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Abstract

Consider the group G = AutHolD of holomorphic automorphisms of
the domain D = {=(z1) > |z2|2}. We give the expression of the Kähler
Laplacian ∆K in D in terms of the holomorphic vector fields in the Lie
algebra G of G. We show how some identities between the holomorphic
vector fields imply the invariance of the Kähler Laplacian with respect to
the volume measure. On D, we define operators of Ornstein-Uhlenbeck
type and we calculate their invariant measure.
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Introduction

Let

u(z1, z2) =
z1 − z1

2i
− z2z2 (0.1)

On the Siegel domain

D = {(z1, z2) ∈ C2 |u(z1, z2) > 0} (0.2)

we consider the Bergman metric,

ds2 = −
∑
k,j

∂2

∂zk∂zj
log u(z1, z2) dzkdzj (0.3)
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ds2 =
1

4u2(z1, z2)
(dz1 − 2iz2dz2)(dz1 + 2iz2dz2) +

1

u(z1, z2)
dz2dz2

We denote dv the volume measure on D,

dv = u(z1, z2)
−3 dz1dz1dz2dz2 (0.4)

The differential two-form

Ω = i
∑
j,k

∂2 log u(z1, z2)

∂zj∂zk
dzj ∧ dzk (0.5)

is exact (dΩ = 0). Let S1 be the unit circle parametrized by eiθ. On D × S1,
we define the (1, 0) differential forms

σ1 =
1

2iu
(dz1 − 2iz2dz2) and σ2 = e−iθ

dz2√
u

(0.6)

where u = =z1−z2z2. It is classical that Ω∧Ω = dv where dv is the differential
form associated to (0.4). Also σ1 = ∂ log(u) and ∂σ1 = σ1∧σ1+σ2∧σ2 = − iΩ.
The Kähler Laplacian ∆K on D with the Bergman metric (0.3) is given by

∆K = u(z1, z2)×[2i(z1−z1)
∂2

∂z1∂z1
−2iz2

∂2

∂z1∂z2
+2i z2

∂2

∂z2∂z1
− ∂2

∂z2∂z2
] (0.7)

See for example [7], p.446 and see [4], [18]. We have

∆K = − 4u2∆K
1 + u

1

2i
(z1 − z1 − 2iz2z2)∆

K
2 with ∆K

1 =
∂2

∂z1∂z1
(0.8)

∆K
2 = −4z2z2

∂2

∂z1∂z1
− 2iz2

∂2

∂z1∂z2
+ 2iz2

∂2

∂z2∂z1
− ∂2

∂z2∂z2
(0.9)

= −1

4
(
∂2

∂x22
+

∂2

∂y22
) − y2(

∂2

∂x1∂x2
+

∂2

∂y1∂y2
)

+x2(
∂2

∂x1∂y2
− ∂2

∂y1∂x2
) − (x22 + y22)(

∂2

∂x21
+

∂2

∂y21
)

Let ε = 1 or −1 and consider the non holomorphic vector fields,

X1 = u(z1, z2)
∂

∂z1
and X2 =

√
u(z1, z2)(2i ε z2

∂

∂z1
+

∂

∂z2
) (0.10)

The vector fields 2X1 and X2 are orthonormal with respect to the metric (0.3):
Let Y1 = 2X1 and Y2 = X2 where X1, X2 as in (0.10), then σj(Yk) = 0 if j 6= k,
σ1(Y1) = −i and σ2(Y2) = 1. It holds X2u = 0. It is classical that

∆K = − 4X1X1 − X2X2 (0.11)
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Consider a Kähler domain and the group G of holomorphic automorphisms
of this domain. Tne Lie algebra G of G is constituted of holomorphic vector
fields. In [3], for the Siegel disk of complex symmetric matrices and in [1], for
the n-dimensional complex ball, the Kähler Laplacian has been expressed in
terms of a basis of G. In the following, we extend to D, the results obtained in
[3]-[1]. By direct calculation, we write ∆K in terms of the holomorphic vector
fields of a basis in the algebra G. This expression of ∆K differs from those in
[10], [6], p. 49 or [15], Chap. 4 for example and also from (0.8)-(0.11). The
domain D is bi-rationally equivalent to the hyperball, i.e. the unit ball in C2,
sse [14] or [15], Chap. 2. Identities similar to those in subsection 1.3 have been
explicated in [1] for the unit ball in Cn but their expressions in the case of the
domain (0.2) is new. Since the change of variables from D to the unit ball of
C2 is not trivial at all, it is interesting to consider the problems for the domain
D. In the present work, we are interested by expressions of the Laplacian ∆K

with vector fields in G and by operators (OU-operators) which are adjoint of
∆K with respect to the measure dµ = u3c dv as explained in [1] for the unit
ball of Cn. Such investigations have not been carried out in [15] or [17]. The
following is an attempt to construct OU-operators. It gives one more example
for some of the problems raised in [3].

