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Abstract

Consider the group G = Autgy,D of holomorphic automorphisms of
the domain D = {(z1) > |22/}, We give the expression of the Kihler
Laplacian AX in D in terms of the holomorphic vector fields in the Lie
algebra G of G. We show how some identities between the holomorphic
vector fields imply the invariance of the Kahler Laplacian with respect to
the volume measure. On D, we define operators of Ornstein-Uhlenbeck
type and we calculate their invariant measure.
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Introduction
Let o
21— Z
u(z1,29) = Ll (0.1)
On the Siegel domain
D = {(21,2) € C* |u(z1, z) > 0} (0.2)
we consider the Bergman metric,
92
log u(z1, 29) dzdz; (0.3)

2—_
ds® = Z@zkaz

k7j
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1 1
ds* = ———(dz; — 2iZ3dz)(dz1 + 2iz9d7 dzodzy
S 4u2(2’1,22)( 21 1Z3d29)(dZ1 4 2i29d73) + ar ) 29d 75
We denote dv the volume measure on D,
dv = u(z1, 2) 2 dzydzdzdz (0.4)
The differential two-form
0? log u(z1, 22)
"dz: N\ dz 0.5
Zk azjazk Zj k ( )

is exact (dQ2 = 0). Let ST be the unit circle parametrized by ¢?. On D x S,
we define the (1,0) differential forms

~i0d%
Vu
where u = 821 — 2925, It is classical that QAQ = dv where dv is the differential

form associated to (0.4). Also oy = dlog(u) and do = o1 ATT+0NTy = —i Q.
The Kihler Laplacian A® on D with the Bergman metric (0.3) is given by

p . 9? o . 5? 52
A" =z, 29) X [2@(z1—z1)m—22z2821872+2@ 29 8z2671_8zQ872] (0.7)

See for example [7], p.446 and see [4], [18]. We have

01 = —(dz — 2iZzdzy) and oy =¢e (0.6)

2iu

62

821821
2 2 82 82

AN = 4o —— — 2%, 2i —

2 Ry s T P 0n0n om0 020
_1(872 + ﬁ) _ ( 82 + 62 )

4 (99(;% (9y§ Y2 8.1’18372 aylayg

o2 o2 R I
axlayz - 8y18$2) - (I2+y2)<87x%+87y%>

Let e =1 or —1 and consider the non holomorphic vector fields,

0 0 0
Xy = u(z, Zz)az and X, = U(21722>(226228 o —)
1 2

1
AR = — 40’ AF +u— 5 (21 — 71 — 2i2%) A with AF = (0.8)
i

(0.9)

+$2(

(0.10)

The vector fields 2X; and X, are orthonormal with respect to the metric (0.3):
Let Y7 = 2X; and Y, = X, where X, X, as in (0.10), then 0;(Y}) = 0if j # &,
01(Y1) = —i and 05(Y3) = 1. It holds Xou = 0. It is classical that

AF = —4X X — XX, (0.11)
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Consider a Kéahler domain and the group G of holomorphic automorphisms
of this domain. Tne Lie algebra G of G is constituted of holomorphic vector
fields. In [3], for the Siegel disk of complex symmetric matrices and in [1], for
the n-dimensional complex ball, the Kahler Laplacian has been expressed in
terms of a basis of G. In the following, we extend to D, the results obtained in
[3]-[1]. By direct calculation, we write A in terms of the holomorphic vector
fields of a basis in the algebra G. This expression of A differs from those in
[10], [6], p. 49 or [15], Chap. 4 for example and also from (0.8)-(0.11). The
domain D is bi-rationally equivalent to the hyperball, i.e. the unit ball in C?2,
sse [14] or [15], Chap. 2. Identities similar to those in subsection 1.3 have been
explicated in [1] for the unit ball in C™ but their expressions in the case of the
domain (0.2) is new. Since the change of variables from D to the unit ball of
C? is not trivial at all, it is interesting to consider the problems for the domain
D. In the present work, we are interested by expressions of the Laplacian A¥
with vector fields in G and by operators (OU-operators) which are adjoint of
AK with respect to the measure du = u3 dv as explained in [1] for the unit
ball of C". Such investigations have not been carried out in [15] or [17]. The
following is an attempt to construct OU-operators. It gives one more example
for some of the problems raised in [3].

