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Abstract

In this paper, we introduce the multiclass traffic equilibrium problem
which includes the traffic equilibrium problem as a special case, and
extend Beckmann’s formula to the case of multiclass traffic equilibrium
problems. By an example, we illustrate the calculation process of the
multiclass traffic equilibrium flow using multiclass Beckmann’s formula
and show that multiclass Beckmann’s formula is a sufficient condition
only for the multiclass traffic equilibrium flow.
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1 Introduction

Wardrop (1952) introduced a traffic equilibrium problem with a scalar cost
function. Beckmann et al.(1956) constructed a mathematical programming
problem which is equivalent to Wardrop’s traffic equilibrium problem. In real
world, there often are multiclass vehicle on road, such as car, truck, bus, mo-
torcycle and so on, so in recent years, the multiclass traffic equilibrium problem
has attracted much attention. In this paper, we introduce the multiclass traf-
fic equilibrium problem (briefly, MTEP) which includes the traffic equilibrium
problem (briefly, TEP) as a special case, and extend Beckmann’s formula to
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the case of the multiclass traffic equilibrium problem. By an example, we il-
lustrate the calculation process of the multiclass traffic equilibrium flow using
multiclass Beckmann’s formula and show that multiclass Beckmann’s formula
is a sufficient condition only for the multiclass traffic equilibrium flow. For
other results with respect to multiclass traffic equilibrium problems, we refer
to Dafermos (1972,1973), Nagurney (2000), Nagurney and Dong (2002), Yang
and Huang (2004), Li and Chen (2006), Zhang et. al. (2008), Zhu et. al.
(2012), Xu et al. (2014) and the references therein.

2 Preliminaries

For a traffic network, assume that there are q classes of vehicles, for ex-
ample, truck, bus, car and so on and denote by Q = {1, 2, · · · , q}. Let V
denote the set of nodes and E the set of directed arcs, and W the set of origin-
destination (O-D) pairs. For each ω ∈ W , let Pω denote the set of available
paths joining O-D pair ω and m =

∑
ω∈W | Pω |. Let D = (d(ω,s))s∈Q,ω∈W

denote the demand vector, where d(ω,s)(> 0) denotes the traffic demand of
class s of vehicles on O-D pair ω. For each α ∈ E, the arc flow fα =
(f(α,1), f(α,2), · · · , f(α,q))T ∈ Rq

+, where f(α,s)(s ∈ Q) denotes the flow of class s
of vehicles on arc α. For each s ∈ Q,ω ∈ W,k ∈ Pω, let f(k,s)(≥ 0) denote
the traffic flow of class s of vehicles on path k. f = (f(k,s))

T
s∈Q,w∈W,k∈Pω =

(f(1,1), · · · , f(m,1), f(1,2), · · · , f(m,2), · · · , f(1,q), · · · , f(m,q))T ∈ Rmq
+ is said to be a

path flow (briefly, flow). Clearly, for α ∈ E, s ∈ Q, f(α,s) =
∑
ω∈W

∑
k∈Pω δαkf(k,s),

where δαk = 1 if arc α belongs to path k, otherwise δαk = 0, thus fα = fα(f).
A traffic network is usually denoted by ℵ = {V,E,W,D}. For each s ∈ Q,ω ∈
W , the flow f needs to satisfy the demand constraint:

∑
k∈Pω f(k,s) = d(ω,s). A

flow f satisfying the demand constraints is called a feasible path flow (briefly,
feasible flow). Let A = {f ∈ Rmq

+ : ∀s ∈ Q,ω ∈ W,
∑
ω∈Pω f(k,s) = d(ω,s)}.

Clearly, A is convex, compact and A 6= ∅. For each α ∈ E, s ∈ Q, let t(α,s) =
t(α,s)(fα) be a cost of class s of vehicles on arc a and for each ω ∈ W, k ∈ Pw,
the cost t(k,s) of class s of vehicles along path k is assumed to be the sum of
all the arc cost along k, i.e., t(k,s)(f) =

∑
α∈E δαkt(α,s)(f). Denote that for each

s ∈ Q, ts(f) = (t(1,s)(f), t(2,s)(f), · · · , t(m,s)(f)) and

t(f) =


t(1,1)(f) · · · t(m,1)(f) 0 · · · 0 · · · 0 · · · 0
0 · · · 0 t(1,2)(f) · · · t(m,2)(f) · · · 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 · · · t(1,q)(f) · · · t(m,q)(f)

 .
Definition 1. (Multiclass equilibrium principle). A flow f ∈ A is

said to be in equilibrium if:

∀s ∈ Q,ω ∈ W,∀k, j ∈ Pω, t(k,s)(f)− t(j,s)(f) > 0
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⇒ f(k,s) = 0.

f is said to be a multiclass equilibrium flow (briefly, equilibrium flow)
or multiclass equilibrium.

A MTEP is usually denoted by Γ = {ℵ, A, t}. x is said to be a solution
of Γ if x is a multiclass equilibrium flow of Γ.

3 The multiclass Beckmann’s formula

For the MTEP Γ = {ℵ, A, t}, construct the following mathematical program-
ming problem MP :

Minz(f) = Σq
s=1Σα∈E

∫ f(α,s)
0 t(α,s)(x)dx

s.t.

{ ∑
k∈Pω f(k,s) = d(ω,s), ∀s ∈ Q,ω ∈ W

f(k,s) ≥ 0, ∀ω ∈ W,k ∈ Pω.

Above formula is a generalization of Beckmann’s formula, which is called
the multiclass Beckmann’s formula. Next theorem shows that each solution of
the multiclass Beckmann’s formula is an equilibrium flow for Γ.