In Part I, let G = AutHol(D) be the group of holomorphic automorphisms
of D, see [13]-[15] Chap 2, for more details, we give a calculation of its Lie
algebra G. Then we state the holomorphic identities (1.28)-(1.29)-(1.30)-(1.31)
between vector fields in G. These are new.

In Part II, we verify (0.11). By analogy with [1], we relate ∆K to G by
proving (2.3). We define a complex Laplacian ∆K

C such that ∆K = < (∆K
C) and

we show how the invariance of dv for this complex operator (
∫

∆K
CF dv = 0) is

a consequence of the (1.28)-(1.29). In Remark 2.7, we deduce from (2.6) that
the Kohn Laplacian on the boundary of D can be expressed with Lie algebra
of the subgroup of affine holomorphic automorphisms of D.

In Part III, let D ⊂ Cn be a complex domain. We extend the Lie algebra
of AutHolD: For a holomorphic vector field V , we define the inner contraction
ι(V ), see (3.1) and the operator ρ(V ) = V + c ι(V ) where c is a constant, see
(3.4). This allows us to obtain on D, Ornstein-Uhlenbeck type operators that
we call OU-operators. We find these operators and their invariant measures
for the domain (0.2).

1 The group G = AutHolD, its Lie algebra, iden-

tities between holomorphic vector fields.

Subsections 1.1 and 1.2 are known facts, see [14]- [13] for 1.1 and see [16], p.
215 - [8]- [9]- [11] for 1.2. We need them for our further investigations. The
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identities in subsection 1.3 are new.
The domain D is mapped to the hyperball B : 1− w1w1 − w2w2 > 0 with

w1 =
z1 − i
z1 + i

, w2 =
2 z2
z1 + i

(1.1)

since (1.1) implies 1−w1w1−w2w2 = 4
|z1 + i|2 ( z1 − z1

2i − z2z2). The equiv-

alent domain z1 + z1 > |z2|2 was introduced in [14] to study the hypersphere
w1w1 + w2w2 = 1. Let

w1 =
z1 − 1

z1 + 1
, w2 =

√
2 z2

z1 + 1
then 1− w1w1 − w2w2 = 2

z1 + z1 − z2z2
(z1 + 1)(z1 + 1)

(1.2)

The holomorphic transformation (1.2) leaves D invariant since

w1 − w1

2i
− w2w2 =

2

|z1 + 1|2
(
z1 − z1

2i
− z2z2)

1.1 The group of holomorphic automorphisms of D
The group G is generated by Ψt,ξ, (t, ξ) ∈ R×C, the dilations Hc, c ∈ C and
the involution I,

Ψt,ξ

(
z1
z2

)
=
(
z1 + 2iξz2 + t+ i ξξ

z2 + ξ

)
=
(

1 2iξ
0 1

)(
z1
z2

)
+
(
t+ iξξ
ξ

)
(1.3)

Hc : (z1, z2)→ ( ccz1, cz2) and I(z1, z2) = (− 1

z1
, − iz2

z1
) (1.4)

The subgroup of affine holomorphic transformations of D is generated by
Ψt,ξ, Hc. We have I(i, 0) = (i, 0) and (i, 0) is the only point fixed under
I. The subgroup G+ = {Ψt,ξ, t ∈ R, ξ ∈ C} of AutHol(D) is isomorphic
to D0 = {=(z1) = |z2|2 } = {(x1 + iz2z2 , z2)} since Ψt,ξ is determined by
Ψt,ξ(0, 0) = (t+ iξξ, ξ) ∈ D0. The composition Ψt1,ξ1 ◦Ψt2,ξ2 = Ψτ,ξ1+ξ2 induces
the Heisenberg group law on D0, (t1, ξ1)∗(t2, ξ2) = (τ, ξ1+ξ2) where τ is given
by τ = t1 + t2 + i(ξ1 ξ2 − ξ1ξ2).
Let (u1, u2) = (IoΨt,ξoI)(z1, z2). Then

(u1, u2) = (
z1
Q
,
iξz1 + z2

Q
) with Q = Q(t, ξ) = 1− 2ξz2− (t+ iξξ)z1 (1.5)

and u1 − u1 − 2iu2u2 = 1
|Q|2 (z1 − z1 − 2 i z2z2). The Jacobian J of the map

IoΨt,ξ oI and its determinant are

J =
1

Q2
×
(

1− 2ξz2 2ξ z1
i ξ + z2(t− iξξ) 1 − z1(t− iξξ)

)
and det J =

1

Q3
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Let Q(t, ξ) as in (1.5). For a holomorphic function f(z1, z2) and g = (t, ξ, ),
we define

T pg f(z1, z2) = Q(t, ξ)p f(
z1
Q

,
z2 + iξ z1

Q
) (1.6)

then ∫
|T pg f(z1, z2)|2 u− p dv =

∫
|f(z1, z2)|2 u− p dv (1.7)

(T pg , u
− p dv) is a holomorphic unitary representation for the subgroup of trans-

formations (1.5).
Proof of (1.7). Denote T pg f(z1, z2) = Q(t, ξ)p f( kg(Z) ) with Z = (z1, z2).