In Part [, let G = Auty, (D) be the group of holomorphic automorphisms
of D, see [13]-[15] Chap 2, for more details, we give a calculation of its Lie
algebra G. Then we state the holomorphic identities (1.28)-(1.29)-(1.30)-(1.31)
between vector fields in G. These are new.

In Part II, we verify (0.11). By analogy with [1], we relate AX to G by
proving (2.3). We define a complex Laplacian AE such that AKX = R (AL) and
we show how the invariance of dv for this complex operator (/ AEF dv = 0) is
a consequence of the (1.28)-(1.29). In Remark 2.7, we deduce from (2.6) that
the Kohn Laplacian on the boundary of D can be expressed with Lie algebra
of the subgroup of affine holomorphic automorphisms of D.

In Part III, let D C C™ be a complex domain. We extend the Lie algebra
of Auty,D: For a holomorphic vector field V', we define the inner contraction
1(V), see (3.1) and the operator p(V) = V + ¢ (V') where ¢ is a constant, see
(3.4). This allows us to obtain on D, Ornstein-Uhlenbeck type operators that
we call OU-operators. We find these operators and their invariant measures
for the domain (0.2).

1 The group G = Auty,D, its Lie algebra, iden-
tities between holomorphic vector fields.

Subsections 1.1 and 1.2 are known facts, see [14]- [13] for 1.1 and see [16], p.
215 - [8]- [9]- [11] for 1.2. We need them for our further investigations. The
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identities in subsection 1.3 are new.
The domain D is mapped to the hyperball B : 1 — wiw; — wowz > 0 with
21 — 7 2 Z9

wy = , Wy = - 1.1
! Zl—Fi 2 21+Z ( )

4 21 — 71 . — S
ot z|2( % 29%3). The equiv

alent domain z; + z7 > |22|*> was introduced in [14] to study the hypersphere
W1W1 + Wy = 1. Let

since (1.1) implies 1 — w Wy — wowWy =

w I w —\/522 thenl—qu—w17—2Zl—i_ZT_ZQ?2
P | T T G+ D (m+ )

(1.2)

The holomorphic transformation (1.2) leaves D invariant since

wp — Wy __ 2 (21—71
— Woly =
2 PR 1 2

— 297%3)

1.1 The group of holomorphic automorphisms of D

The group G is generated by U, ¢, (t,£) € R x C, the dilations H., ¢ € C and
the involution Z,

2 21+ 21z + t+1EE 1 2N\ (= t 4 i&E
ve(5) = (R = (0 () () o
_ 1 29
He: (21, 22) = (€21, c29) and  Z(z1,2) = (— e —zz—l) (1.4)
The subgroup of affine holomorphic transformations of D is generated by
U,¢, He.. We have Z(i,0) = (4,0) and (¢,0) is the only point fixed under
Z. The subgroup GT = {U,,, t € R, ¢ € C} of Autpy(D) is isomorphic
to Dy = {S(21) = |22]*} =  {(z1 +i2272, 20)} since ¥, is determined by
U, ¢(0,0) = (t+1i&E, €) € Dy. The composition ¥y, ¢, 0 Wy, ¢, = Wy g, 1¢, induces
the Heisenberg group law on Dy, (t1, &) * (L2, &) = (7, & +&) where 7 is given
by 7=t + 2+ 1(& & — &)
Let (uy,us) = (ZoWc0T)(z1, 22). Then

z1 1€21 + 2o
QT Q

and u; — Uy — 20Uy = ﬁ (21 — Z1 — 2i29%3). The Jacobian J of the map
ZoV,¢ o0l and its determinant are

_i 1 — 282 26 2 — i
T=g < lie v a0 i 1 mimie) ™ =

) with Q= Q(t,§) =1—2z — (t+i€&)z (1.5)

