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Abstract

In this study, we introduce the notion of ∗ and +-symmetric bi-multipliers in in-

cline algebras and research some related properties. Also, we define kernel of ∗ and

+-symmetric bi-multipliers in incline algebras. Additionally, we state some proper-

ties of these ∗ and +-symmetric bi-multipliers in integral incline algebras.
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1. Introduction

Inclines are a generalization of both Boolean and fuzzy algebras, and a
special type of a semiring. The notion of inclines is introduced and their ap-
plications are studied in [1]. Incline algebra and applications were studied by
some authors in [2, 9]. It has both a semiring structure and a poset struc-
ture. Inclines can also be used to represent automa and other mathematical
systems, in optimization theory, to study inequalities for nonnegative matrices
of polynomials.
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A partial multiplier on a commutative semigroup (A, ·) has been introduced
in [5] as a function F from a nonvoid subset DF of A into A such that F (x)·y =
x ·F (y) for all x, y ∈ DF . It has been generalized to the partial multipliers on
partially ordered sets in [7], [8]. The concept of multiplier of BE-algebras is
given in [3] and obtained some properties of BE-algebras. They also introduced
the simple multiplier and characterized the kernel of multipliers of BE-algebras.
Later, the notion of multipliers is introduced in a hypersemilattice and some
properties of multipliers are studied in [6].

In this paper the notion of ∗ and +-symmetric bi-multipliers in an incline
algebra are given and properties of these multipliers are researched. Addi-
tionally, these definitions in an integral incline algebra are studied and related
properties are given. Also, kernels and Fixf (R) of an incline algebra are char-
acterized by ∗ and + symmetric bi-multipliers.

2. Preliminaries

Definition 2.1. [1] An incline algebra is a non-empty set R with binary op-
erations denoted by + and ∗ satisfying the following axioms for all x, y, z ∈ R:

(RI) x + y = y + x,

(RII) x + (y + z) = (x + y) + z,

(RIII) x ∗ (y ∗ z) = (x ∗ y) ∗ z,

(RIV) x ∗ (y + z) = (x ∗ y) + (x ∗ z),

(RV) (y + z) ∗ x = (y ∗ x) + (z ∗ x),

(RVI) x + x = x,

(RVII) x + (x ∗ y) = x,

(RVIII) y + (x ∗ y) = y.

For convenience, we pronounce ” + ” (resp.” ∗ ”) as addition (resp. multi-
plication). Moreover, Incline theory is based on semiring theory and lattice
theory. Every distributive lattice is an incline. An incline is a distributive
lattice (as a semiring) if and only if x ∗ x = x for all x ∈ R ([3, Proposition
(1.1.1)]).

Note that x ≤ y if and only if x + y = y for all x, y ∈ R. It is easy to see
that ≤ is a partial order on R and that for any x, y ∈ R, the element x + y is
the least upper bound of x, y. We say that ≤ is induced by operation +. In
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an incline algebra R, the following properties hold.

(1) x ∗ y ≤ x and x ∗ y ≤ y for all x, y ∈ R.

(2) y ≤ z implies x ∗ y ≤ x and y ∗ x ≤ z ∗ x for any x, y, z ∈ R.

(3) If x ≤ y, a ≤ b, then x + a ≤ y + b, x ∗ a ≤ y ∗ b.

Furthermore, an incline algebra R is said to be commutative if x ∗ y = y ∗ x
for all x, y ∈ R.

A subincline of an incline R is a nonempty subset M of R which is closed
under addition and multiplication.

An ideal in an incline R is a subincline M ⊆ R such that if x ∈ M and
y ≤ x then y ∈ M . An element 0 in an incline algebra R is a zero element if
x + 0 = x = 0 + x and x ∗ 0 = 0 ∗ x = 0 for any x ∈ R. An element 1 (6=
zero element) in an incline algebra R is called multiplicative identity if for any
x ∈ R, x ∗ 1 = 1 ∗ x = x. A non-zero element a in an incline algebra R with
a zero element is said to be a left (resp. right) zero divisor if there exists a
non-zero element b ∈ R such that a ∗ b = 0(resp. b ∗ a = 0). A zero divisor
is an element of R which is both a left zero divisor and a right zero divisor.
An incline algebra R with a multiplicative identity 1 and a zero element 0 is
called an integral incline if it has no zero divisors.