The Jacobien determinant of kg(Z) is equal to J . Let R(Z,Z) such that∫
|Q(Z)|2p|f(kg(Z) )|2R(Z,Z)dx1dy1dx2dy2 =

∫
|f(Z)|2R(Z,Z)dx1dy1dx2dy2

We have
∫
|Q(Z)|2p|f(kg(Z) )|2R(Z,Z)dx1dy1dx2dy2

=
∫
|Q(Z)|2p+6|f(kg(Z)) |2R(Z,Z)|J |2dx1dy1dx2dy2

=
∫
|Q(k−1g (Z))|2p+6|f(Z)|2R(k−1g (Z), k−1g (Z))dx1dy1dx2dy2

Then (1.7) is a consequence of |Q(Z)|2p+6R(Z,Z) = R(kg(Z), kg(Z)). •

1.1.1 Some interesting holomorphic transformations of D.

Holomorphic involutions of D are (z1, z2)→ (z1,−z2) and

Iβ(z1, z2) = (− β
2

z1
, i β

z2
z1

) = H−β ◦ I for β ∈ R (1.8)

More generally, for β ∈ R, θ ∈ R, let

Iθ,β(z1, z2) = (− β
2

z1
, i eiθβ

z2
z1

) then Iθ1,β1 ◦ Iθ2,β2 = Hei(θ1+θ2) (β1/β2)

Consider (1.2), T (z1, z2) = (z1 − 1
z1 + 1 ,

√
2 z2

z1 + 1)

= [Hi
√
2 ◦Ψ1/2 , 0 ◦ I ◦Ψ1, 0](z1, z2) = [Ψ1,0 ◦ I ◦Ψ(1/2),0 ◦H(i/

√
2)](z1, z2) (1.9)

We have T ◦ T = Hi ◦ I and T 4(z1, z2) = (z1, − z2) with T 4 = T ◦ T ◦ T ◦ T .

Let Tθ(z1, z2) = ( cos θ z1 − sin θ
sin θ z1 + cos θ ,

z2
sin θ z1 + cos θ )

= [ Ψ− tan θ,0 ◦ H1/ cos θ ◦ I ◦Ψ− tan θ,0 ◦ I](z1, z2) (1.10)

If θ = π/4, (1.10) gives (1.9). We have Tθ1+θ2 = Tθ1 ◦ Tθ2 .
Let S(z1, z2) = (z1 − 1

z1 + 1 ,

√
2 e− i(π/4)z2
z1 + 1 ), then S ◦ S = I and

S−1(u1, u2) = (
1 + u1
1− u1

,

√
2 ei(π/4)u2
1− u1

) (1.11)
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1.1.2 The non holomorphic vector fields (0.10)

Let X1 and X2 as in (0.10).

X1X1 = u2∆K
1 +

u

2 i

∂

∂z1
(1.12)

X2X2 = u ( 2iε z2
∂

∂z1
+

∂

∂z2
) (− 2iz2

∂

∂z1
+

∂

∂z2
)

= −u∆K
2 − 2i u

∂

∂z1
(1.13)

Adding (1.12) and (1.13) and comparing with (0.8), we obtain (0.11).
Let F be a holomorphic function on D. We have

(XkF )(z1, z2) =
d

dz′k |z′1=i, z′2=0

F ([Ψ<z1,z2 ◦ H√u](z′1, z′2)) , k = 1, 2 (1.14)

We denote u = =z1 − z2z2 and <z1 = (1/2)(z1 + z1). On D × S1, we define
the group law

(Z1, Z2,Θ) = (z1, z2, θ) ∗ (z′1, z
′
2, θ
′) (1.15)

where Θ = θ+θ′ and (Z1,Z2) = (Ψ<z1, z2 ◦Heiθ
√
u)(z

′
1, z
′
2). The neutral element

is (i, 0, 0). In (1.15), we have

Z1 = z1 + uz′1 + 2i eiθ
√
u z2 z

′
2 − i u

Z2 = z2 + eiθ
√
uz′2 (1.16)

With (0.11), we verify that the Laplacian ∆K is left invariant with respect to
this group operation. Moreover in (1.16), we have

=Z1 − Z2Z2 = uu′ = U where u′ = =z′1 − z′2z′2

<Z1 = <z1 + u<z′1 + i
√
u(eiθz2z

′
2 − e−iθz2z′2) (1.17)

1.2 The Lie algebra G of AutHol(D)

Let φε be a parametrized curve in AutHol(D) such that φ0 = Identity and

let F be a holomorphic function. We consider V F = d
dε ε=0

(F ◦ φε). In the

following, t ∈ R and ξ = α + iβ ∈ C. The real vector space G−1 is generated
by

L−1 =
∂

∂z1
(1.18)
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where (L−1F )(z1, z2) = ∂
∂t |t=0,ξ=0