(w1, u2) = (
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Let Q(t,€) as in (1.5). For a holomorphic function f(z1,292) and g = (¢,&,),
we define

R N (1.6)
then
[T s m)Purdo = [ £, 2)Pu P do (1.7)

(Tg, u~ P dv) is a holomorphic unitary representation for the subgroup of trans-

formations (1.5).
Proof of (1.7). Denote T?f(z1,22) = Q(t,8)? f(ky(Z) ) with Z = (21, 22).
The Jacobien determinant of k,(Z) is equal to J. Let R(Z,Z) such that

/|Q(Z)|2p|f(kg(Z))|2R(Z,7)dx1dy1d:p2dy2 = /|f(Z)|2R(Z,7)dl'1d’y1d$2dy2
We have [ |Q(Z)1*|f(ky(Z))|*R(Z, Z)dz1dy:dzadys
= [1QUZ)P*11(1,(2)) [PR(Z, 7)) I P din sy

= [1QU; ()P F(DPRG (2), ky (Z))dordysdasdy,
Then (1.7) is a consequence of |Q(Z)|*T R(Z,Z) = R(ky(Z),kys(Z)). .

1.1.1 Some interesting holomorphic transformations of D.

Holomorphic involutions of D are (21, 22) — (21, —22) and

2
15(21,22>:<—§, 1622) H pgoZ for feR (1.8)
1 1
More generally, for § € R, 6§ € R, let
2
P
IH,ﬁ(Zlv Z2) = ( o f e 95 ;2) then  Zy, g, 0Ly, 8, = Heitor+62) (B1/B2)
1 1
. —1 2
Consider (12), T(z1, ) = (244, ¥22)

== [,Hz\/ﬁ 0\111/2’0 oZo \1’170](21,22) = [\11170 OIO\I/(l/z)’OOH(i/ﬂ)](Zl,Zg) (19)
We have T oT =H; o Z and T*(z1,22) = (21, —29) with T2 =T o T oT oT.

_ ,cosfBz — sinf 29
Let To(21, 22) = ( sinf z, +cos@’ sinf z; + COSH)

- [\P—tanG,O o Hl/cos& oZo \Ij—tanﬁ,(] OIKZla Z2> (110)
If 0 =m/4, (1.10) gives (1.9). We have Ty, 10, = To, © Tp,.
Let S(z1, 29) = (?_T_%, \/_21+1 2), then SoS =7 and
1+ wu ﬂei(“/4)u2

1—u1’ 1—U1

Sil(ul, UQ) = ( (11].)
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1.1.2 The non holomorphic vector fields (0.10)
Let X; and X3 as in (0.10).

Yoo J2AK Y d
- .0 0 .0 0
XQXQ— u(22€226721+ 872:2)(—27,2287714—8772
_ _unK —2in 2 (1.13)
a ? 071 '

Adding (1.12) and (1.13) and comparing with (0.8), we obtain (0.11).
Let F' be a holomorphic function on D. We have
d

(XkF)(zbZ?) = dizfg F([\I]%thz © %ﬁ](zi,zé)), k= 17 2 (114)

|21 =1, 25=0
We denote u = Sz; — 207 and Rz; = (1/2)(21 + z1). On D x S, we define
the group law

(Zla 2276) = (Z172279)*<217Z;79/) (115)

where © = 0+60" and (21, Z5) = (Vy.,, -, 0Heio i) (21, 23). The neutral element
is (7,0,0). In (1.15), we have

Z =z +ud, + 2\ Suzmd — iu

Zy =20+ €P\/uz (1.16)

With (0.11), we verify that the Laplacian AX is left invariant with respect to
this group operation. Moreover in (1.16), we have

SZy — ZoZy =uu' =U where u = S2] — 252}

RZ, = Ry + uR2, + ivu(eP5mz, — e 22) (1.17)

