(H_\beta + \overline{H_\beta})\overline{H_\beta} = \overline{B_2} + 4\overline{z_1}\frac{\partial}{\partial \overline{z_1}}$$
 (2.16)

Adding and using (2.14), we obtain $\int (BF) dv = 0$.

Remark 2.7 By changing variables, on the boundary \mathcal{D}_0 , the operator Δ_2^K in (0.9) is identical to the Kohn Laplacian, see [12]. We have proved that Δ_2^K satisfies (2.6).

3 Divergence of vector fields in finite dimension. Invariant measures for OU-operators

The first two subsections 3.1-3.2 are valid for a domain \mathcal{D} in \mathbb{C}^n . Of course, they do not extend to infinite dimensional domains. In subsection 3.3, with 3.1-3.2, we obtain OU-operators on (0.2).

3.1 Extension of the Lie algebra \mathcal{G}

Let $\mathcal{D} \subset \mathbf{C}^n$. For a holomorphic vector field $V = \sum_j a_j(z) \frac{\partial}{\partial z_j}$, we define the inner contraction, see [2]

$$\iota(V)(z) = \sum_{j} \frac{\partial}{\partial z_{j}} a_{j}(z)$$
(3.1)

For constants c_1 , c_2 , we have $\iota(c_1V_1 + c_2V_2) = c_1\iota(V_1) + c_2\iota(V_2)$.

Lemma 3.1 For (3.1), it holds

$$V(\iota(W)) - W(\iota(V)) = \iota([V, W]) \tag{3.2}$$

Proof. To prove (3.2), let $V = \sum_j a_j^V(z) \frac{\partial}{\partial z_j}$ and $W = \sum_k a_k^W(z) \frac{\partial}{\partial z_k}$. We find

$$V(\iota(W)) - W(\iota(V)) = \sum_{j,k} a_j^V(z) \frac{\partial^2}{\partial z_j \partial z_k} a_k^W(z) - \sum_{j,k} a_j^W(z) \frac{\partial^2}{\partial z_j \partial z_k} a_k^V(z)$$
(3.3)

On the other hand

$$[V,W] = \sum_{j,k} a_j^V(z) \frac{\partial}{\partial z_j} (a_k^W(z)) \frac{\partial}{\partial z_k} \ - \ \sum_{j,k} a_j^W(z) \frac{\partial}{\partial z_j} (a_k^V(z)) \frac{\partial}{\partial z_k}$$

This permits to identify the two sides of (3.2).

Definition 3.2 Consider the operator

$$\rho(V) = V + c \iota(V) \quad \text{where } c \text{ is a real constant}$$
(3.4)

For a function F differentiable on \mathcal{D} , $\rho(V)F = VF + c \iota(V) \times F$.

Theorem 3.3 The identity (3.2) with (3.4) imply

$$[\rho(V), \rho(W)] = \rho([V, W]) \tag{3.5}$$

Let $V = \sum_{p} b_{p}(z)V_{p}$, then

$$\iota(V) = \sum_{p} V_p(b_p) + b_p \iota(V_p) \tag{3.6}$$

In particular, if $\iota(V_p) = 0$, $\forall p$, we have $\rho(V) = V + c \sum_p V_p(b_p)$.

Proof. Let $V_p = \sum_k c_{kp}(z) \frac{\partial}{\partial z_k}$, then $\iota(V) = \sum_{p,k} \frac{\partial}{\partial z_k} (b_p c_{kp})$. This proves (3.6) •

Remark 3.4 Let $\iota(V)$ be a function defined on \mathcal{D} and depending on the vector field V. We define the operator $\rho(V) = V + c \iota(V)$ as in (3.4). Then for two vevtor fields V and W, the condition $[\rho(V), \rho(W)] = \rho([V, W])$ is valid if and only if $V(\iota(W)) - W(\iota(V)) = \iota([V, W])$.

Remark 3.5 Let ϕ be a holomorphic function on \mathcal{D} . For holomorphic $V = \sum_j a_j(z) \frac{\partial}{\partial z_j}$, we define

$$\iota_{\phi}(V)(z) = V(\phi)(z) + \sum_{j} \frac{\partial}{\partial z_{j}} a_{j}(z)$$
(3.7)

We have $V(\iota_{\phi}(W)) - W(\iota_{\phi}(V)) = \iota_{\phi}([V, W])$. Assume that $V = \sum_{p} b_{p}(z)V_{p}$, then

$$\iota_{\phi}(V) = \sum_{p} V_{p}(b_{p}) + b_{p} \iota_{\phi}(V_{p})$$
 (3.8)

Compare (3.8) with (3.6).