F (Ψt,ξ(z1, z2)) = ∂
∂z1

F . On the other hand,

V1F =
∂

∂α |t=0,ξ=0
F (Ψt,ξ(z1, z2)) = (2 i z2

∂

∂z1
+

∂

∂z2
)F

ViF =
∂

∂β |t=0,ξ=0

F (Ψt,ξ(z1, z2)) = (2 z2
∂

∂z1
+ i

∂

∂z2
)F

If γ = a + ib, we denote Vγ = a ∂
∂α

+ b ∂
∂β

. The two dimensional real vector
space G−1/2 is the set of vectors

Vγ = 2i z2 γ
∂

∂z1
+ γ

∂

∂z2
= L−(1/2) (1.19)

It holds

WiF =
∂

∂α |t=0,ξ=0
F (I ◦Ψt,ξ ◦ I(z1, z2)) = (2 z1z2

∂

∂z1
+ i z1

∂

∂z2
+ 2 z22

∂

∂z2
)F

W−1F =
∂

∂β |t=0,ξ=0

F (I◦Ψt,ξ◦I(z1, z2)) = (− 2 i z1z2
∂

∂z1
− z1

∂

∂z2
− 2 i z22

∂

∂z2
)F

We denote G1/2, the 2-dimensional real vector space constituted of vectors

Wδ = 2i δ z22
∂

∂z2
+ 2i δ z1z2

∂

∂z1
+ δ z1

∂

∂z2
= L1/2 (1.20)

where δ ∈ C is a constant. The real vector space G1 is generated by

L1 = z1z2
∂

∂z2
+ z21

∂

∂z1
(1.21)

where L1F = ∂
∂t |t=0,ξ=0

F (I ◦Ψt,ξ ◦I(z1, z2)). Let Hα F = ∂
∂α |λ=1

F (Hλ(z1, z2))

and HβF = ∂
∂β |β=0

F ((z1, e
iβz2)) We denote G0, the real vector space generated

by the two vector fields

Hα = 2z1
∂

∂z1
+ z2

∂

∂z2
and Hβ = iz2

∂

∂z2
(1.22)

Equivalently G0 is the set of vectors L0(γ) = (γ + γ)z1
∂
∂z1

+ γ z2
∂
∂z2

with

γ ∈ C. The Lie algebra G of the group G is the direct sum of real vector
spaces

G = G−1 ⊕ G−1/2 ⊕ G0 ⊕ G1/2 ⊕ G1 (1.23)

We denote Gaff = G−1⊕G−1/2⊕G0, the Lie algebra of AffineHol(D). The Lie
algebra structure on the real vector space G is given by the Lie brackets

[Vδ, Vγ] = 2i(δγ − γδ)L−1, [Vδ, L−1] = 0, [L−1, L1] = Hα
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[Vγ, Hβ] = Viγ, [L−1, Hβ] = 0

[L−1, Hα] = 2L−1, [Wδ, Hα] = −Wδ, [L−1,Wδ] = Vδ

[L1, Hα] = − 2L1, [L1, Hβ] = 0 , [Hα, Hβ] = 0 [Wδ, L1] = 0

[Wδ,Wγ] = 2i(δγ−γδ)L1, [Wδ, Vγ] = i(δγ−γδ)Hα − 3 (δγ+γδ)Hβ (1.24)

We have [G−(1/2),G−(1/2)] ⊂ G−1, [G−(1/2),G−1] = 0, [G−(1/2),G0] = G−(1/2) and
[Gj , Gk] ⊂ Gj+k. We assign weights to the variables z1 and z2 by saying that
the constants have weight zero, z1 has weight 1 and z2 has weight 1/2. With
this convention, ∂

∂z1
has weight −1 and ∂

∂z2
has weight − (1/2). The subspace

Gk is constituted of vector fields of weight k. The brachets in (1.24) show that

G−1 ⊕ G−1/2 and A0 = G−1 ⊕ G−1/2 ⊕ R.Hβ (1.25)

are subalgebras of G. The direct sum A0 is the Lie algebra of the group A0 of
holomorphic affine automorphisms with Jacobian determinant equal to one.

1.2.1 The involution I∗ on the Lie algebra G.

The involution I induces an involution I∗ on G, see for example [5],

I∗(Gk) = G−k for k ∈ {−1,−1

2
, 0,

1

2
, 1} (1.26)

Let X be a vector field on D, we define the vector field X∗ as

(X∗F )(z1, z2) = X(F ◦ I)(I−1(z1, z2)) (1.27)

where F : D → C is differentiable and I = I−1 is the involution. It holds
X(F ◦I) = (X∗(F ))◦I. The map I∗ defined by I∗(X) = X∗, is an involution
on G. We have I∗(L−1) = L1, I∗(L1) = L−1, I∗(Vγ) = Wiγ, I∗(Wδ) = V−iδ
and I∗(Hα) = −Hα, I∗(Hβ) = Hβ, I∗(L0(γ)) = −L0(γ).