1.2 The Lie algebra G of Auty, (D)

Let ¢. be a parametrized curve in Auty, (D) such that ¢y = Identity and

let ' be a holomorphic function. We consider VF' = % _O(F o ¢). In the

following, t € R and £ = a + i € C. The real vector space G_; is generated
by
0

Log=—
! 821

(1.18)
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where (L_1F) (21, 22) = %H:O,{:OF(\Dt’é(Zl’ %)) = E%IF On the other hand,
0 0 0
WF = — F(v 20 20— + —)F
! O [t=0,6=0 (Wig(z1,22)) = ( ZZQ@zl * 8z2)
0 0 0
V,F = — F(¥ , 229— —)F
35\t:og:o (Wre(z1,22)) = ( 22821 + 1 822)
If v = a +ib, we denote V, = a -t by 8 The two dimensional real vector

space G_y /5 is the set of vectors

0
V, = 20205 — — = L_ 1.19
- 129 78z1 + 7y 92, (1/2) ( )
It holds
0 0 0 0
W,F = F(ZoW,,0T 2 2z5—)F
D |t=0,£—0 (ToWigol(z,2)) = 21220 * 1218 2 s 822)
0 0 0 0
W F=— F(ZoW, 0T =(—21 —— —2iz5—)F
' 85|t:0,§:0 £ He° (a1, 2)) ( s 0z 0% D29 e 322)
We denote Gy o, the 2-dimensional real vector space constituted of vectors
= 9 0 0 0
W(g = 2@(522 87Z2 + 2252122 a + 5Z1822 == L1/2 (120)
where 6 € C is a constant. The real vector space G; is generated by
0
L= 2 1.21
1= 21229~ 92 1, - ( )
where L F = %‘t . oF(ZToV;c0Z(21,2)). Let Hy F' = %M:lF(H’\(zl’ 29))
and HgF 5 F((z1,€%25)) We denote Gy, the real vector space generated
|6=
by the two vector ﬁelds
H, =2z 0 +z and Hpg =1z 0 (1.22)
Y0z, POz P '

Equivalently Gy is the set of vectors Lo(vy) = (v + 7)21% + 722% with
v € C. The Lie algebra G of the group G is the direct sum of real vector
spaces

G=0G.1DG 109G D G120 G1 (1.23)

We denote Gorp = G_1 ®G_1/2® Go, the Lie algebra of Af finepq (D). The Lie
algebra structure on the real vector space G is given by the Lie brackets

[‘/57‘/7] = 2Z(67_75> L*la [‘/;57[/71] = 07 [LflaLl] = Ha
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V3, Hgl = Viy,  [L1, Hg] =0
[L_y,H, =2L_, [Ws H,) = —Ws, [L_1,Ws]=1Vj
(L1, H,)| = —2Ly, [L1,Hsl =10, [Ha Hgl=0 [Ws,L1]=0
(W5, W,] = 2i(65—~0) Ly, [Ws,V,] = i(07—~0)H, — 3(67+70)Hp (1.24)

We have [G_(1/2),G-1/2)] € G-1, [G-/2),9-1] =0, [G_(1/2), %] = G—(1/2) and
G, , Gk] C Gjix. We assign weights to the variables z; and 2z by saying that
the constants have weight zero, z; has weight 1 and z; has weight 1/2. With
this convention, % has weight —1 and 8%2 has weight — (1/2). The subspace
Gy is constituted of vector fields of weight k. The brachets in (1.24) show that

G1®G 12 and Ao=G 1 & G_12® R.Hg (1.25)
are subalgebras of G. The direct sum A4y is the Lie algebra of the group Ay of
holomorphic affine automorphisms with Jacobian determinant equal to one.
1.2.1 The involution Z* on the Lie algebra G.