3.2 Unitarity condition and invariant measures

We proceed as in [3]. Consider a second order differential operator

$$\Delta = \sum_{j_1 \in J_1, j_2 \in J_2} V_{j_1} \overline{V_{j_2}} \quad \text{such that} \quad \sum_{j_1 \in J_1, j_2 \in J_2} V_{j_1} V_{j_2} = \mathcal{V}$$
 (3.9)

where V_{j_1} , V_{j_2} , \mathcal{V} are holomorphic vector fields. Then

$$\int [(V_{j_1} + \overline{V_{j_1}})F]d\mu = 0 \quad \forall j_1 \in J_1 \quad \text{implies} \quad \int (\Delta + \overline{\mathcal{V}})Fd\mu = 0 \quad (3.10)$$

On the other hand, from (3.9),

$$\overline{\Delta} = \sum_{j_1 \in J_1, j_2 \in J_2} V_{j_2} \overline{V_{j_1}} \quad \text{with} \quad \mathcal{W} = \sum_{j_1 \in J_1, j_2 \in J_2} V_{j_2} V_{j_1}$$
 (3.11)

where $W = V + \sum_{j_1 \in J_1, j_2 \in J_2} [V_{j_2}, V_{j_1}]$ is also holomorphic. We have

$$\int [(V_{j_2} + \overline{V_{j_2}})F]d\mu = 0 \quad \forall j_2 \in J_2 \quad \text{implies} \quad \int (\overline{\Delta} + \overline{\mathcal{W}})Fd\mu = 0 \quad (3.12)$$

If (3.10)-(3.11)-(3.12) are satisfied, the vector field $\overline{W} - \mathcal{V}$ is divergence free for $d\mu$,

$$\int (\overline{\mathcal{W}} - \mathcal{V}) \, d\mu = 0 \tag{3.13}$$

Theorem 3.6 We assume (3.4)-(3.9). Let μ be a measure such that

$$\int [(\rho(V_{j_1}) + \overline{\rho(V_{j_1})}F]d\mu = 0 \quad \forall j_1 \in J_1$$
(3.14)

then

$$\int (\Delta + \overline{\mathcal{V}} + c L_{J_1, J_2}) F d\mu = 0$$
with $L_{J_1, J_2} = \sum_{j_1 \in J_1, j_2 \in J_2} (\iota(V_{j_1}) + \overline{\iota(V_{j_1})}) \overline{V_{j_2}}$ (3.15)

On the other hand, let $\overline{\Delta}$ and W as in (3.11) and let μ be a measure such that

$$\int [(\rho(V_{j_2}) + \overline{\rho(V_{j_2})}F]d\mu = 0 \quad \forall j_2 \in J_2$$
 (3.16)

then

$$\int (\overline{\Delta} + \overline{W} + c M_{J_1, J_2}) F d\mu = 0$$
with $M_{J_1, J_2} = \sum_{j_1 \in J_1, j_2 \in J_2} (\iota(V_{j_2}) + \overline{\iota(V_{j_2})}) \overline{V_{j_1}}$ (3.17)

Proof.

$$\sum_{j_1 \in J_1, j_2 \in J_2} \int [(\rho(V_{j_2}) + \overline{\rho(V_{j_2})}) \overline{V_{j_1}} F] d\mu = 0$$

implies (3.17). We prove (3.15) in a similar way.

Definition 3.7 We call the operators (3.15)-(3.17) OU-operators.

3.3 OU-operators on \mathcal{D} and their invariant measures

Let μ be a real measure on \mathcal{D} and F be a differentiable function with compact support in \mathcal{D} . We consider B_1 , B_2 and Δ^K as in (2.3). We have (1.28)-(1.29). We shall apply subsection 3.2 to this particular case.