1.2.2 The map S such that S ◦ S = I.

Let S(z1, z2) = (z1 − 1
z1 + 1 ,

√
2 e− i(π/4)z2
z1 + 1 ) as in (1.11). The inverse map S−1 is

given by S−1 = S ◦ I = I ◦ S. For a vector field X in G and a differentiable
function F , we put

S∗(X)F = [X(F ◦ S)](S−1)
We have S∗(G) ⊂ G and S∗ ◦ S∗ = I∗, S∗(Hα) = L−1 − L1, S∗(Hβ) = Hβ

S∗(L−1) =
1

2
(L1 + L−1 −Hα), S∗(L1) =

1

2
(L1 + L−1 +Hα)

S∗(Vγ) =
1

2
(Vδ − Wδ) and S∗(Wγ) =

1

2
(Vδ + Wδ) , δ =

√
2e−i(π/4)γ
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1.3 Identities between holomorphic vector fields

By direct calculation, we verify the holomorphic identities where the right
hand side is a first order holomorphic operator,

(i) 4L−1 L1 − H2
α − H2

β = 4(z1
∂

∂z1
+ z2

∂

∂z2
)

(ii) 4L1 L−1 − H2
α − H2

β = − 4 z1
∂

∂z1
(1.28)

Let γ ∈ R, δ ∈ R and ε ∈ R, then

(i)
1

γδ
[VγW−ε i δ + Vε i γWδ ] − 4εH2

β = − 4 ε z1
∂

∂z1

(ii)
1

γδ
[W−εiδVγ + Wδ Vε iγ] − 4 εH2

β = 4 ε (z1
∂

∂z1
+ z2

∂

∂z2
) (1.29)

For γ, δ ∈ C,

(i) Vδ Vγ + Vi δ Vi γ − 4(γδ + δγ)L−1Hβ = 4 i δγL−1

(ii) WδWγ +WiδWiγ − 4(γδ + δγ)L1Hβ = 4iδγL1

(iii) Wδ Vγ +WiγViδ = 2(δγ + γδ)[HαHβ + z1
∂

∂z1
+ z2

∂

∂z2
]

(iv) WδVγ − WγVδ = 2i(δγ − γδ) z22
∂2

∂z22
+ 2i(δγ − γδ) z1

∂

∂z1
(1.30)

In (1.29)-(1.30), we pass from (i) to (ii) with the involution I∗, see (1.26). If
δγ − γδ = 0, then WδVγ − WγVδ = 0. Moreover,

4[L1, L−1] + [V1,Wi] + [V−i,W1] = 0 (1.31)

since 4[L1, L−1] = −4Hα, [V1, Wi] = 2Hα, [V−i, W1] = 2Hα.

2 The Kähler Laplacian ∆K on D

2.1 ∆K calculated with the Bergman metric.

Let H(z1, z2) = log u(z1, z2). We have

∂2

∂z1∂z1
H = (z1 − z1 − 2iz2z2)

−2,
∂2

∂z1∂z2
H = 2iz2 × (z1 − z1 − 2iz2z2)

−2

∂2

∂z2∂z2
H = − 2i(z1 − z1) × (z1 − z1 − 2iz2z2)

−2
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We find for the Bergman metric (0.3),

ds2 =
1

4u2
[dz1dz1 + 2iz2dz1dz2 − 2iz2dz2dz1 + 4(

z1 − z1
2i

)dz2dz2]

=
1

4u2
[dz1dz1 + 2idz2(z1dz2 − z2dz1) + (z1dz2 − z2dz1)(2i dz2) ]

The inverse of P = (2iu)−2 ×
(

1 2iz2
−2iz2 −2i (z1 − z1)

)
is

P−1 = (2iu)×
(
z1 − z1 z2
− z2 − 1

2i

)
= (2iu)3 ×

(
i
2
∂
∂y1

1
u
− 1

4
∂
∂z2

1
u

1
4
∂
∂z2

1
u

− i
8u2

)

The determinant of the matrix P−1 is (1/4)(u(z1, z2))
−3. We find (0.7) since

the Kähler Laplacian is ∆K =
∑
jkmjk

∂2

∂zj∂zk
where the matrix (mjk) = P−1.

Lemma 2.1 We have
∫

∆K Fdv = 0. The volume measure is invariant for
∆K as well as for ∆K

1 and ∆K
2 .

Proof. We integrate by parts or we verify that
∑
j
∂
∂zj

mjk(=(z1)−z2z2)−3 = 0

for k = 1, 2, as in [3], Theor. 10.2. •
In (2.14)-(2.16) of [3], the vector field

VK =
∑
jk

mjk[
∂

∂zj
log u ]

∂

∂zk
(2.1)

is associated to ∆K =
∑
jkmjk

∂2

∂zj∂zk
. The operator ∆K−cVK has the measure

exp(−c log u)dv as invariant measure. When mjk is given by (0.7), this gives

VK = u[ 2i(z1 − z1)(
∂

∂z1
log u)

∂

∂z1
− 2iz2(

∂

∂z1
log u)

∂

∂z2
+

2iz2(
∂

∂z2
log u)

∂

∂z1
− (

∂

∂z2
log u)

∂

∂z2
]

We find

VK = 2i u
∂

∂z1
and VK + VK = −2u

∂

∂y1
(2.2)

2.2 ∆K in terms of the holomorphic vector fields in G.