The involution Z induces an involution Z* on G, see for example [5],

TG =G for ke{—l,—;,o,;,l} (1.26)

Let X be a vector field on D, we define the vector field X* as
(X*F)(21,22) = X(FoI)(Z (21, 22)) (1.27)

where F' : D — C is differentiable and Z = Z~' is the involution. It holds
X(FoZ) = (X*(F))oZ. The map Z* defined by Z*(X) = X*, is an involution
on G. We have 7*(L_y) = Ly, Z%(L1) = L_y, Z*(V,) = Wy, T*(W5) = Vs
and Z*(H,) = — Ha, I*(Hg) = Hp, I*(Lo(7)) = — Lo(7)-

1.2.2 The map S such that SoS§ =17.

_ —i(m/4)
Let S(21, 22) = (2 T %, \/iil T “2) as in (1.11). The inverse map S~ is

given by S™' = SoZ = ToS. For a vector field X in G and a differentiable
function F', we put

SHX)F =[X(FoS)|(S™)
We have $*(G) C G and §* o §* =1*, §*(H,) = L1 — Ly, S*(Hp) = Hp

1 1
S (L) =51+ Ly —H,), S*(L1) = (L1 + L1 + Hy)
2 2

1 1 ’
S (V,) = §(V5 — Ws) and S*(W,) = 5(‘/‘5 + W) 5 = v/2emi/4y
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1.3 Identities between holomorphic vector fields

By direct calculation, we verify the holomorphic identities where the right
hand side is a first order holomorphic operator,

. 0 0
(i) AL L, — H2 — Hj = 4(218—21 + 228—22)
.. 0
(i) 4LyLy — H? — Hj = —421871 (1.28)
Let y € R, 0 € R and € € R, then
, 1 9 0

(Z) %[%W_Ei(i‘i“/;ifng] — 4€Hﬁ: —4621872:1

. 1 9 0 0

(ZZ) %[W_MVV + W(S ‘/ﬂfy] — 4€HB = 46(218721 + 228722) (129)

For ~, § € C,
(i)  VsVy+VisViy — 4(30 +07)L_1Hg = 4i07L_,

(i) WsW, + WisWiy — 4(36 + 0v) L1 Hg = 4i67L4
%)

_ 0
(ZZZ) W V:y + Wi,y‘/i(s = 2(5’)/ + 75)[HQH5 + 2=+ 227]
82’1 822

2

(iv) WV, — W, V5 = 2i(6y — 79) z%a—Q + 2i(0y — 70) zli (1.30)
822 621

In (1.29)-(1.30), we pass from (i) to (ii) with the involution Z*, see (1.26). If
0y — 786 = 0, then W5V, — W, Vs = 0. Moreover,

ALy, L]+ [Vi, Wi + [V, Wi] = 0 (1.31)

since 4[Ly, L_y] = —4H,, [Vi, Wi] = 2H,, [V_;, Wi] = 2H..

2 The Kihler Laplacian A" on D

2.1 AX calculated with the Bergman metric.
Let H(z1,22) = logu(z1, 22). We have
0? 0?

H= (21 — 71 — 2iz%) >
92,07 (21 =71 = 2i2%) ™, 92107

H = 2izy x (21 — 71 — 2i2973) 2

82
822872

H = —2i(21 —71) X (Zl —Z1 — 22'22272)72
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We find for the Bergman metric (0.3),

21—z

1
ds? = @[dmd?l + 2izodz1dZy — 2iZ5dzodZ] + 4( 5; )dz2d72]
1 —
_ 4—u2[d21d71 + 2idzy(Z1dZ; — Zdzr) + (21dz0 — 20d2)(2idzs) |
1 21z
i = (24u) 2 2 .
The inverse of P = (2iu)™* x (_22,22 Cgi(o zl)) i
21— 21 z i91 191
P_l = (2ZU) X < 1_71 _21> — (QZU)S % ( 218%1% 48?21},)
2 21 1 P ” ~ %2

The determinant of the matrix P~ is (1/4)( (21,22))~". We find (0.7) since
the Kahler Laplacian is AX = ik mjkaz 5 where the matrlx (mjg) = P~L

Lemma 2.1 We have [ A Fdv = 0. The volume measure is invariant for
A as well as for AK and ALF.