Theorem 1. Consider a MTEP Γ = {ℵ, A, t}. Assume that for each s ∈
Q,α ∈ E, t(α,s)(f) is continuous on Rm

+ , then the flow f ∈ A is in equilibrium
if f solves the mathematical programming problem MP .

proof. Denote that h(ω,s) =
∑
k∈Pω f(k,s) − d(ω,s). The problem MP’s

Kuhn-Tucker conditions are:
∂z[f ]
∂f(k.s)

− Σs∈Q,ω∈Wλ(ω,s)
∂h(ω,s)
∂f(k,s)

− β(k,s) = 0 ∀s ∈ Q,ω ∈ W,k ∈ Pω
β(k,s)f(k,s) ≥ 0, ∀s ∈ Q,ω ∈ W,k ∈ Pω
λ((ω,s) ≥ 0, β(k,s) ≥ 0, ∀s ∈ Q,ω ∈ W,α ∈ E, k ∈ Pω

where λ(ω,s) and β(k,s) are Lagrange multipliers.
Since for each s ∈ Q,α ∈ E, t(α,s)(f) is continuous on R+, we have

∂z[f ]

∂f(k,s)
=

∂

∂f(k,s)
(Σα∈E

∫ f(α,s)

0
t(α,s)(x)dx) = Σα∈E

∂

∂f(α,s)

∫ f(α,s)

0
t(α,s)(x)dx·

∂f(α,s)
∂f(k,s)

= Σα∈Et(α,s)(f)δαk = t(k,s), Σω∈Wλ(ω,s)
∂h(ω,s)
∂f(k,s)

= λ(ω,s).

Thus, we have f(k,s)(t(k,s) − λ(ω,s)) = 0,∀s ∈ Q,ω ∈ W,k ∈ Pω, i.e.,

if f(k,s) > 0, t(k,s) = λ(ω,s) ∀s ∈ Q,ω ∈ W,k ∈ Pω
if f(k,s) = 0, t(k,s) ≥ λ(ω,s) ∀s ∈ Q,ω ∈ W,k ∈ Pω

.
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In other words, for each path k, we have t(k,s) ≥ λ(ω,s). Hence, for ∀s ∈ Q,ω ∈
W,∀k, j ∈ Pω,, if t(k,s)(f) − t(j,s)(f) > 0, then f(k,s) = 0, otherwise f(k,s) > 0,
which implies that t(k,s) = λ(ω,s) ≤ t(j,s), a contradiction. By Definition 1, the
proof is finished.

By Theorem 1, it is easy to construct algorithms to calculate the equilib-
rium flow for MTEP.

Example 1. Consider the MTEP (see Figure 1), where V = {1, 2, 3, 4},
E = {e1, e2, e3, e4}, ,Q = {1, 2}, W = {ω} = {(1, 4)}, D = (d(ω,1), d(ω,2)) =
(3, 4), and

t(e1,1)(fe1) = 3f(e1,1) + 2f(e1,2) + 40, t(e2,1)(fe2) = 4f(e2,1) + 5f(e2,2) + 10,

t(e3,1)(fe3) = 5f(e3,1) + 2f(e3,2) + 30, t(e4,1)(fe4) = 7f(e4,1) + 6f(e4,2) + 40,

t(e1,2)(fe1) = 10f(e1,1) + 5f(e1,2) + 35, t(e2,2)(fe2) = 6f(e2,1) + 3f(e2,2) + 47,

t(e3,2)(fe3) = 5f(e3,1) + 4f(e3,2) + 42, t(e4,2)(fe4) = 4f(e4,1) + 6f(e4,2) + 38.
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Figure 1: A traffic network

For O-D pairs ω = (1, 4): Pω contains paths l1 = (e1e3), l2 = (e2e4).
Denote by f(li,s) = fis(i = 1, 2; s = 1, 2), where f(li,s) denotes the flow of class
s of vehicles on path li.

Let f = (f11, f21, f12, f22)
T ∈ R4

+. Then we have
f(e1,1) = f(e3,1) = f11, f(e1,2) = f(e3,2) = f12, f(e2,1) = f(e4,1) = f21, f(e2,2) =

f(e4,2) = f22.
Note that

Σq
s=1Σα∈E

∫ f(α,s)

0
t(α,s)(x)dx =

∫ f11

0
(3x+2f12)+40)dx+

∫ f11

0
(5x+2f(12)+30)dx
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+
∫ f21

0
(4x+5f(22)+10)dx+

∫ f21

0
(7x+6f(22)+40)dx+

∫ f12

0
(10f(11)+5x+35)dx

+
∫ f12

0
(5f11) + 4x+ 42)dx+

∫ f22

0
(6f(21) + 3x+ 47)dx+

∫ f22

0
(4f(21) + 6x+ 38)dx

= 4f 2
11+19f11f12+70f11+

11

2
f 2
21+21f21f22+50f21+

9

2
f 2
12+77f12+

9

2
f 2
22+85f22.

By Theorem 1, we obtain the following mathematical programming problem
MP1:

Minz(f) = 4f2
11 + 19f11f12 + 70f11 + 11

2 f2
21 + 21f21f22 + 50f21 + 9

2f
2
12 + 77f12 + 9

2f
2
22 + 85f22

s.t.

 f11 + f21 = 3
f12 + f22 = 4
fis ≥ 0(i = 1, 2; s = 1, 2.)

It is easy to verify that f = (f11, f21, f12, f22)
T = (0, 3, 4, 0)T is the solution

of the multiclass Beckmann’s formula MP1 (Minz(f) = 579.5). Clearly, f is
a multiclass equilibrium flow.

Note that g = (3, 0, 0, 4)T (z(g) = 658) is also a multiclass equilibrium
flow of MTEP , but it is not a solution of above mathematical programming
problem MP1, i.e., Theorem 1 is a sufficient condition only, not a necessary
condition.
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