Theorem 2.2

4∆K = B +B with B = B1 +B2

B1 = 4L1 L−1 − HαHα − HβHβ
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B2 =
1

γδ
WiδVγ +

1

γ′δ′
Wδ′ V−iγ′ + 4HβHβ (2.3)

where γ, γ′, δ, δ′ are real, non zero constants. We have

2∆K = <(B1 +B2)

= <(B1 +B2) (2.4)

Proof. We have

B1 = 4(z1z2
∂

∂z2
+z21

∂

∂z1
)
∂

∂z1
−(2z1

∂

∂z1
+z2

∂

∂z2
)(2z1

∂

∂z1
+z2

∂

∂z2
)−z2z2

∂2

∂z2∂z2

and B2 = V1Wi + V−iW1 + 4HβHβ =

8iz2z2
2 ∂2

∂z1∂z2
+ 8iz2z2z1

∂2

∂z1∂z1
+ 4(

z1
2i

+ z2z2)
∂2

∂z2∂z2

Then B = B1 +B2

= 4u(z1, z2) × (2i) z1
∂2

∂z1∂z1
+ 8iz2z2(z1 + z1)

∂2

∂z1∂z1
+ (4z1z2 − 2z1z2)

∂2

∂z2∂z1

+ (8iz2z2
2 − 2z1z2)

∂2

∂z1∂z2
+ 4(

z1
2i

+
1

2
z2z2)

∂2

∂z2∂z2

By identification with (0.7), we find B +B = 4∆K •

Theorem 2.3

2i=B = 4(L1 L−1 − L−1L1) + (V1Wi −WiV1) + (V−iW1 −W1V−i) (2.5)

∆K
2 in (0.9) satisfies

∆K
2 =

1

2
[−V1V1 − ViVi + 4L−1Hβ + 4HβL−1] (2.6)

Proof.

1

2i
(B −B) = 4(=z1 + z2z2)(z1 + z1)

∂2

∂z1∂z1
+ 4 z2 (

z1
2i

+ z2z2)
∂2

∂z2∂z1

+ 4 z2 (− z1
2i

+ z2z2)
∂2

∂z1∂z2
− (z1 + z1)

∂2

∂z2∂z2

We verify (2.5) since =B = C1 + C2 with

C1 = 4 (= z1)(z1 + z1)
∂2

∂z1∂z1
+

4z1z2
2i

∂2

∂z2∂z1
− 4z1z2

2i

∂2

∂z1∂z2

= − 2i(L1L−1 − L1L−1 )
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2.3 It results from (1.28)-(1.29), that the volume dv is
invariant for the complex operator B1 +B2

It is well known that the volume measure (0.4) is invariant with respect to
∆K , see for example [7]. In this subsection, we prove this fact by using
the identities (1.28)-(1.29). For z = (z1, z2) ∈ D, we consider the measure
dµ = k(z)dz1dz1dz2dz2 where k is a differentiable real-valued function. Let
V = a1(z) ∂

∂z1
+ a2(z) ∂

∂z2
be a holomorphic vector field, (aj(z), j = 1, 2 are

holomorpic functions). We define

ι(V )(z) =
∂

∂z1
[a1(z)] +

∂

∂z2
[a2(z)] (2.7)

By integration by parts, if F is a differentiable function∫
V F dµ = −

∫
F (z)× [ι(V )(z) + V (log k)(z)] dµ (2.8)

For the vector fields (1.18)-(1.19)-(1.20)-(1.21)-(1.22), we have

ι(L−1)(z) = ι(Vγ)(z) = 0 , ι(Hα)(z) = 3 , ι(Hβ)(z) = i

ι(Wδ)(z) = 6 i δ z2 , ι(L1)(z) = 3z1 (2.9)

It is not difficult to verify the two following lemmas.

Lemma 2.4 We have

<[V (k)] = 0 for V = L−1, V = Vγ, V = Hβ (2.10)

if and only if

k(z) = φ(
z1 − z1

2i
− z2z2) (2.11)

where φ : R → R+ is a differentiable function. If (2.11) is verified and V is
one of the vector fields in (2.10), then∫

(V + V )F dµ = 0 for dµ = k(z)dz1dz1dz2dz2 (2.12)

Lemma 2.5 Assume that dµ = φ( z1−z1
2i
− z2z2)dz1dz1dz2dz2. Then∫

(V + V )F dµ = 0 for V = Hα (2.13)

if and only if φ(u) = u−3. Moreover, in that case, we have∫
(V + V )F dµ = 0 for any V ∈ G (2.14)
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Theorem 2.6 Let B = B1 + B2 as in (2.3), then B has dv for invariant
measure. In particular ∆K and =B have dv as invariant measure.