3. ∗-Symmetric Bi-Multiplier Of An Incline Algebra

The following definition introduces the notion of ∗-symmetric bi-multiplier
for an incline algebra. In what follows, let R denote an incline algebra unless
otherwise specified.

Definition 3.1. Let R be an incline algebra. A mapping f(., .) : R× R→ R
is called symmetric if f(x, y) = f(y, x) for all x, y ∈ R.

Definition 3.2. Let R be an incline algebra and let f(., .) : R× R→ R be a
symmetric mapping. We call f a ∗-symmetric bi-multiplier on R if it satisfies;

f(x, y ∗ z) = f(x, y) ∗ z for all x, y, z ∈ R.

Example 3.1. Let R = {a, b, c, d, f}, and we define the sum ”+” and product
” ∗ ” on R as follows:

Then (R,+, ∗) is an incline but not a distributive lattice.
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+ a b c d f

a a a a a a
b a b a b b
c a a c c c
d a b c d d
f a b c d f

* a b c d f

a a b c d f
b b b d d f
c c f c f f
d d f d f f
f f f f f f

The mapping f(., .) : R×R→ R will be defined by

f(x, y) =



f, if x 6= y,

a, if x = y = a,

b, if x = y = b,

c, if x = y = c,

d, if x = y = d,

f, if x = y = f,

Then we can see that f is a ∗-symmetric bi-multiplier on R.

Example 3.2. Let R be the same incline algebra defined in Example 3.1. The
mapping f(., .) : R×R→ R will be defined by

f(x, y) = f

for all x, y ∈ R is a ∗-symmetric bi-multiplier.

Example 3.3. Let R be an incline algebra. The mapping f(., .) : R×R→ R
will be defined by

f(x, y) = x ∗ y
for all x, y ∈ R is a ∗-symmetric bi-multiplier.

Proposition 3.3. Let R be an incline algebra with a multiplicative identity
and f be the ∗-symmetric bi-multiplier on R. Then the followings hold for all
x, y, z ∈ R:

i) f(x, y) = f(x, 1) ∗ y,
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ii) If f(x, 1) = 1 then f(x, y) = y,

iii) f(x, y ∗ z) ≤ f(x, y) + z.

Proof : Let R be an incline algebra with a multiplicative identity and f be
the ∗-symmetric bi-multiplier on R.
i) Let x, y be elements in R. Then we have

f(x, y) = f(x, 1 ∗ y)

= f(x, 1) ∗ y
Therefore, f(x, y) = f(x, 1) ∗ y.

ii) It is clear from i).
iii) Let x, y, z be elements in R. Then we have

f(x, y ∗ z) = f(x, y) ∗ z ≤ f(x, y)

And also we have f(x, y) ∗ z ≤ z. Therefore, we have f(x, y) ≤ f(x, y) + z.

Proposition 3.4. Every ∗-symmetric bi-multiplier is regular.

Proof : Let f be a ∗-symmetric bi-multiplier on an incline algebra with a
zero element. Then we have

f(0, 0) = f(0, x ∗ 0)

= f(0, x) ∗ 0

= 0

Let f be a ∗-symmetric bi-multiplier of an incline algebra R and a be fixed
element in R. Define a set Fixf (R) = {x ∈ R|f(a, x) = x} for all x ∈ R.

Proposition 3.5. Let f be a ∗-symmetric bi-multiplier on an incline algebra.
If x ∈ Fixf (R) then x ∗ y ∈ Fixf (R) for all x, y ∈ R.

Proof : Let f be a ∗-symmetric bi-multiplier on an incline algebra and
x ∈ Fixf (R). Then we have f(a, x) = x.

f(a, x ∗ y) = f(a, x) ∗ y
= x ∗ y

Therefore, we have x ∗ y ∈ Fixf (R).
Let f be a ∗-symmetric bi-multiplier of an incline algebra R with a zero

element. Define a set Kerf = {x ∈ R|f(0, x) = 0} for all x ∈ R.

Proposition 3.6. Let f be a ∗-symmetric bi-multiplier of R with a zero ele-
ment. If x ∈ Kerf then x ∗ y ∈ Kerf for all y ∈ R.