Proof. We integrate by parts or we verify that >, %mjk(%(zl) —29%5) =0
J
for kK =1, 2, as in [3], Theor. 10.2. e

In (2.14)-(2.16) of [3], the vector field
Zm k= logu] 0 (2.1)
j 7

is associated to AK = >k mjk%;sz. The operator AX —cV¥ has the measure
J
exp(—clogu)dv as invariant measure. When m;, is given by (0.7), this gives

: 0 _, 0 0
VE = 2i(z — 21)(621 log u)621 2ZZ2(321 log u) — 0% +
0 0 0 0
2232(872210gu)%1 — (87,2210gu)872]
We find 5 9
K_ o 9 K _ VK — _o9, 9
V5 = 21“371 and V* +V 2u8y1 (2.2)

2.2 AF in terms of the holomorphic vector fields in G.

Theorem 2.2
AN =B+ B with B=DB,+ B,

B, =4L, I, — H,H, — H:H;
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1 — 1
— WiV, .
755957—#7/5,

where v, 7', §, &' are real, non zero constants. We have

BQ — W(g/ V—iv’ —f- 4HﬁFﬁ (23)

2A" = R(B, + By)

Proof. We have
) o 9 B 0 G, 0 0’
B, =4 2 2215~ TRk
1= Mg, tag ) am ~ (g, g ) B Y g~ R

and By = ViW, + V_ W, +4HgzHs =

Q12925 82’?;2 + 822’2222’10?221 + 4(% + 2222)82;22
Then B = B, + B,
2 o2 o2
= du(zy, z2) X (21) Zlm + 8iz97Z5( 2 +71)m + (42129 — 2,7122)%
+ (8izo7” — 221@)(,),2?;5 + 4(;1 + 12222) aj;?
By identification with (0.7), we find B + B = 4AK o

Theorem 2.3
219 B=4(L Ly — LiLy) + (WW; = W) + (VoW = WV2,)  (2.5)
AKX in (0.9) satisfies

1 L o _ _
Al = 5[—Vlvl — ViVi+4L_1Hs + 4HgL ] (2.6)

l(B—E)— 4(Sz1 + 20%)(2 +7)872 + 4z (ﬁ+27)872
; = N2 222 )\ %1 1021871 222. 228228771

2 222 02,07 ! ! 029073
We verify (2.5) since B = C} + Cy with

82 42122 82 4% 82
Ci=4(S Z1 N
| (o“zl)(zl+"’1)321371+ % 0207 2 02107

— %I T - IiL1)

+ 47 (-
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2.3 It results from (1.28)-(1.29), that the volume dv is
invariant for the complex operator B; + B,

It is well known that the volume measure (0.4) is invariant with respect to
AK see for example [7]. In this subsection, we prove this fact by using
the identities (1.28)-(1.29). For z = (z1,22) € D, we consider the measure
du = k(z)dzdzidzodz; where k is a differentiable real-valued function. Let
V = al(z)a%l + ag(z)a%2 be a holomorphic vector field, (a;(z), j = 1, 2 are
holomorpic functions). We define

0 0

= 5 ()] + 5 -lea2)] (2.7)

(V) o

By integration by parts, if F'is a differentiable function
/ VF dy = — / F(2) % [o(V)(2) + V(log k) ()] du (2.8)
For the vector fields (1.18)-(1.19)-(1.20)-(1.21)-(1.22), we have

ULa)(z) =e(Vo)(2) =0,  (Ha)(z) =3, u(Hp)(2) =i

t(Ws)(2) =6id 20, o(L1)(2) =32 (2.9)

It is not difficult to verify the two following lemmas.

Lemma 2.4 We have
%[V (k’)} =0 fOT V= L_l, V= ‘/7, V= Hg (210)

if and only if o
21 — %1

k(z) = ¢

where ¢ : R — RT is a differentiable function. If (2.11) is verified and V' is
one of the vector fields in (2.10), then

— 22%3) (2.11)

/(v YVVFdu=0  for du=k(z)dndzidnds  (2.12)
Lemma 2.5 Assume that du = (b(% — 29%3)dz1dZ1dzodZ;. Then
/(V+V)qu:0 for V=40, (2.13)
if and only if ¢(u) = u=3. Moreover, in that case, we have

/(V +V)Fdu=0 forany V eg (2.14)
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Theorem 2.6 Let B = By + By as in (2.3), then B has dv for invariant
measure. In particular AX and IB have dv as invariant measure.