Proof. Let
B1 = 4L1L−1 −HαHα −HβHβ

B2 = V1Wi + V−iW1 + 4HβHβ

then with (1.28)-(ii),

4(L1 + L1)L−1 − (Hα +Hα)Hα − (Hβ +Hβ)Hβ = B1 − 4z1
∂

∂z1
(2.15)

and with (1.29)-(i),

(V1 + V1)Wi + (V−i + V−i)W1 + 4(Hβ +Hβ)Hβ = B2 + 4z1
∂

∂z1
(2.16)

Adding and using (2.14), we obtain
∫

(BF ) dv = 0. •

Remark 2.7 By changing variables, on the boundary D0, the operator ∆K
2

in (0.9) is identical to the Kohn Laplacian, see [12]. We have proved that ∆K
2

satisfies (2.6).

3 Divergence of vector fields in finite dimen-

sion. Invariant measures for OU-operators

The first two subsections 3.1-3.2 are valid for a domain D in Cn. Of course,
they do not extend to infinite dimensional domains. In subsection 3.3, with
3.1-3.2, we obtain OU-operators on (0.2).

3.1 Extension of the Lie algebra G
Let D ⊂ Cn. For a holomorphic vector field V =

∑
j aj(z) ∂

∂zj
, we define the

inner contraction, see [2]

ι(V )(z) =
∑
j

∂

∂zj
aj(z) (3.1)

For constants c1, c2, we have ι(c1V1 + c2V2) = c1ι(V1) + c2ι(V2).

Lemma 3.1 For (3.1), it holds

V (ι(W )) − W (ι(V )) = ι([V,W ]) (3.2)
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Proof. To prove (3.2), let V =
∑
j a

V
j (z) ∂

∂zj
and W =

∑
k a

W
k (z) ∂

∂zk
. We find

V (ι(W ))−W (ι(V )) =
∑
j,k

aVj (z)
∂2

∂zj∂zk
aWk (z) −

∑
j,k

aWj (z)
∂2

∂zj∂zk
aVk (z) (3.3)

On the other hand

[V,W ] =
∑
j,k

aVj (z)
∂

∂zj
(aWk (z))

∂

∂zk
−
∑
j,k

aWj (z)
∂

∂zj
(aVk (z))

∂

∂zk

This permits to identify the two sides of (3.2). •

Definition 3.2 Consider the operator

ρ(V ) = V + c ι(V ) where c is a real constant (3.4)

For a function F differentiable on D, ρ(V )F = V F + c ι(V )× F .

Theorem 3.3 The identity (3.2) with (3.4) imply

[ρ(V ), ρ(W )] = ρ([V,W ]) (3.5)

Let V =
∑
p bp(z)Vp, then

ι(V ) =
∑
p

Vp(bp) + bp ι(Vp) (3.6)

In particular, if ι(Vp) = 0, ∀p, we have ρ(V ) = V + c
∑
p Vp(bp).

Proof. Let Vp =
∑
k ckp(z) ∂

∂zk
, then ι(V ) =

∑
p,k

∂
∂zk

(bp ckp). This proves

(3.6) •

Remark 3.4 Let ι(V ) be a function defined on D and depending on the
vector field V . We define the operator ρ(V ) = V + c ι(V ) as in (3.4). Then
for two vevtor fields V and W , the condition [ρ(V ), ρ(W )] = ρ([V,W ]) is valid
if and only if V (ι(W ))−W (ι(V )) = ι([V,W ]).

Remark 3.5 Let φ be a holomorphic function on D. For holomorphic V =∑
j aj(z) ∂

∂zj
, we define

ιφ(V )(z) = V (φ)(z) +
∑
j

∂

∂zj
aj(z) (3.7)

We have V (ιφ(W )) −W (ιφ(V )) = ιφ([V,W ]). Assume that V =
∑
p bp(z)Vp,

then
ιφ(V ) =

∑
p

Vp(bp) + bp ιφ(Vp) (3.8)

Compare (3.8) with (3.6).
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3.2 Unitarity condition and invariant measures

We proceed as in [3]. Consider a second order differential operator

∆ =
∑

j1∈J1, j2∈J2
Vj1Vj2 such that

∑
j1∈J1, j2∈J2

Vj1Vj2 = V (3.9)

where Vj1 , Vj2 , V are holomorphic vector fields. Then∫
[(Vj1 + Vj1)F ]dµ = 0 ∀ j1 ∈ J1 implies

∫
(∆ + V)Fdµ = 0 (3.10)

On the other hand, from (3.9),

∆ =
∑

j1∈J1, j2∈J2
Vj2Vj1 with W =

∑
j1∈J1, j2∈J2

Vj2Vj1 (3.11)

where W = V +
∑
j1∈J1, j2∈J2 [Vj2 , Vj1 ] is also holomorphic. We have∫

[(Vj2 + Vj2)F ]dµ = 0 ∀ j2 ∈ J2 implies
∫

(∆ +W)Fdµ = 0 (3.12)