The relation (2.8) extends as

$$\int \rho(V)F \ d\mu = -\int F(z) \times [(1-c)\iota(V)(z) + V(\log k)(z)] \, d\mu \tag{3.18}$$

where $\iota(V)$ are given by (2.9) and c is a constant. In the following, we assume that

$$d\mu = \phi(\frac{z_1 - \overline{z_1}}{2i} - z_2 \overline{z_2}) dz_1 d\overline{z_1} dz_2 d\overline{z_2}$$
(3.19)

Since $\iota(V)=0$ for $V=L_{-1},\,V=V_{\gamma},\,V=H_{\beta},$ Lemma 2.4 stays true with

$$\int (\rho(V) + \rho(\overline{V}))F \,d\mu = 0 \qquad for \quad V = L_{-1}, \ V = V_{\gamma}, \ V = H_{\beta}$$
 (3.20)

Corollary 3.8 Let $d\mu$ be given by (3.19), then

$$\int (B_2 + 4z_1 \frac{\partial}{\partial z_1}) F d\mu = 0$$
(3.21)

Proof. We deduce (3.21) from (2.16) and (2.12-(3.20)).

From (3.18), Lemma 2.5 becomes

Lemma 3.9 Assume that V_0 is one of the vector fields L_1 , W_{δ} , H_{α} , then

$$\int (\rho(V_0) + \overline{\rho(V_0)}) F \, d\mu = 0 \quad \forall F \quad \text{if and only if } \phi(u) = u^{3(c-1)}$$
 (3.22)

Moreover, in that case, we have $\int (\rho(V) + \overline{\rho(V)}) F d\mu = 0$ for any $V \in \mathcal{G}$.

Proof. To calculate (3.22) when $V_0 = W_{\gamma}$ and u is given by (0.1), we use

$$V_{\gamma}(u) = z_2 \overline{\gamma} - \overline{z_2} \gamma$$
 and $(W_{\gamma} + \overline{W_{\gamma}})(u) = 2 i u V_{\gamma}(u)$ (3.23)

Corollary 3.10 Assume that $d\mu = u^{3(c-1)}dz_1d\overline{z_1}dz_2d\overline{z_2}$, then

$$\int (\overline{B_2} + \mathcal{V}) F d\mu = 0$$

where
$$\mathcal{V} = 12c(2iz_2\overline{z_2}\frac{\partial}{\partial z_1} + z_2\frac{\partial}{\partial z_2}) - 4(z_1\frac{\partial}{\partial z_1} + z_2\frac{\partial}{\partial z_2})$$
 (3.24)

and

$$\int \left[B_1 - 4\overline{z_1}\frac{\partial}{\partial \overline{z_1}} + 6c(2z_1\frac{\partial}{\partial \overline{z_1}} - \overline{z_2}\frac{\partial}{\partial \overline{z_2}})\right] F d\mu = 0$$
 (3.25)

Proof. (1.29)-(ii) implies $W_iV_1 + W_1V_{-i} + 4H_{\beta}^2 = -4(z_1\frac{\partial}{\partial z_1} + z_2\frac{\partial}{\partial z_2})$. Then we use (3.22). This gives (3.24). Since

$$C = 4[\rho(L_1) + \overline{\rho(L_1)}]\overline{L_{-1}} - [\rho(H_\alpha) + \overline{\rho(H_\alpha)}]\overline{H_\alpha} - [\rho(H_\beta) + \overline{\rho(H_\beta)}]\overline{H_\beta}$$
satisfies $\int CF d\mu = 0$, we obtain (3.25).

From (2.3), $4\Delta^K = B + \overline{B}$ where $B = B_1 + \overline{B_2}$ is in Theorem 2.6.

Theorem 3.11 Let c be a real constant. Let $d\mu = u^{3(c-1)}dz_1d\overline{z_1}dz_2d\overline{z_2}$, then for a differentiable function F with compact support in \mathcal{D} ,

$$\int \Delta^K F + 3c \mathcal{V} F \, d\mu = 0 \quad with \quad \mathcal{V} = \left(x_1 \frac{\partial}{\partial x_1} - y_1 \frac{\partial}{\partial y_1}\right) - \frac{1}{2} \left(x_2 \frac{\partial}{\partial x_2} + y_2 \frac{\partial}{\partial y_2}\right) \tag{3.26}$$

This differs from (2.2).

Proof. By adding (3.25) to the conjugate of (3.21), we find that $d\mu$ is an invariant measure for the operator

$$B + c \times \left(12z_1 \frac{\partial}{\partial \overline{z_1}} - 6\overline{z_2} \frac{\partial}{\partial \overline{z_2}}\right) \tag{3.27}$$

Remark 3.12 Integrating by parts, we find with (0.8)

$$\int (\Delta^K + 6ic \, u \, \frac{\partial}{\partial \overline{z_1}}) F \, u^{3c} \, dv = 0 \tag{3.28}$$

This is equivalent to (2.2).