Proof. Let
By =4L,L_, — H,H, — HyHy
By =WV\W,; +V_;W, +4HzHg
then with (1.28)-(ii),

0

4Ly + L)L) — (Hy + Hy)H, — (Hg + Hs)Hy = By — 471%
1

(2.15)

and with (1.29)-(i),

— — SE— 0
Vi + V)W, + (Vo + Vo)W, +4(Hg + Hg)Hp = By + 471? (2.16)

<1
Adding and using (2.14), we obtain [(BF')dv = 0. o

Remark 2.7 By changing variables, on the boundary Dy, the operator AL
in (0.9) is identical to the Kohn Laplacian, see [12]. We have proved that AX
satisfies (2.6).

3 Divergence of vector fields in finite dimen-
sion. Invariant measures for OU-operators

The first two subsections 3.1-3.2 are valid for a domain D in C". Of course,
they do not extend to infinite dimensional domains. In subsection 3.3, with
3.1-3.2, we obtain OU-operators on (0.2).

3.1 Extension of the Lie algebra G

Let D C C". For a holomorphic vector field V = 3, a;(2) 2>

5., we define the
J

inner contraction, see [2]

0
— (3.1)
7 8z]
For constants ¢, o, we have t(c1 Vi + Vo) = c10(Vh) + cot(V3).
Lemma 3.1 For (3.1), it holds

V(W) = W((V)) = [V, W]) (3-2)
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Proof. To prove (3.2), let V =3, a}/(z)i and W =3, aZV(z)i We find

8zj 8Zk )
1% * W *
VEOP)=IW(V) = Sa ()5 2—al () = Sal ()5 2—al () (53)
Ji:k J 4.k J
On the other hand
0 0 0 0
_ vin 9 owin Y9 w9 vy 9
VW)= S ()l (g~ S g el (D)
This permits to identify the two sides of (3.2). o
Definition 3.2 Consider the operator
p(V) =V + c (V) where cis a real constant (3.4)

For a function F differentiable on D, p(V)F = VF + c (V) x F.
Theorem 3.3 The identity (3.2) with (3.4) imply

[o(V), p(W)] = p([V, W]) (3.5)
Let V =3,b,(2)V,, then
(V)= Volby) + by t(V}) (3.6)

In particular, if u(V,) = 0, ¥p, we have p(V) =V + ¢ 32, Vp(by).

Proof. Let V, = >, ckp(z)%, then «(V) = X, %(bp ¢kp). This proves
(3.6) e

Remark 3.4 Let (V) be a function defined on D and depending on the
vector field V.. We define the operator p(V) = V 4+ ¢ «(V) as in (3.4). Then
for two vevtor fields V' and W, the condition [p(V'), p(W)] = p([V, W]) is valid
if and only if V(L (W)) — W ((V)) = o([V, W]).

Remark 3.5 Let ¢ be a holomorphic function on D. For holomorphic V =
> aj(z)ﬁ, we define

oV)(E) = V) + 3 5a(e) (37)

I;ZVe have V(1e(W)) — W(te(V)) = 1o([V.W]). Assume that V = 3, b,(2)V,,
then
(V) =23 Vo) + by s(V3) (3.8)

p

Compare (3.8) with (5.6).
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3.2 Unitarity condition and invariant measures

We proceed as in [3]. Consider a second order differential operator

A= > V.V, such that o ViV, =V (3.9)

J1€J1,j2€J 2 J1€J1,j2€J2

where Vj,, V;,, V are holomorphic vector fields. Then
JIVii +Vi)Fld =0 ¥jie g implies  [(A+V)Fdp=0 (3.10)
On the other hand, from (3.9),
A= > V,V;, with W= > V,V, (3.11)

J1€J1,j2€J 2 J1€J1,j2€J2

where W =V + Y. c s ives [V » Vi is also holomorphic. We have
/[(ij +Vyp)Fldu=0 Vjy,€J,  implies /(Z+W)qu =0 (3.12)