If (3.10)-(3.11)-(3.12) are satisfied, the vector field W − V is divergence free
for dµ, ∫

(W −V) dµ = 0 (3.13)

Theorem 3.6 We assume (3.4)-(3.9). Let µ be a measure such that∫
[(ρ(Vj1) + ρ(Vj1)F ]dµ = 0 ∀ j1 ∈ J1 (3.14)

then ∫
(∆ + V + c LJ1,J2)Fdµ = 0

with LJ1,J2 =
∑

j1∈J1,j2∈J2
(ι(Vj1) + ι(Vj1) ) Vj2 (3.15)

On the other hand, let ∆ and W as in (3.11) and let µ be a measure such that∫
[(ρ(Vj2) + ρ(Vj2)F ]dµ = 0 ∀ j2 ∈ J2 (3.16)

then ∫
(∆ +W + cMJ1,J2)Fdµ = 0

with MJ1,J2 =
∑

j1∈J1,j2∈J2
(ι(Vj2) + ι(Vj2) ) Vj1 (3.17)

Proof. ∑
j1∈J1,j2∈J2

∫
[(ρ(Vj2) + ρ(Vj2))Vj1F ]dµ = 0

implies (3.17). We prove (3.15) in a similar way. •

Definition 3.7 We call the operators (3.15)-(3.17) OU-operators.
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3.3 OU-operators on D and their invariant measures

Let µ be a real measure on D and F be a differentiable function with compact
support in D. We consider B1, B2 and ∆K as in (2.3). We have (1.28)-(1.29).
We shall apply subsection 3.2 to this particular case.

The relation (2.8) extends as∫
ρ(V )F dµ = −

∫
F (z)× [(1− c)ι(V )(z) + V (log k)(z)] dµ (3.18)

where ι(V ) are given by (2.9) and c is a constant. In the following, we assume
that

dµ = φ(
z1 − z1

2i
− z2z2)dz1dz1dz2dz2 (3.19)

Since ι(V ) = 0 for V = L−1, V = Vγ, V = Hβ, Lemma 2.4 stays true with∫
(ρ(V ) + ρ(V ))F dµ = 0 for V = L−1, V = Vγ, V = Hβ (3.20)

Corollary 3.8 Let dµ be given by (3.19), then∫
(B2 + 4z1

∂

∂z1
)F dµ = 0 (3.21)

Proof. We deduce (3.21) from (2.16) and (2.12-(3.20). •

From (3.18), Lemma 2.5 becomes

Lemma 3.9 Assume that V0 is one of the vector fields L1, Wδ, Hα, then∫
(ρ(V0) + ρ(V0))F dµ = 0 ∀F if and only if φ(u) = u3(c−1) (3.22)

Moreover, in that case, we have
∫

(ρ(V ) + ρ(V ))F dµ = 0 for any V ∈ G.

Proof. To calculate (3.22) when V0 = Wγ and u is given by (0.1), we use

Vγ(u) = z2γ − z2γ and (Wγ +Wγ)(u) = 2 i u Vγ(u) (3.23)

Corollary 3.10 Assume that dµ = u3(c−1)dz1dz1dz2dz2, then∫
(B2 + V)Fdµ = 0

where V = 12c(2iz2z2
∂

∂z1
+ z2

∂

∂z2
) − 4(z1

∂

∂z1
+ z2

∂

∂z2
) (3.24)

and ∫
[B1 − 4z1

∂

∂z1
+ 6c(2z1

∂

∂z1
− z2

∂

∂z2
)]F dµ = 0 (3.25)
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Proof. (1.29)-(ii) implies WiV1 + W1V−i + 4H2
β = − 4(z1

∂
∂z1

+ z2
∂
∂z2

).

Then we use (3.22). This gives (3.24). Since

C = 4[ρ(L1) + ρ(L1)]L−1 − [ρ(Hα) + ρ(Hα)]Hα − [ρ(Hβ) + ρ(Hβ)]Hβ

satisfies
∫
CFdµ = 0, we obtain (3.25). •

From (2.3), 4∆K = B +B where B = B1 +B2 is in Theorem 2.6.

Theorem 3.11 Let c be a real constant. Let dµ = u3(c−1)dz1dz1dz2dz2, then
for a differentiable function F with compact support in D,∫

∆KF + 3cVF dµ = 0 with V = (x1
∂

∂x1
− y1

∂

∂y1
)− 1

2
(x2

∂

∂x2
+ y2

∂

∂y2
)

(3.26)
This differs from (2.2).

Proof. By adding (3.25) to the conjugate of (3.21), we find that dµ is an
invariant measure for the operator

B + c × (12z1
∂

∂z1
− 6z2

∂

∂z2
) (3.27)

Remark 3.12 Integrating by parts, we find with (0.8)∫
(∆K + 6ic u

∂

∂z1
)F u3c dv = 0 (3.28)

This is equivalent to (2.2).
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