Proof : Let f be a ∗-symmetric bi-multiplier of R with a zero element and
x ∈ Kerf . Then we have f(0, x) = 0. Let y ∈ R then

f(0, x ∗ y) = f(0, x) ∗ y
= 0 ∗ y = 0

So, we get x ∗ y ∈ Kerf .
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Theorem 3.7. Let f be a ∗-symmetric bi-multiplier of an integral incline R
with a zero element. If f(0, x + y) = f(0, x) + f(0, y) for all x, y ∈ R then
Kerf is an ideal.

Proof : Let f be a ∗-symmetric bi-multiplier of an integral incline R with a
zero element. And assume that f(0, x + y) = f(0, x) + f(0, y) for all x, y ∈ R
. Let x ∈ R and y 6= 0 ∈ Kerf such that x ≤ y. Then we have

0 = f(0, y) = f(0, y + (x ∗ y))

= f(0, y) + f(0, x ∗ y)

= 0 + f(0, x) ∗ y
= f(0, x) ∗ y

Since R is an integral incline algebra we have f(0, x) = 0 or y = 0. But
y 6= 0 ∈ Kerf so f(0, x) = 0. Therefore, we have Kerf is an ideal.

4. +-Symmetric Bi-Multiplier of An Incline Algebra

The following definition introduces the notion of +-symmetric bi-multiplier
for an incline algebra. In what follows, let R denote an incline algebra unless
otherwise specified.

Definition 4.1. Let R be an incline algebra. A mapping f(., .) : R× R→ R
is called symmetric if f(x, y) = f(y, x) for all x, y ∈ R.

Definition 4.2. Let R be an incline algebra and let f(., .) : R× R→ R be a
symmetric mapping. We call f a +-symmetric bi-multiplier on R if it satisfies;

f(x, y + z) = f(x, y) + z for all x, y, z ∈ R.

Example 4.1. Let R be an incline algebra. The mapping f(., .) : R×R→ R
will be defined by

f(x, y) = x + y

is a +-symmetric bi-multiplier.

Proposition 4.3. Let R be an incline algebra with a zero element and f be the
+-symmetric bi-multiplier on R. Then we have the followings for all x, y ∈ R.

i) y ≤ f(x, y)

ii) f(x, 0) + y ≤ f(x, y)

iii) If f(0, 0) = 0 then x ≤ f(0, x).

Proof :
i) Let R be an incline algebra and f be the +-symmetric bi-multiplier on R

and x, y ∈ R. Then by using the definition of +-symmetric bi-multiplier and
(RVI) we get
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f(x, y) = f(x, y + y)

= f(x, y) + y

Therefore y ≤ f(x, y).

ii) Let R be an incline algebra with a zero element and f be the +-symmetric
bi-multiplier on R. Then we have

f(x, y) = f(x, 0 + y)

= f(x, 0) + y

Therefore f(x, y) = f(x, 0) + y. Hence f(x, 0) + y ≤ f(x, y).

iii) This is clear by ii).
Let f be a +-symmetric bi-multiplier of an incline algebra R and a be fixed

element in R. Define a set Fixf (R) = {x ∈ R|f(a, x) = x} for all x ∈ R.

Proposition 4.4. Let f be a +-symmetric bi-multiplier on an incline algebra.
If x ∈ Fixf (R) then x + y ∈ Fixf (R) for all y ∈ R.

Proof : Let f be a +-symmetric bi-multiplier on an incline algebra and
x ∈ Fixf (R). Then we have f(a, x) = x.

f(a, x + y) = f(a, x) + y

= x + y

Therefore, we have x + y ∈ Fixf (R).

Proposition 4.5. Let f be a +-symmetric bi-multiplier on an incline algebra
that is right cancellative. If x + y ∈ Fixf (R) and y ∈ Fixf (R) then x ∈
Fixf (R).

Proof : Let f be a +-symmetric bi-multiplier on an incline algebra and
x + y ∈ Fixf (R) and y ∈ Fixf (R). Then

f(a, x + y) = f(a, x) + y

= x + y

Therefore we get f(a, x) + y = x + y. If R is additively right cancellative
then we have f(a, x) = x. So x ∈ Fixf (R).
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