If (3.10)-(3.11)-(3.12) are satisfied, the vector field YW —V is divergence free
for du,

/(W V) dp =0 (3.13)
Theorem 3.6 We assume (3.4)-(3.9). Let i be a measure such that
J 1oV + pV;) ) Fldp =0 ¥y € (3.14)

then B
/(A V4 cLy ) Fdu =0

with L= Y V) +udVy)) Vi, (3.15)

J1€J1,j2€J2
On the other hand, let A and W as in (5.11) and let u be a measure such that

J16(Vi) + p(Vis) Fldpe =0 ¥ jz € Jy (3.16)

then
/(Z—FW—F CMJLJQ)Fdﬂ =0
with MJ1,J2 = Z (L(‘/h) + L(VD)) W (317)
J1€J1,52€ )2
Proof. -
> [le(Via) + p{Vi)) Vi Fldu = 0

J1€J1,52€ 2

implies (3.17). We prove (3.15) in a similar way. o

Definition 3.7 We call the operators (3.15)-(3.17) OU-operators.
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3.3 OU-operators on D and their invariant measures

Let p be a real measure on D and F' be a differentiable function with compact
support in D. We consider By, By and A as in (2.3). We have (1.28)-(1.29).
We shall apply subsection 3.2 to this particular case.

The relation (2.8) extends as

[ o) du = = [F) x (1= uV)() + Vg b)) du (3.18)

where ¢(V') are given by (2.9) and c is a constant. In the following, we assume
that

— ZQ?Q)led?lezd?Q (319)

-z
1

dp = ¢(—;
Since «(V)=0for V=L_,, V =V,, V = Hg, Lemma 2.4 stays true with
[V)+p(P)Fdu=0  for V=L, V=V, V=Hy (320
Corollary 3.8 Let du be given by (3.19), then
3}
/(BQ+4Z1—)FdM —0 (3.21)
821
Proof. We deduce (3.21) from (2.16) and (2.12-(3.20). o

From (3.18), Lemma 2.5 becomes

Lemma 3.9 Assume that Vi is one of the vector fields Ly, Ws, H,, then

/(p(VO) +p(Vo)Fdu=0 YF if and only if ¢(u) =u>Y  (3.22)

Moreover, in that case, we have [(p(V)+ p(V))F du =0 for any V € G.

Proof. To calculate (3.22) when Vj, = W, and w is given by (0.1), we use
Vo(u) =207 —z5y  and (W, 4+ W,)(u) = 2iuV,(u) (3.23)
Corollary 3.10 Assume that du = w3V dz dzrdzedzs, then

[+ V)Fdp =0

0 0 0 0
= 12¢(212929 — —) — 4(z1— — .24
where VY c(2i2973 92 + 29 8,22) (=1 9o + 29 822) (3.24)
and 9 5 P
/[B1 4+ b2 — T )| P =0 (3.25)
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Proof. (1.29)-(ii) implies W;V; + WiV, + 4H2 = —4(213% + @8%).
Then we use (3.22). This gives (3.24). Since

C = Alp(L) + p(L1)] L1 = [p(Ha) + p(Ho)[Ha — [p(Hg) + p(Hg)|Hg

satisfies [ CFdu = 0, we obtain (3.25). °

From (2.3), 4A" = B+ B where B = B; + By is in Theorem 2.6.

Theorem 3.11 Let ¢ be a real constant. Let dyu = u*Vdz dzidzed%;, then
for a differentiable function F with compact support in D,

0 0 1 0 0

AKF Fdy = ' = (15— —ths—) — (25— -
/ + 3cVFdu=0 with V (3318961 y1ay1) 2(x28x2+y23y2)
(3.26)

This differs from (2.2).

Proof. By adding (3.25) to the conjugate of (3.21), we find that du is an
invariant measure for the operator
0

0
B 1229 — — 625 — 2
+ ¢ x (12 = 675 872) (3.27)

Remark 3.12 Integrating by parts, we find with (0.8)

/(AK + 6icu 8621)F u*dv =0 (3.28)

This is equivalent to (2.2).
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