References

- [1] Hélène Airault, Abdelhamid Boussejra, Lifted infinitesimal holomorphic representation for the *n*-dimensional complex hyperbolic ball and for Cartan domains of type I, *Bull. Sci. Math.*, **137** (2013), no. 7, 923 967. http://dx.doi.org/10.1016/j.bulsci.2013.06.004
- [2] H. Airault, S. Jendoubi and H. Ouerdiane, The weighted composition operators as intertwining operators for holomorphic Lie group representations, *Bull. Sci. Math.*, **139** (2015), no. 5, 558 581. http://dx.doi.org/10.1016/j.bulsci.2014.11.003
- [3] Hélène Airault, Identities for vector fields in the infinitesimal representation of the symplectic group into the Siegel disk of complex symmetric matrices, *Bull. Sci. Math.*, **136** (2012), no. 7, 763 802. http://dx.doi.org/10.1016/j.bulsci.2012.02.007

[4] F. A. Berezin, Quantization in complex symmetric spaces, *Izv. Akad. Nauk SSSR*, *Ser. Mat Tom*, **39** (1975), no. 2, 363 - 402, translation in *Math. USSR Izvestija*, **9** (1975), no. 2, 341-379.
 http://dx.doi.org/10.1070/im1975v009n02abeh001480

- [5] J. Dorfmeister, Quasisymmetric Siegel domains and the automorphisms of homogeneous Siegel domains, *American Journal of Math.*, **102** (1980), no. 3, 537-563. http://dx.doi.org/10.2307/2374115
- [6] I. M. Gelfand, M. I. Graev, I. I. Piatetskii-Shapiro, Representation Theory and Automorphic Functions, Saunders Company, 1969.
- [7] C. Robin Graham, The Dirichlet problem for the Bergman Laplacian. I, Comm. Partial Differential Equations, 8 (1983), no. 5, 305-317. http://dx.doi.org/10.1080/03605308308820275
- [8] S. Kaneyuki, Homogeneous Bounded Domains and Siegel Domains, Lecture Notes in Mathematics, Vol. 241, Springer-Verlag, 1971. http://dx.doi.org/10.1007/bfb0060967
- [9] W. Kaup, Yozo Matsushima, Takushiro Ochiai, On the automorphisms and equivalences of generalized Siegel domains, American Journal of Math., 92 (1970), no. 2, 475-498. http://dx.doi.org/10.2307/2373335
- [10] J. Morrow and K. Kodaira, Complex Manifolds, Reprint of the 1971 edition with errata, AMS Chelsea Publishing, Providence, Rhode Island, 2006.
- [11] Shingo Murakami, On Automorphisms of Siegel Domains, Lecture Notes in Mathematics, Vol. 286, Springer Berlin Heidelberg, 1972. http://dx.doi.org/10.1007/bfb0058567
- [12] Yilong Ni, The heat kernel and Green's function on a manifold with Heisenberg group as boundary, *Canad. J. Math.*, **56** (2004), no. 3, 590-611. http://dx.doi.org/10.4153/cjm-2004-027-3
- [13] I.I. Piatetsky-Chapiro, Géométrie des Domaines Classiques et Théorie des Fonctions Automorphes, Travaux et recherches mathematiques, Dunod, 1966.
- [14] M. H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Math. Palermo, 23 (1907), 185-220. http://dx.doi.org/10.1007/bf03013518
- [15] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008. http://dx.doi.org/10.1007/978-3-540-68276-9

- [16] I. Satake, Algebraic Structures of Symmetric Domains, Publications of the Mathematical Society of Japan, Princeton University Press, 1981. http://dx.doi.org/10.1515/9781400856800
- [17] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Math. Notes, Princeton University Press, 1972. http://dx.doi.org/10.1515/9781400871261
- [18] Setsuo Taniguchi, Kähler diffusion processes associated with the Bergman metric and domains of holomorphy, *Proc. Japan Acad., Ser. A*, **64** (1988), no. 6, 184-186. http://dx.doi.org/10.3792/pjaa.64.184

Received: March 8, 2016; Published: April 19, 2016